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organic frameworks†
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Metal–organic frameworks (MOFs) are porous, crystalline materials with high surface area, adjustable

porosity, and structural tunability, making them ideal for diverse applications. However, traditional

experimental and computational methods have limited scalability and interpretability, hindering effective

exploration of MOF structure–property relationships. To address these challenges, we introduce, for the

first time, a category-specific topological learning (CSTL), which combines algebraic topology with

chemical insights for robust property prediction. The model represents MOF structures as simplicial

complexes and incorporates elemental categorizations to enable balanced, interpretable machine

learning study. By integrating category-specific persistent homology, CSTL captures both global and

local structural characteristics, rendering multi-dimensional, category-specific descriptors that support

a predictive model with high accuracy and robustness across eight MOF datasets, outperforming all

previous results. This alignment of topological and chemical features enhances the predictive power and

interpretability of CSTL, advancing understanding of structure–property relationships of MOFs and

promoting efficient material discovery.
1 Introduction

Metal–organic frameworks (MOFs) are a unique class of porous
materials made up of metal ions or clusters connected to
organic ligands, forming crystalline structures with remarkable
tunability. Their customizable properties, including high
surface area, adjustable porosity, and structural versatility,
make MOFs highly suitable for a range of applications,1–4 such
as gas storage,5 separation,6 catalysis,7,8 and sensing.9 Although
the design possibilities for MOFs are vast, with potentially
innite structures that can be synthesized. A thorough under-
standing of the relationship between MOF structure and its
properties is therefore crucial for designing MOFs tailored to
specic applications.10,11 However, challenges remain. Tradi-
tional experimental methods, while valuable for providing
insights into MOF behavior, can be labor-intensive, costly, and
limited in scope, hindering the ability to explore the extensive
chemical space that MOFs occupy. Computational methods,
such as molecular dynamics (MD),12 enable the simulation of
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atomic motion over time and can be performed using either
classical force elds13 or rst-principles methods, i.e., density
functional theory (DFT).14 As a rst-principles approach, DFT
provides a quantum mechanical description of material prop-
erties and can be used in MD simulations. However, both
classical and DFT-based MD oen face scalability challenges,15

making simulations computationally prohibitive, particularly
for large or complex MOF systems, due to the extensive calcu-
lations required.16–19

Given the limitations of traditional experimental and
computational approaches in studying MOF structure–property
relationships, advanced data-driven techniques have become
essential. Machine learning (ML) than has become increasingly
important in studying MOF structure–property relationships
and offering a possible solutions to those limitations.20–23 And
thanks to the high-throughput computational screening, in
particular, has emerged as a valuable approach, has laid a solid
foundation by generating extensive, high-quality MOF data-
bases,24,25 such as the CoRE MOF26 and hMOF datasets,27 which
enable ML applications in MOF research. Recently, ML models
have leveraged geometric descriptors of MOF structures, such
as void fraction and pore volume, to predict gas adsorption
properties with notable accuracy.28,29 For instance, energy grid
histograms have been used as descriptors in ML models to
predict gas uptake,30 while other models utilize geometric,
atom-type, and chemical feature descriptors to forecast N2/O2

selectivity and diffusivity.28 Despite these advances, prediction
accuracy remains a challenge for certain properties. The deep
learning (DL) models are introduced, including convolution
This journal is © The Royal Society of Chemistry 2025
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neural networks, graph neural networks31,32 and transformer-
based architectures,33–36 have further enhanced the predictive
power for various MOF properties by harnessing large datasets.
However, these models come with certain limitations: they can
be computationally demanding, oen require substantial
amounts of data, and sometimes function as ‘black-box’
systems, presenting challenges for interpretability. Addressing
these considerations through continued renement will help
enhance the accessibility and interpretability of ML, particularly
in advancing MOF discovery.

To address challenges in MOF research, incorporating
mathematically derived, explainable features is essential. These
features enhance interpretability and contribute to more robust
predictive models for MOF properties. Instead of relying solely
on conventional descriptors,28,29 advanced mathematical tools
from elds like geometry and topology can be employed to
extract insightful, high-level features. Techniques such as
algebraic graph theory,37,38 persistent homology,39 element-
specic persistent homology,40 path topology,41 and topolog-
ical Laplacians42 are increasingly used in molecular and mate-
rials science, offering new methods to capture the structural
and functional nuances of complex materials. Mathematics-
based methods have already shown success in elds such as
drug discovery,38 biological sciences,43 and materials science,44

linking structural features to machine learning models for
interpretable and detailed representations. For instance,
persistent hyperdigraphs have enabled accurate predictions of
protein–ligand interactions by capturing essential molecular
details within a rigorous mathematical and transformer
framework.45 Mathematical deep learning was a top winner for
pose and binding affinity prediction and ranking in D3R Grand
Challenges, a worldwide competition series in computer-aided
drug design.46,47

In this work, we propose a category-specic topological
leaning (CSTL) model for predicting the properties of MOFs.
This model introduces a mathematically sound and chemically
informed framework designed to analyze and predict MOF
properties by integrating both structural complexity and
elemental composition. Specically, each MOF structure is
represented as a simplicial complex, establishing a robust
topological basis for capturing the unique geometric features of
MOFs. To enhance structural analysis with chemical insights,
the model incorporates category-specic representations by
categorizing elements based on valence electron similarity and
occurrence frequency. This categorization ensures a balanced
representation across the diverse elemental distributions of
MOFs. For each elemental category, the model constructs
tailored topological representations and applies persistent
homology analysis. This method captures both global and local
structural features using topological invariants, while also
preserving detailed geometric information—particularly bene-
cial for materials with complex pore networks and spatially
organized atomic structures. The model generates multi-
dimensional, category-specic descriptors to encapsulate
these intricate structural characteristics, which then serve as
input to a gradient boosting tree model for predictive analysis.
This approach provides an interpretable, chemically informed
This journal is © The Royal Society of Chemistry 2025
framework for predicting a broad range of MOF properties,
including eight gas selectivity datasets, with the state-of-the-art
performance and improved robustness. By aligning topological
features with elemental distributions, CSTL addresses the
limitations of conventional approaches, advancing the under-
standing and prediction of structure–property relationships in
MOF materials.

2 Results
2.1 Workow and schematic of a category-specic
topological model

Fig. 1a presents the workow of our proposed category-specic
topological model, designed to analyze and predict properties
of MOF structures. In this workow, the model begins by con-
structing a simplicial complex representation, which provides
a robust topological framework tailored to capture the complex
geometry of MOF materials. However, persistent homology
itself is not enough for molecular modeling.40,43 To enhance the
structural analysis of MOFs with chemical insights, we intro-
duce category-specic topological representations, denoted as
categories C0 through C7 and Call, where Call represents the full
structure. The necessity of this categorization arises from the
fact that different elements play distinct roles in MOF func-
tionality, inuencing stability, reactivity, and porosity.
Grouping elements into categories facilitates a more systematic
understanding of their contributions and interactions within
the framework. To establish these categories, an elemental
distribution analysis is rst conducted across the dataset, as
illustrated in Fig. 1b, highlighting the frequency of elements
and grouping them based on valence electron similarity and
occurrence frequency. Elements with comparable properties are
analyzed collectively, while highly prevalent elements such as
carbon (C) and hydrogen (H), which play fundamental roles in
MOF structures, are assigned distinct categories. This struc-
tured approach enables a more insightful analysis of elemental
contributions, ultimately improving our ability to interpret and
predict MOF properties. Table 1 further species these element
categories. Notably, the dataset exhibits a broad range of
elements, with particular diversity among metallic elements,
though specic metallic elements appear less frequently. The
categorization process addresses these distribution variances,
ensuring that infrequent elements are adequately considered
within the predictive model to prevent overemphasis on
particular elements' inuence.

Based on these elemental categories, category-specic topo-
logical representations are constructed for each MOF structure
using alpha complexes, which provide a categorized-level
topology for these materials. The alpha complex is a type of
simplicial complex that generalizes the concept of a graph.
Unlike graphs, which capture only pairwise interactions, alpha
complexes can represent higher-order interactions, making
them well-suited for describing the structural complexity of
MOFs. As illustrated in Fig. 5, the simplicial complex (Fig. 5a)
can be decomposed into different dimensional components.
The 0-simplices (Fig. 5b) correspond to individual points
(atoms) in the structure. The 1-simplices, representing edges,
J. Mater. Chem. A, 2025, 13, 9292–9303 | 9293
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Fig. 1 Schematic for category-specific topological models in MOF property prediction. (a) Overview of the category-specific topological models
used for predicting properties of MOFs. Given MOF structures (first column), category-specific topological representations are constructed,
including a simplicial complex for all structures (Call) and sub-complexes based on categories (C0 to C7). The persistent homology method is
applied to each category to generate barcode representations. A featurization vector extracts features from these barcodes, which are then used
to construct a gradient boosting tree model for predictions on specific datasets. (b) Element distribution across the CoRE MOF v2019 dataset.
The y-axis indicates the number of MOFs present in the dataset, with elements categorized based on valence electron similarity and their
frequencies in the dataset.

Table 1 Element categories for category-specific topological
modeling of MOFs

Element category Notation

Alkali metals, alkaline metals, and other metals C0

Transition metals, lanthanoids, actinoids C1

Metalloids C2

Halogens C3

Hydrogen (H) C4

Carbon (C) C5

Nitrogen (N), phosphorus (P) C6

Oxygen (O), sulfur (S), selenium (Se) C7

All Call

9294 | J. Mater. Chem. A, 2025, 13, 9292–9303

Journal of Materials Chemistry A Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 6
:2

8:
42

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
encode pairwise interactions, forming amolecular graph. The 2-
simplices (Fig. 5c) capture three-body interactions, as they
consist of triangles encompassing three points. Higher-order
interactions are similarly represented by higher-dimensional
simplices. To extract topological features from these
complexes, we employ algebraic topology tools such as
homology, which captures topological invariants of the struc-
ture. Specically, in this work, we utilize rank of homology
groups Hk for k= 0, 1, 2, corresponding to topological invariants
in the rst three dimensions, providing insights into connec-
tivity, loops, and cavities within the MOF structures.

Subsequently, category-specic persistent homology analysis
is applied, denoted as Hk

(a,b), where k = 0, 1, 2 represents
This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Comparison between predicted and true values for eight datasets on O2/N2 selectivity properties in MOF materials. Panels (a–h) show
prediction performance for different properties: Henry's constant for N2/O2 (a and e), N2/O2 uptake (mol kg−1) (b and f), self-diffusivity of N2/O2 at
1 bar (cm2 s−1) (c and g), and self-diffusivity of N2/O2 at infinite dilution (cm2 s−1) (d and h). Each panel displays the r2 and the MAE in the upper left
corner. Each dataset was randomly split, with 80% used for training, with 10% reserved for testing.
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different topological dimensions, and a = 0 to b = 25 denes
the distance interval, allowing a detailed examination of struc-
ture across multiple scales. Multi-dimensional category-specic
barcodes are then computed to capture geometric and topo-
logical information specic to each elemental category.
Following this, a featurization step was introduced. In
a previous study, Krishnapriyan et al.48 proposed a method that
used persistent homology to extract 1D and 2D topological
features of MOF pores and channels by computing birth–death
pairs across spatial scales. The resulting persistence diagram
was then transformed into a 2D vectorized representation using
Gaussian kernels and grid discretization. In contrast, instead of
generating a 2D vectorized representation, we introduced
a featurization step that bins barcodes into xed intervals
ranging from 0 to 25 Å with a resolution of 0.1 Å. This approach
captures more geometric details while maintaining a manage-
able feature dimensionality, making the subsequent machine
learning model more effective with limited data. Finally, these
features are concatenated to create a comprehensive and
category-specic topological descriptor, which is fed into
a gradient boosting tree model for predictive modeling across
various MOF properties. This approach ensures a balanced
representation of elements within the model, enhancing
predictive robustness and capturing the nuanced impacts of
elemental distribution on MOF properties.

2.2 Properties prediction for MOFs

In this study, we validated the proposed category-specic
topological models by predicting key properties of MOF mate-
rials, including the Henry's constant for N2 and O2 (mol kg−1

Pa−1), uptake values for N2 and O2 (mol kg−1), self-diffusivity of
This journal is © The Royal Society of Chemistry 2025
N2 and O2 at 1 bar (cm2 s−1), and self-diffusivity at innite
dilution (cm2 s−1). Table 3 and the datasets section provide
detailed descriptions of these datasets. The prediction
outcomes, shown in Fig. 2, demonstrate close alignment
between predicted and actual values across all eight datasets,
with an 80 : 10 : 10 random split for training, validation, and
testing, respectively.33,34 Performancemetrics, specically r2 and
MAE, averaged over 100 repeated experiments, are presented in
the top le corner of each dataset's plot, underscoring the
model's accuracy and reliability.

To benchmark the model's performance, we compared it
with state-of-the-art models, including MOFTransformer33 and
PMTransformer,34 both of which were trained on over a million
structures for MOF property prediction. As shown in Table 2,
the category-specic topological model consistently outper-
forms these models across all datasets, achieving superior r2,
MAE, and RMSE metrics. It is noted that a universal set of
hyperparameters was applied across all eight datasets to ensure
robustness and prevent overtting; validation data was not
specically used. In practical applications, incorporating the
validation data into the training set could further enhance
model accuracy.

Additionally, we evaluated model robustness by testing on
a 20% holdout set across all datasets, with results shown in
Fig. S1 and Table S1,† where the proposed model continued to
outperform previous models. To ensure the validation stability,
we trained 100 models using 10 different seeds, each repeated
across 10 randomly initialized predictive models. Heatmaps in
Fig. S2–S4† illustrate that variations in seed selection have
minimal impact on model performance, conrming the
robustness and stability of the predictive model across both
J. Mater. Chem. A, 2025, 13, 9292–9303 | 9295
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Table 2 Comparison of CSTL performance with published models across various MOF datasets

Datasets

CSTL Descriptor-based28 MOFTransformer33 PMTransformer34

r2 MAE RMSE r2 RMSE r2 MAE MAE

Henry's constant N2 0.80 4.90 × 10−7 7.25 × 10−7 0.70 8.94 × 10−7

Henry's constant O2 0.83 4.98 × 10−7 7.63 × 10−7 0.74 9.60 × 10−7

N2 uptake (mol kg−1) 0.79 4.98 × 10−2 7.37 × 10−2 0.71 8.62 × 10−2 0.78 7.10 × 10−2 6.90 × 10−2

O2 uptake (mol kg−1) 0.85 4.50 × 10−2 6.82 × 10−2 0.74 9.28 × 10−2 0.83 5.10 × 10−2 5.30 × 10−2

Self-diffusion of N2 at 1 bar (cm2 s−1) 0.80 3.40 × 10−5 4.69 × 10−5 0.76 5.00 × 10−5 0.77 4.52 × 10−5 4.53 × 10−5

Self-diffusion of N2 at innite dilution
(cm2 s−1)

0.80 3.75 × 10−5 5.15 × 10−5 0.76 5.50 × 10−5

Self-diffusion of O2 at 1 bar (cm2 s−1) 0.82 3.21 × 10−5 4.45 × 10−5 0.78 4.98 × 10−5 0.78 4.04 × 10−5 3.99 × 10−5

Self-diffusion of O2 at innite dilution
(cm2 s−1)

0.79 3.34 × 10−5 4.53 × 10−5 0.74 4.95 × 10−5
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xed and variable data splits. Furthermore, to demonstrate the
improvement of CSTL with the categorized features, we apply
Call solely for the machine learning model. Under the same
parameter settings, we found that CSTL outperforms the Call-
only model across all datasets and metrics. The detailed results
are provided in Table S3.† This comparison highlights the
importance of incorporating additional chemical information
through the categorized method.
2.3 Feature analysis for the category-specic topological
models

In this work, we propose a category-specic topological model
to capture the distinctive characteristics of MOF materials. The
model encodes each component's inherent structural and
functional attributes by categorizing elements based on their
chemical roles and applying persistent homology to analyze
each category separately. This approach allows us to represent
both the inorganic and organic building blocks of MOFs
through distinct topological features, providing a nuanced view
that goes beyond treating all atoms as identical.

MOFs are typically built from two primary types of compo-
nents: inorganic metal nodes and organic linkers. Metal ions or
clusters in the inorganic units serve as coordination centers and
framework backbones, offering stability and structural rigidity
while connecting to the organic linkers. Although metal nodes
oen appear in smaller quantities than organic atoms, they
strongly inuence the overall material properties.4,49 Because of
the diversity among metal elements, it becomes challenging to
systematically understand the effect of each metal across all
samples—especially for rare metals like Rn, Bi, and Cs that
appear infrequently. Organic linkers, composed mainly of
carboxylates or nitrogen-containing ligands, bridge these metal
nodes, dening the MOF's porosity and connectivity. These
organic components typically make up the majority of the
framework and play a critical role in establishing the intricate,
symmetrical structures of MOFs.

To address these component-specic inuences, we group
metals into categorical types (C0, C1, C2, C3) while non-metals
are clustered into single element or few elements set (C4, C5,
C6, and C7) as shown in Table 1. This CSTL thus captures the
functional contributions of distinct components within the
9296 | J. Mater. Chem. A, 2025, 13, 9292–9303
MOF without overemphasizing elemental diversity, allowing
each category to reveal its unique structural inuence through
topological embedding.

Visualizing the 2D t-SNE reduction in Fig. 3, each green point
represents a different MOF material, with distinct clusters
reecting the inuence of the CSTL features. Here, key prop-
erties such as N2 uptake, O2 uptake, and self-diffusivity values
are mapped, where materials with the maximum andminimum
values for each property are highlighted. Even without predic-
tive modeling, CSTL features differentiate structures with
signicant property variations, suggesting that the model
inherently captures critical structure–property relationships.
For example, the MOF material labeled ELOZEK_clean, which
has the lowest N2/O2 uptake values (8.64 × 10−3 mol kg−1 for
both N2 and O2) and Henry's constants (8.64 × 10−3 mol kg−1

Pa−1 for both N2 and O2), reects poor gas absorption. Similarly,
COVPAG_clean demonstrates minimal self-diffusivity for N2

(4.15 × 10−7 cm2 s−1), underscoring its limited diffusion capa-
bilities. Such distinctions underscore the power of the CSTL
approach to reveal essential structural variations directly
through category-specic topological embeddings, dis-
tinguishing materials with extreme property values across the
MOF dataset.

To quantify the signicance of each feature within the
proposed CSTL model, we analyzed the tree-based feature
importance derived from trained predictive models, as illus-
trated in Fig. 4. The features with higher importance scores
correspond to those that play a signicant role in model
predictions. This analysis highlights several key trends across
different homology dimensions (H0, H1, and H2) and categories,
reecting the structural and categorical inuence on the
model's predictions.

Generally, we observe that feature importance is concen-
trated at the beginning of each dimensional homology (H0, H1,
and H2) across all categories. This is due to the intentionally
large end value set for the intervals (25 Å), ensuring the model's
robustness across a broader range of structures, including
potential extreme cases beyond the current dataset. Conse-
quently, topological features in the later portion of the interval
largely default to zero, explaining the higher importance of
features at the beginning of each homology dimension. For
This journal is © The Royal Society of Chemistry 2025

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ta08877h


Fig. 3 t-SNE feature reduction for category-specific topological features of MOF materials, where each green point represents a distinct MOF
material. Highlighted circles and triangles indicate materials with maximum and minimum values, respectively, for four key properties: N2 uptake
(mol kg−1), O2 uptake (mol kg−1), self-diffusivity of N2 at infinite dilution (cm2 s−1), and self-diffusivity of O2 at infinite dilution (cm2 s−1). 3D
structures of the materials with minimum and maximum values for each property are shown around the t-SNE plot.
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category C2, which includes metalloids like B, Si, Ge, As, Sb, Te,
Po, and At, the feature importance appears limited. Since these
elements have valence electron congurations similar to
carbon, and their occurrence within the dataset is low (as shown
in Fig. 1b), their inuence is oen overshadowed by the
predominant presence of carbon. This results in carbon having
a stronger impact within this category, affecting the overall
model importance distribution.

Focusing on Henry's constant, shown in the green-
highlighted section of Fig. 4a, we see distinct variations in
feature importance between different gases (N2 in blue and O2

in orange). Categories C5 and C7, representing carbon and
oxides respectively, exhibit substantial shis in importance,
indicating that carbon-based structures and strongly oxidizing
elements inuence the selectivity of MOF materials towards
This journal is © The Royal Society of Chemistry 2025
these gases. In particular, H2 in C5 suggests that carbon-based
cavities strongly affect gas selectivity, while H0 in C7 high-
lights the role of oxidizing element spacing on selectivity. A
similar trend is observed for N2 and O2 uptake properties, as
shown in Fig. 4b. For self-diffusivity of N2/O2, whether at 1 bar
or innite dilution, Fig. 4c and d indicate that cycles and cavi-
ties within the overall MOF structure, particularly within H1 and
H2 of the Call category, are the primary factors inuencing
diffusion properties. This suggests that the model effectively
captures the topological elements critical to gas diffusion across
MOF structures.

Furthermore, when comparing properties related to gas
absorption (Fig. 4a and b) and diffusivity (Fig. 4c and d), we note
that C1 shows signicant variations in importance. This implies
that metal atoms have a pronounced effect on gas absorptivity,
J. Mater. Chem. A, 2025, 13, 9292–9303 | 9297
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Fig. 4 Feature importance analysis for predictive models of eight properties in MOF materials using gradient boosting tree model-based
importance. Panels (a)–(d) show the importance of topological features for predicting (a) Henry's constant of N2 and O2 (mol kg−1 Pa−1), (b) N2

and O2 uptake (mol kg−1), (c) self-diffusivity of N2 and O2 at 1 bar (cm
2 s−1), and (d) self-diffusivity of N2 and O2 at infinite dilution (cm2 s−1). Each

panel presents separate importance values for N2 (blue) andO2 (orange) predictions. The bars highlight feature groups by topological dimensions
H0, H1, and H2 across different topological categories (C0 to C7), with green-shaded regions indicating particularly influential features for different
gases (N2 and O2) and red-shaded regions indicating particularly influential features across different properties.
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in contrast to their relatively lower impact on diffusivity prop-
erties. In conclusion, this feature analysis demonstrates the
versatility and precision of the proposed CSTL model, which
adeptly balances generalization and prediction accuracy across
diverse property predictions. By integrating both structural and
elemental distinctions, the model captures the nuanced inter-
actions within MOF materials, offering a robust framework for
predicting many functional properties.

3 Conclusion

The unique properties of MOFs stem from the combination of
metal clusters and organic linkers, which endow them with
high surface area, adjustable porosity, and the ability to nely
9298 | J. Mater. Chem. A, 2025, 13, 9292–9303
tune their structures. Despite these advantageous characteris-
tics, traditional experimental and computational methods face
signicant challenges when scaling to the vast chemical and
structural diversity of MOFs, as well as in interpreting the
complex structure–property relationships.

In this work, we introduce the Category-Specic Topological
Learning (CSTL) model, a novel and efficient approach for
predicting MOF properties. CSTL combines advanced topolog-
ical techniques with chemically informed categorization to
overcome the limitations of conventional methods. By repre-
senting MOF structures as topological objects, i.e., simplicial
complexes, CSTL captures both global and local geometric
features, while persistent homology facilitates the extraction of
topological invariants that provide unique insights into the
This journal is © The Royal Society of Chemistry 2025
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material's structural properties. Furthermore, the integration of
category-specic representations-based on valence electron
similarity and occurrence frequency ensures a more balanced
and nuanced understanding of elemental distributions in
various MOFs. This approach enhances the accuracy and
interpretability of predictions related to gas selectivity,
adsorption, and other key properties. The multi-dimensional,
category-specic descriptors generated by CSTL serve as
inputs to a gradient boosting tree model, which demonstrates
state-of-the-art performance in predicting a broad range of MOF
properties with increased robustness and accuracy.

Additionally, our analysis of the trained model reveals that
specic categories, particularly those including transition
metals, lanthanoids, and actinoids, exert a more signicant
inuence on adsorption-related properties such as Henry's
constant and gas uptake than on self-diffusivity properties. The
proposed CSTL model offers a scalable, interpretable, and
chemically informed framework that advances our under-
standing of MOF structure–property relationships. This method
provides a powerful tool for the rational design of MOFs with
targeted properties, accelerating the discovery of new materials
for diverse applications, including energy storage, environ-
mental remediation, and beyond. By bridging the gap between
structural complexity and chemical composition, CSTL repre-
sents a signicant advancement in the computational modeling
of advanced materials.
4 Method
4.1 Datasets

All datasets used in this study originate from the CoRE MOFs
2019 database.26 The properties of interest, such as O2 and N2

selectivity, were simulated in earlier studies.26 Certain entries,
identied as outliers, were found to lie at the extreme upper end
of the distribution, signicantly distant from the majority of
data points.28 To enhance the robustness and reliability of the
models, these outliers were excluded. Additionally, the data
used for validating property predictions was further rened by
applying upper-limit threshold values, as outlined in the work
of Orhan et al.28 This ltering process removed the outliers,
resulting in a more uniform and comprehensive distribution,
ensuring a well-represented target-variable space. The ltering
methodology follows that of Orhan et al.28 To ensure a clear and
transparent comparison, we compiled the data information for
all methods compared in this study, as summarized in Table
Table 3 Summary of datasets for N2 and O2 selectivity of MOFs

Datasets (properties) Sizes

Henry's constant of N2 (mol kg−1 Pa−1) 4744
Henry's constant of O2 (mol kg−1 Pa−1) 5036
N2 uptake (mol kg−1) 5132
O2 uptake (mol kg−1) 5241
Self-diffusivity of N2 at 1 bar (cm2 s−1) 5056
Self-diffusivity of N2 at innite dilution (cm2 s−1) 5192
Self-diffusivity of O2 at 1 bar (cm2 s−1) 5223
Self-diffusivity of O2 at innite dilution (cm2 s−1) 5097

This journal is © The Royal Society of Chemistry 2025
S1† In this study, the input features were derived solely from
MOF structural data stored in CIF les, without the use of any
additional descriptors. Detailed information about the datasets,
including the ltered properties and prediction performance, is
provided in Table 3.
4.2 Category-specic topology

4.2.1 Simplicial complex representations. In classical MOF
research, topology is typically represented using graphs, where
atoms or clusters serve as nodes and bonds as edges, capturing
only pairwise relationships. However, this graph-based
approach is inherently limited, as it fails to account for
higher-order interactions that play a crucial role in MOF prop-
erties such as porosity, adsorption, and diffusion. To address
this limitation, simplicial complexes are introduced as a more
generalized framework that extends graphs to higher dimen-
sions, allowing for a richer structural representation. A graph is
a special case of a simplicial complex, consisting only of 1-
simplices (edges), whereas a simplicial complex incorporates
higher-order simplices—such as 2-simplices (triangles) that
encode three-body interactions and 3-simplices (tetrahedra)
that capture four-body interactions. As illustrated in Fig. 5, a k-
simplex is dened as the convex hull of k + 1 independent
points, encompassing points (0-simplex, Fig. 5b), line segments
(1-simplex, Fig. 5c), triangles (2-simplex, Fig. 5d), and tetra-
hedra (3-simplex, Fig. 5e). This hierarchical structure enables
a more comprehensive characterization of MOF architectures,
capturing not only connectivity but also loops, voids, and cavi-
ties. Formally, a k-simplex is the k-dimensional analog of these
shapes, dened as the convex hull of k + 1 affinely independent
points, and can be expressed as

sk ¼
(
v

�����v ¼
Xk

i¼0

livi;
Xk

i¼0

li ¼ 1; 0# li # 1; i ¼ 0; 1;.; k

)
:

(1)

A simplicial complex K is a collection of simplices such that
(1) every face of a simplex in K is also in K, and (2) the inter-
section of any two simplices is either empty or a common face.

In this work, we represent MOF structures using simplicial
complexes, where atoms are 0-simplices (vertices), bonds are 1-
simplices (edges), and higher-order interactions, such as atomic
rings and cavities, are captured as higher-dimensional
simplices. This approach allows us to model not only the
Train : valide : test Splitting method

80 : 10 : 10 Random split
80 : 10 : 10 Random split
80 : 10 : 10 Random split
80 : 10 : 10 Random split
80 : 10 : 10 Random split
80 : 10 : 10 Random split
80 : 10 : 10 Random split
80 : 10 : 10 Random split
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Fig. 5 Illustration of concepts in persistent homology. (a) An example of a simplicial complex. (b)–(e) Expansion of the simplicial complex in (a)
into different simplex dimensions: (b) 0-simplices (vertices), with the 0-simplex as a building block shown in the upper right; (c) 1-simplices
(edges), with the 1-simplex in the upper right; (d) 2-simplices (triangles), with the 2-simplex in the upper right; and (e) 2-simplices, with the 3-
simplex (tetrahedron) in the upper right. (f) A nested simplicial complex with an increasing parameter a, exemplifying an alpha complex. (g)
Barcode representation of H0 and H1 for the complex in (f), with specific values of a = 0.1, 1.6, 2.0, 2.5, and 3.0 corresponding to the simplicial
complex states shown in (f). For the a = 2.0, and 3.0, the highlighted loops in (f) are pointed out.
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pairwise connections but also the higher-order geometric and
topological features essential for understanding the physical
and chemical properties of MOFs. In the category-specic
representation framework for MOF structures, all atoms are
grouped into distinct sets based on the categories listed in Table
1, denoted as C0 to C7. Additionally, Call represents the set
containing all atoms. For each category-specic set, topological
representations are constructed to capture the interactions
among atoms across different categories.

4.2.2 Homology and persistence. To analyze the topolog-
ical properties of MOF structures represented by simplicial
complexes, homology is used as an algebraic tool. By employing
concepts such as chains, chain groups, and boundary operators,
homology groups capture features like connected components,
loops, and cavities within the material. For a given dimension k,
the k-chain group Ck is formed by k-simplices with coefficients
from a specied eld ðe:g:;ℤ2Þ. The boundary operator vk maps
k-chains to (k – 1)-chains, dened as:

vk½v0; v1;.; vk� ¼
Xk

i¼0

ð�1Þi½v0;.; v̂i;.; vk�; (2)

where n̂i indicates the omission of vertex vi. This operation helps
identify cycles (chains with no boundary) and boundaries
(chains that are boundaries of higher-dimensional simplices).
The k-th homology group Hk is then dened as:

Hk = ker(vk)/im(vk+1), (3)
9300 | J. Mater. Chem. A, 2025, 13, 9292–9303
which represents k-dimensional holes, such as connected
components (H0), loops (H1), and voids (H2) in the MOF struc-
ture. The homology group (H) allows for the measurement of
topological features, such as Betti numbers (b), which count the
number of independent k-dimensional cycles, reecting the
number of k-dimensional holes. They can be calculated by, bk =
rank(Hk) = rank(Zk) – rank(Bk), where the Zk = ker vk means the
kernel of the boundary vk, and the Bk = im vk+1 represents the
image of the boundary vk+1.

To capture how these topological features vary with the
spatial scale, persistent homology is introduced.39,50,51 It tracks
the evolution of homological features as a parameter (e.g., bond
length or distance threshold) changes. This is achieved through
a ltration, a sequence of nested subcomplexes {Ki} where K0 4
K1 4.4 Kn. There are some common used ltration methods,
such Vietoris–Rips complex,52 Cech complex,53 and alpha
complex.54 In this work, we employ the alpha complex for
analyzing MOF structures. The alpha complex is constructed
based on the Delaunay triangulation of the atomic positions.
For a given parameter a, a simplex (e.g., an edge, triangle, or
tetrahedron) is included in the complex if the radius of the
smallest empty circumsphere that encloses it is less than or
equal to a. As a increases, the alpha complex grows, progres-
sively capturing larger topological features in the MOF struc-
ture, such as rings, tunnels, and cavities, an example is shown
Fig. 5f.

Persistent homology quanties the persistence of these
features across different scales, revealing stable patterns that
This journal is © The Royal Society of Chemistry 2025
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correspond to critical geometric and chemical properties of the
MOF. Each k-th homology group is tracked across the ltration,
providing insights into how certain features (e.g., porosity or
connectivity) appear, merge, and disappear as the structure
evolves. These persistent patterns are typically visualized using
barcodes,55 where the length of each bar represents the lifespan
of a particular topological feature. An example of barcodes
corresponding to the alpha complex is shown in Fig. 5g, and the
loops represented in Fig. 5f are highlighted at ltration
parameters a = 2 and 3.

4.2.3 Category-specic topological embedding. Persistent
homology does not distinguish different element types and thus
gives a poor representation for chemical and biological systems.
Element-specic persistent homology was introduced to better
capture chemical and biological properties.40 In this work, we
propose a category-specic topological embedding approach to
preserve the chemical and physical information inherent in
MOF structures. Elements in the periodic table are categorized
into eight distinct groups based on their chemical similarities
and structural roles (see Table 1). Before constructing the
embeddings, the supercell of each material is scaled uniformly
to approximately 64 Å × 64 Å × 64 Å to ensure that the topo-
logical analysis is performed consistently across different
structures.

Our method involves two main stages: (1) for a given MOF
structure, category-specic topological representations are
constructed based on the elemental types of atoms, categorized
as C0 to C7, along with an additional set Call containing all
atoms. (2) The persistent homology of each category from stage
(1) is computed to capture global and category-level topological
patterns, characterized by their Betti numbers in the H0, H1,
and H2 homology spaces. This approach allows the topological
analysis to incorporate both structural and chemical informa-
tion. For each category and each homology dimension, we
employ a grid-based method to generate the topological
embeddings. Specically, we construct a grid ranging from 0 to
25 Å with a step size of 0.1 Å and record the Betti numbers (i.e.,
the number of topological features that persist at each scale).
This process yields a feature vector of length 750 (250 steps × 3
homology dimensions: H0, H1, and H2) for each element cate-
gory. Here, each 250 features are denoted as one feature group.
By concatenating these feature vectors across all eight cate-
gories, we obtain a 6000-dimensional representation. When
combined with the features derived from the entire MOF
structure, the nal topological embedding results in a 6750-
dimensional vector that integrates both global structural
patterns and category-specic chemical information.
4.3 Predictive modeling

In this work, a Gradient Boosting Tree (GBT) model was con-
structed to perform regression analysis using the proposed
category-specic topological embedding as input features.
Gradient boosting is an ensemble learning method that builds
multiple weak learners (typically decision trees) sequentially,
where each tree is trained to correct the errors made by the
previous ones, thereby producing a more accurate model. We
This journal is © The Royal Society of Chemistry 2025
implemented the gradient boosting regressor from Scikit-
learn,56 optimizing the squared error loss function. The model
parameters were set as follows: max_depth = 7, max_features =
‘sqrt’, min_samples_leaf = 1, min_samples_split = 2, n_esti-
mators = 10 000, and subsample = 0.5. These settings were not
ne-tuned, as we aimed to demonstrate the robustness of the
proposed predictive model with a single set of hyperparameters.

All input features were normalized using standard scaling,
and the target properties were standardized to facilitate
regression analysis. For model evaluation, we split the dataset
into train, validation, and test sets using an 80%, 10%, and 10%
ratio, respectively.28,33 Since we used a universal set of hyper-
parameters, the validation set was not employed for model
selection. Instead, 80% of the data was used for training to
establish a fair comparison with previous works. The results for
the test set (10%) and for both the test and validation sets
combined (20%) are reported to assess the model's perfor-
mance comprehensively.

To ensure robust evaluation, we repeated the random data
split 10 times, and for each split, 10 models were trained with
different random seeds, resulting in a total of 100 models per
dataset. The performance metrics, including root mean square
error (RMSE), mean absolute error (MAE), and r2 correlation,
were averaged over these 100 models and reported as the nal
results (as seen in ESI Section †). This approach of using a single
set of hyperparameters and a consistent evaluation protocol
highlights the robustness of the predictive model, making the
results reliable and comparable to existing methods in the
literature.
Data availability

The datasets utilized in this work are derived from the struc-
tures available in the CoRE MOFs 2019 database.26 The prop-
erties for each dataset were obtained using the methods
outlined in Orhan et al.28
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