Bottom-up assembly of recyclable van der Waals-integrated photocatalysts towards efficient photoelectrocatalytic degradation
Abstract
Large-scale synthesis of recyclable photocatalysts for pollutant degradation remains a challenge. Epitaxial growth of powdered photocatalysts on recyclable substrates is constrained by the dedicated materials with highly matched lattices and processing compatibility. Here, we propose a bond-free van der Waals-integrated (vdW-integrated) strategy for the seamless integration of materials with significantly different lattice structures and processing conditions. Amorphous carbon-coated photocatalysts with different dimensions can be physically integrated into recyclable carbon textiles (CTs) through vdW interactions for large-scale synthesis. The amorphous carbon coating effectively broadens the spectral response range and enhances the separation of photo-induced carriers. The recyclable van der Waals-integrated (vdW-integrated) photocatalyst can be employed as a recyclable anode to achieve a synergistic degradation of 2,4-dinitrophenol by the combination of electrocatalysis and photocatalysis during photoelectrocatalysis process. In contrast to conventional powdered photocatalysts, recyclable vdW-integrated catalysts demonstrate superior cycling stability and enhanced catalytic efficiency during both photocatalytic and photoelectrocatalytic processes. This straightforward bottom-up vdW-integrated strategy can be readily extended to assemble zero-dimensional (0D), one-dimensional (1D), or two-dimensional (2D) powdered photocatalysts with flexible CTs, enabling the assembly of recyclable vdW-integrated catalysts for various environment-related applications.
- This article is part of the themed collection: Nanomaterials for a sustainable future: From materials to devices and systems