Enhanced photocatalytic performance for CO2 reduction via an S-scheme heterojunction between perovskite nanocrystals and BiVO4†
Abstract
This study presents the successful synthesis of an S-scheme heterojunction between aged Cs0.5FA0.5PbBr3 (CF) perovskite nanocrystals and a BiVO4 semiconductor, aiming to enhance the photocatalytic CO2 reduction performance. Through meticulous optimization of synthetic methods, material ratios, and the pH of BiVO4, we achieved a remarkable CO production yield of 865 ± 38 μmol g−1 in 12 h when the CF to BiVO4 ratio was 15 : 1 and the pH value of the synthesized BiVO4 was adjusted to 4; the individual CF and BiVO4 photocatalysts can only produce CO with yields of 270 and 71 μmol g−1, respectively. Characterization techniques including XRD, SEM-EDS, PL, TCSPC, and UPS spectroscopy confirmed the formation of the S-scheme heterostructure and enhanced photocatalytic performance in varied proportions of CF versus BiVO4. The S-scheme heterojunction photocatalyst effectively inhibited electron–hole recombination, facilitating enhanced charge separation and electron–hole transfer for efficient photocatalytic CO2 reduction. This research not only rejuvenated the photocatalytic capabilities of aged perovskite materials but also addressed the critical challenge of formation of an S-scheme heterojunction between CF and BiVO4, offering a promising pathway for future design of efficient photocatalysts for CO2 reduction.