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Solid-state organic electrochemical transistors
(OECTs) based on gel electrolytes for biosensors
and bioelectronics

Dongdong Lu®* and Hu Chen® *

Organic electrochemical transistors (OECTs) have emerged as promising platforms for biosensors and
bioelectronic devices due to their biocompatibility, low power consumption, and sensitivity in amplifying
chemical signals. This review delves into the recent advancements in the field of biosensors and
bioelectronics utilizing solid-state OECTs with flexible gel electrolytes. Gel electrolytes, including
hydrogels and ionic liquid gels, offer improved mechanical compatibility and stability compared to
traditional liquid electrolytes, making them suitable for wearable and implantable biosensing applications.
We explore the properties and classifications of gel electrolytes for OECTs, highlighting their self-healing,
responsive, temperature-resistant, adhesive, and stretchable characteristics. Moreover, we discuss the
application of solid-state OECTs based on gel electrolytes in ion sensing, metabolite detection, and
electrophysiological sensing. Despite significant progress, challenges such as manufacturing scalability
and the development of responsive OECTs persist. Future directions involve leveraging the multi-
responsiveness of hydrogel electrolytes for intelligent sensor designs, integrating solid-state OECTs with
energy storage devices for self-powered applications, and advancing wireless communication
functionalities for real-time health monitoring. This comprehensive overview provides insights into the
potential of solid-state OECTs based on gel electrolytes and outlines future research directions in
biosensing and bioelectronics.

1. Introduction of OECTs

Owing to their biocompatible nature, low energy consumption,
and minimal operational voltage, organic electrochemical
transistors (OECTs) have become highly regarded as potential
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options for advancing biosensors and bioelectronic devices."™
OECTs exhibit high transconductance, facilitating sensitive
amplification of chemical signals, thus holding significant
potential across various biomedical applications, including ion
sensing,>® DNA detection,” alcohol sensing,® metabolite detec-
tion,? and cell detection.'®"* Traditional OECTSs consist of three-
terminal devices with source, drain, and gate electrodes.”” An
organic semiconductor layer serves as a conducting channel,
isolated from the gate electrode by an ion-conducting electro-
lyte. OECT operation relies on interplay between ion and charge
transport, resulting in modulation of the current (Ips) flowing
from the source to the drain through the conducting channel.*
The transconductance parameter (g,) is used to evaluate the
amplification characteristics of OECTSs, crucial for enhancing
sensing performance, characterized by the detection limit
(LOD, signal-to-noise ratio =3).****

olp, Wd

&m =

=2 -7, C — 1
e L £ C (Vi — Vo) (1)

In this equation, W, L, and d denote the channel width, length,
and thickness, respectively; u, C*, and Vy, are the carrier
mobility, volume capacitance, and threshold voltage of the
active layer, respectively. High-performance OECTs can be
achieved by optimizing the geometry of devices based on an
Organic Mixed Ionic-Electronic Conductor (OMIEC) or uC*
values,"'® as indicated by eqn (1).**®

Currently, research on OECTs predominantly centers on the
study of active materials, electrolytes, interface modification,
and the optimization of device geometry. Enhancing electronic
properties of OMIECs, such as high mobility and large capaci-
tance, is crucial for achieving high-performance OECTs.'*®
Notably, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfo-
nate) (PEDOT:PSS) has exhibited a maximum uC* product of
1500 F em ™" V' s due to its exceptional conductivity prop-
erties."” This achievement is based on the original hole current
of PEDOT:PSS of OECTs reaching its maximum value at zero
gate bias. When applying a positive gate voltage, cations (e.g.,
Na', K', and Li") from the electrolyte move into the organic
channel, leading to de-doping of PEDOT through electro-
chemical reactions as shown in eqn (2). As highly conductive
PEDOT" is reduced to non-conductive PEDOT?, the device's
drain current decreases, demonstrating typical depletion-mode
transistor behavior.'* Additionally, multifunctional OECTSs
employ various strategies, including interface modification and
functional materials, to modulate the OECT ion circuit and
manipulate charge transport within the channel.****

PEDOT*:PSS*+M* < PEDOT’+M*:PSS™ + h* )

While liquid electrolyte-based OECTs have been prevalent,
their liquid nature presents challenges such as leakage, evap-
oration, environmental contamination and electrolyte electrol-
ysis, hindering long-term stability and performance.?*** To
address these issues, solid-state OECTs have emerged as
a promising alternative, particularly suitable for wearable bio-
sensing and flexible electronic applications.”**” Solid-state
electrolytes facilitate large-scale manufacturing of compact

This journal is © The Royal Society of Chemistry 2025

View Article Online

Journal of Materials Chemistry A

and highly integrated OECTs using simple printing tech-
niques.*® Moreover, they provide superior flexibility and dura-
bility*” by enabling the devices to withstand daily wear and
mechanical stresses.”**°

2. Gel electrodes

Gels, characterized by cross-linked three-dimensional polymer
networks, possess a unique ability to swell in liquid electrolytes,
effectively absorbing and immobilizing them. This distinctive
property combines the high ion conductivity of liquid electro-
Iytes with the processability of solid electrolytes, thereby
addressing concerns related to liquid leakage. Furthermore, the
high hydration capacity of gels facilitates ion transport,
ensuring compatibility with biological tissues.** Notably, their
mechanical properties closely resemble those of human tissues,
with Young's modulus ranging from 1 Pa to 300 MPa, covering
the ranges of skin and muscle (200-500 kPa) and brain tissue
and spinal cord (500 Pa-200 kPa).** This mechanical compati-
bility with soft tissues makes hydrogels an ideal choice for
implants and wearable bioelectronics.*® The gel electrolytes
utilized in OECTs are typically classified into two categories:
hydrogels and ionic liquid gels (IL gels). This review specifically
hones in on the classification and properties of gel electrolytes,
and summarizes the progress of gel electrolyte-based OECT
applications in the fields of biosensing and bioelectronics
(Fig. 1). Furthermore, the review provides an overview of the
existing challenges encountered in this field and proposes
future research directions to address them effectively.

2.1 Categories of gel electrodes

2.1.1 Hydrogels. Hydrogels, characterized by their three-
dimensional cross-linked polymer networks, offer a versatile
platform with tunable physicochemical properties such as
biocompatibility, biodegradability, material transport, and
mechanical strength.*® These properties make them conducive
to loading and delivering cells, drugs and growth factors,
thereby facilitating cell adhesion and proliferation.**** Hydro-
gels primarily conduct protons, with ion transport facilitated by
the diffusion of intramolecular and intermolecular hydrogen
bonds within the polymer matrix or residual free volume
water.” Studies have demonstrated that increasing glycerol
concentration can enhance hydrogel ion conductivity.”***
Consequently, solid-state OECTs employing various hydrogel
electrolytes have been developed for applications in biosens-
ing,** synaptic neural simulation,” and bioelectronics.*
Examples of synthesized hydrogel electrolytes include poly(-
ethylene glycol) (PEG),** poly(N-isopropylacrylamide) (PNI-
PAm),* poly(hydroxyethyl acrylate) (PHEA),*® poly(hydroxyethyl
methacrylate) (PHEMA),*” and poly(vinyl alcohol) (PVA).*® These
hydrogels offer excellent controllability, ease of design, and
mechanical properties that can be tailored to mimic natural
tissues, thereby reducing interface resistance and enhancing
compliance with biological systems.

Natural hydrogels, including gelatin,*” chitosan,*® agar, etc.,
derived from biomaterials offer distinct advantages compared

J. Mater. Chem. A, 2025, 13, 136-157 | 137


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ta05288a

Open Access Article. Published on 20 November 2024. Downloaded on 11/9/2025 11:31:49 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

View Article Online

Journal of Materials Chemistry A Review

Properties

|

|

: - I IL gels

Gel electrolyte .

| oVos W Hydrogels
|

|

|

|

SGUTCE Semiconductor i

e o——<«¢
e YVos s ________1
lon sensor EEG detection
—\wuﬂple - ‘b Bite T
73 A Ll — e PN ST
- e EER =
O I source: \ix-{-}ﬂs drain - V. 5
substrate . -
. 9 5.8 &

e n s (substrate/rin, frens M o e o o - ¥ e
- o Seme— e XX
O v Coia T Nl
" C;) Urea sensor Glucose sensor

Vic

Pt Wire C.E. Ag/AgCI R.E.
electrolyte + 0

Appl

Fig. 1 Schematic illustration of the advancement of gel electrolyte-based OECTs in terms of their characteristics and diverse applications.
Reproduced from ref. 34—44; Copyright 2020, American Chemical Society;* Copyright 2018, American Chemical Society;*” Copyright 2021,
American Chemical Society;*¢ Copyright 2024, AAAS;** Copyright 2023, Royal Society of Chemistry;*® Copyright 2014, Wiley-VCH;*® Copyright
2018, IOP publishing, Ltd;*® Copyright 2020, Wiley-VCH;* Copyright 2022, American Chemical Society;**> Copyright 2019, AAAS;** Copyright
2019, Wiley-VCH.**
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to their synthetic counterparts, including inherent biocompat-
ibility, low cytotoxicity, and environmental friendliness.
However, they may exhibit weaker mechanical structures and
susceptibility to degradation. It is imperative to maintain
precise control over the molecular weight and composition of
the polymer in order to align with the specific demands of solid-
state OECTs, including biomechanical properties and gel
behavior. Composite hydrogels combine natural and synthetic
materials, and offer enhanced mechanical properties and
biocompatibility, presenting promising avenues for future
research. For example, Liu et al. reported OECTs based on
a dual-network antifreeze hydrogel, comprising cross-linked
polyacrylamide (PAAm) and carrageenan. This innovative
hydrogel demonstrated remarkable attributes including
biocompatibility, mechanical strength, antifreeze properties,
and high ion conductivity, enabling operation at —30 °C.****
However, the preparation methods for these hydrogel electro-
lytes commonly involve swelling in salt solutions (e.g., sodium
chloride or phosphate-buffered saline) to enhance ion conduc-
tivity. Nevertheless, this structure is susceptible to deformation
at elevated temperatures and after prolonged use. Moreover,
water evaporation can diminish the free volume conduction
path of ions, leading to performance degradation in hydrogel-
based OECTs.

2.1.2 Ionic liquid gels. Ionic liquid gels (IL gels),
comprising non-volatile ionic liquids with low melting points
below 100 °C, have emerged as an alternative to hydrogels,
particularly for flexible electronic devices,* biosensors®*** and
solid-state OECTs.* IL gels offer advantages such as minimal
vapor pressure, high thermal stability, and superior ionic
conductivity.®® Numerous studies have delved into the synthesis
of ionic gels, elucidating ion transport mechanisms and the
dynamics of ion/electron interface transport.** These investi-
gations have significantly enhanced the understanding of ionic
gels across various relevant fields.®>*® Common ionic liquids
used in IL gels include 1-ethyl-3-methylimidazolium ethyl-
sulfate ([C,MIM][EtSO,]), 1-butyl-3-methylimidazolium bis(tri-
fluoromethylsulfonyl)imide ([BMIM][TFSI]), and 1-ethyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM]
[TFSI]). However, their toxicity and high fluoride content limit
direct contact with skin and the environment.*** Biocompat-
ible ILs containing choline cations and amino acids or
carboxylic acids as anions (e.g., choline lactate ([Ch][Lac]) or
choline glycolate ([Ch][Glyco])) have been developed,®®*°
offering high ionic conductivity, biocompatibility, and envi-
ronmental stability.”®”* These materials hold promise for
implementing all-solid-state OECTs in long-term biomedical
applications such as skin electrophysiology monitoring.

2.2 Properties of gel electrolytes

The unique properties and advantages of gel electrolytes
provide OECTs with several critical functionalities. Hydrogels
have highly tunable physical and chemical properties. Their
conductivity, mechanical strength, and biocompatibility can be
precisely controlled by altering their composition and struc-
ture.”»”® This tunability allows OECTs to meet various
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application requirements, enabling highly customized sensor
designs. Due to their softness, gel electrolytes combined with
OECTs can achieve greater mechanical flexibility and stability,”*
making them ideal for wearable and implantable applications.
The high-water content of hydrogels provides exceptional ionic
conductivity, allowing OECTs to operate efficiently at low volt-
ages, enhancing electrochemical conversion efficiency and
signal amplification.™ The biocompatibility of hydrogels makes
them particularly suitable for biomedical applications in
OECTs. Hydrogels are not only compatible with biological
tissues but also maintain stability in in vivo environments,”
reducing potential irritation and immune responses.” This
characteristic allows OECTs to play vital roles in real-time bio-
signal monitoring, drug delivery control, and implantable
medical devices. Moreover, specially designed smart responsive
and thermally stable hydrogel electrolytes can expand the
application range of OECTs.**”””® Responsive hydrogel electro-
Iytes allow OECTs to quickly adjust their electrochemical
properties to changes in the external environment, achieving
high-sensitivity and rapid-response sensing applications.
Thermally stable hydrogels maintain their structural and
functional integrity at high or low temperatures, ensuring
consistent operation. This thermal stability ensures that OECTs
maintain their performance under various environmental
conditions, preventing degradation or failure due to tempera-
ture fluctuations. This characteristic is particularly advanta-
geous for biomedical devices and sensors operating in complex
environments. This chapter discusses the research progress of
solid-state OECTs based on gel electrolytes from the perspec-
tives of conductivity, volumetric capacitance, self-healing,
stretchability, responsiveness, temperature-resistance, and
self-adhesion.

2.2.1 Conductivity and volumetric capacitance. In eqn (1),
as introduced in the OECT discussion, the parameter uC*
represents a key intrinsic property of OECTs. In this expression,
u denotes the charge carrier mobility, a measure of how easily
charges move through the material, while C* stands for the
volumetric capacitance, which reflects the ability of the material
to store charges per unit volume. Together, the uC* product
determines the overall transconductance and performance of
the OECT, influencing the sensitivity and amplification of the
device in biosensing applications. The uC* value is a funda-
mental factor in the design and optimization of OECTs, as it
directly relates to the efficiency of ion-electron coupling and
signal transduction within the device. By maximizing both the
mobility («) and capacitance (C*), high-performance OECTs can
be achieved, which are essential for applications requiring fast,
sensitive detection and stable operation at low voltages. Opti-
mizing the uC* value, therefore, is crucial for advancing the
application of OECTs in bioelectronics, particularly in real-time
health monitoring and biosensor technologies.

The extraction of electronic mobility in OFETs is well-
established, but applying similar techniques to OECTs is chal-
lenging due to the presence of both ionic and electronic charges
in the OECT channel. Moreover, the mobility in OECTs can be
voltage-dependent due to variations in electronic charge density
across the film, resulting from changes in the electrochemical
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potential from the source to the drain. At high doping poten-
tials, electronic charges can saturate available states (HOMO or
LUMO), reducing the efficiency of charge transport. To deter-
mine the capacitance of materials used in OECTs, electro-
chemical impedance spectroscopy (EIS) is frequently employed.
The typical EIS setup involves a three-electrode system, with the
OMIEC film serving as the working electrode, alongside
a reference electrode and counter electrode. The counter elec-
trode must possess a significantly larger capacitance than the
working electrode to ensure it doesn't hinder the reactions
occurring at the working electrode. The process involves
applying a small alternating current modulation across a range
of frequencies (typically from 10° to 10! Hz) on top of a direct
current offset. Once the impedance data are collected, capaci-
tance (C) can be extracted, typically at lower frequencies where
ionic movement is slower and more capacitive behavior is
observed.

Capacitance can also be derived through cyclic voltammetry.
In the absence of faradaic reactions, the voltammogram can be
integrated to estimate the volumetric capacitance, assuming
ideal capacitor behavior in the OMIEC film. This method closely
aligns with the results from EIS.

However, if redox peaks are present, those areas are excluded
to avoid skewing the capacitance calculation. Additionally, it is
important to consider factors like scan rate, as overly fast scans
may lead to underestimation of capacitance due to incomplete
charging/discharging cycles. Lastly, for accurate results, capac-
itance should be measured for films of varying geometries,
ensuring that the extracted values scale linearly with the film
volume.

2.2.2 Self-healing properties. Incorporating self-healing
materials into solid-state OECTs presents an intriguing
avenue for creating devices with enhanced reliability and pro-
longed lifespans. However, the utilization of self-healing
materials in OECTs is currently in its nascent stages. One of
the primary challenges is to achieve effective repair perfor-
mance while preserving the electronic/ion transport and
mechanical properties of both the conjugated polymer and
solid electrolyte, ensuring swift restoration to the original
performance post-self-healing.

Fabio Cicoira's work revealed that PEDOT:PSS thin films
underwent rapid electrical repair (approximately 150 ms) simply
by wetting the damaged area with water.” Hydrogels, renowned
for their self-healing properties, leverage dynamic bonding
interactions such as dynamic covalent bonds,* hydrogen
bonds,** jon bonds,** supramolecular host-guest interac-
tions,* and hydrophobic interactions.*® In addition, the high
water content of the hydrogel can provide PEDOT:PSS with self-
healing properties. Wei Lin Leong et al.** pioneered the devel-
opment of a solid-state OECT endowed with self-healing capa-
bilities and robust electrical performance. Their design utilized
a PEDOT:PSS and surfactant Triton X-100 (PEDOT:PSS/TX)
matrix as the channel, coupled with a poly(vinyl alcohol)
(PVA) hydrogel as the electrolyte. The high ionic conductivity of
the PVA hydrogel (9.8 x 10~ S em ™) facilitated OECT opera-
tion by modulating PEDOT:PSS doping. The resulting
PEDOT:PSS/TX-PVA based OECT exhibited an impressive peak
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transconductance (48.7 mS) and on/off ratio (=1500) (Fig. 2A).
The TX functions as both an enhancer of electrical performance
and a self-repairing agent. When the damaged area comes into
contact with the PVA hydrogel, it triggers both physical and
electrical self-repair of the PEDOT:PSS/TX film (Fig. 2B).
Consequently, the OECT autonomously restored its initial
performance to a range of 85-100% post-damage (Fig. 2C), with
a transconductance of approximately 45 mS at Vg = —0.075 V
and an on/off ratio of ~1300 (Fig. 2D). Additionally, as an ion
sensor, this OECT demonstrated the capability to detect Na".

2.2.3 Responsiveness. Environmental stimulus respon-
siveness is a compelling attribute of hydrogels, as they can
dynamically adjust their properties (such as water content,
surface charge, hydrophilicity-hydrophobicity, and mechanical
modulus) in response to various stimuli. These stimuli
encompass chemical cues (e.g., pH,* oxidizing agents,*® ions,*
and solvents®), biological signals (e.g., enzymes® and anti-
gens®) and physical factors (e.g., light,”> temperature,”
magnetic fields,” electric fields,” and ultrasound®). Conse-
quently, hydrogels find extensive utility across diverse fields,
spanning drug delivery,”” biosensors,* biomimetic materials,*”
and regenerative medicine.®®

Tae-il Kim* pioneered the development of pH-responsive
solid OECTs utilizing gelatin hydrogels. In this design, the
transistor channel (PEDOT:PSS) and electrodes were fabricated
on a flexible polyethylene terephthalate (PET) substrate. Gelatin
served as a solid electrolyte medium, facilitating ion migration
from the gate into the channel. The gelatin material was
modified with acid and base additives to introduce mobile
cations and anions, enabling their facile penetration into the
PEDOT:PSS interface (Fig. 3A). Interaction with acidic and
alkaline gelatin led to alterations in the chemical structure and
conductivity of PEDOT:PSS channels. Specifically, acidic
hydrogels enhanced the conductivity of PEDOT:PSS, leading to
elevated output voltage (V,,) and gain, whereas alkaline
hydrogels decreased conductivity, resulting in decreased Vi
and gain (Fig. 3B). Integration of PEDOT:PSS with gelatin
hydrogels under varying pH conditions allowed for modulation
of OECT resistance, V,yu, and gain. Notably, the maximum
output voltage and gain of the inverter were governed by the pH
conditions of the hydrogel, ranging from 1.1 to 0.46 V and 1.92
to 0.63 at pH = 1.13-13.43, respectively (Fig. 3C).

2.2.4 Temperature resistance. The application of hydrogel
electrolytes in solid-state OECTs is hindered by temperature
variations, as the inherent structure of hydrogel materials,
predominantly water, renders them susceptible to temperature
extremes. High temperatures accelerate water loss from
hydrogels, while low temperatures cause freezing, both of which
compromise their functionality. Additionally, dry environments
can detrimentally affect the durability and conductivity of
hydrogels. To enable continuous operation of solid-state OECTs
under diverse temperature conditions, efforts have been
directed towards enhancing the anti-freeze water-retention
properties of hydrogel electrolytes.

Studies utilizing IL gels, such as [EMIM][TFSI],*’, [DEME]
[TFSI]*® and [EMI|[TFSI]'*"), have demonstrated improved
stability of OECTs. For example, Someya and colleagues**

This journal is © The Royal Society of Chemistry 2025
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(A) Schematic diagram of the PEDOT:PSS/TX-PVA based OECT and its output and transfer characteristics. (B) Optical and SEM images

depicting the structural characteristics of damaged and healed PEDOT:PSS/TX channel layers. (C) Output and transfer characteristics of OECTs
before and after self-healing. (D) Cumulative variation in the switching voltage of PEDOT:PSS/TX OECT versus Na' ion concentration before
damage and after healing. Reproduced with permission.® Copyright 2020, American Chemical Society.

pioneered the utilization of non-volatile dilute IL gels as elec-
trolytes in flexible OECTs, enabling continuous monitoring of
electrocardiogram signals for over 3 hours with the device
remaining functional for over a week. In 2023, Wei Lin Leong™®
and colleagues developed IL gel electrolyte consisting of poly(-
vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) and
IL of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM
BF,). The solid-state OECTs, constructed by using an active
material (thiophene backbone functionalized with glycolated

This journal is © The Royal Society of Chemistry 2025

side chains (p(g1T2-g5T2)) and IL gel electrolyte (Fig. 4A(i)),
exhibited great performance with a high transconductance of
220 + 59 S cm ™', an ultrafast device speed of 10 kHz, and
excellent operational stability over 10000 cycles (Fig. 4A(ii)).
Due to the excellent thermal stability of the channel and elec-
trolyte, the devices demonstrated reliable collection of electro-
physiological signals even at extreme temperatures (—50 and
110 °C) (Fig. 4A(iii and iv)). Its transient speed was approxi-
mately twice as fast as those operating in 0.1 m NaCl electrolyte,

J. Mater. Chem. A, 2025, 13,136-157 | 141
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benefiting from the low hydration level of the doping anions in
the IL gel electrolyte. However, IL gels still exhibit drawbacks
including biotoxicity, high cost, and slow ion diffusion.'*
Inspired by biological synapses, Chuan Liu and colleagues®
devised a hydrogel-based electrochemical transistor (HECT)
featuring a transmission-like process (Fig. 4B(i)). A dual-
network (DN) hydrogel composed of PAAm and carrageenan
was synthesized via a one-step free radical polymerization.
Sequential immersion in NaCl(,q,) and ethylene glycol endows it
with great electrical performance and long-term stability, facil-
itating rapid self-repair, anti-freezing, and water-retention
properties (Fig. 4B(ii and iii)). The HECT exhibited excellent
biocompatibility and could operate effectively under harsh
conditions for over 4 months at as low as —30 °C (Fig. 4B(iv and
v)). Moreover, the self-healing capability of the hydrogel allowed

142 | J Mater. Chem. A, 2025, 13, 136-157

for the full restoration of HECT electrical performance, show-
casing the device's resilience against accidental damage
(Fig. 4B(vi)). Similarly, Chuan Liu and colleagues®® developed
anti-freeze and water-retaining DN hydrogel electrolytes for
solid-state dual-channel OECTs (Fig. 4C(i)). These hydrogel
electrolyte possess good biocompatibility, high ionic conduc-
tivity, and stable operation across a wide temperature range
from room temperature to —30 °C (Fig. 4C(ii and iii)).
Furthermore, the devices can continuously monitor ion move-
ment during OECT operation through transient current detec-
tion and in situ multipoint dynamic measurements of central
potential (Fig. 4C(iv and v)).

2.2.5 Self-adhesiveness. Self-adhesiveness is a critical
property of hydrogels for various applications, including bio-
electronic sensors, and tissue engineering and repair. It ensures

This journal is © The Royal Society of Chemistry 2025
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(A) Schematic of solid-state OECTs constructed by using active materials of p(g1T2-g5T2) and IL gel electrolyte (i). (i) Comparisons of

OECTs in this work with previously reported ones in terms of steady- and transient-state performance. (iii) and (iv) ECG signals acquired by
OECTs at extreme temperatures. Reproduced with permission.”® Copyright 2023, Wiley-VCH. (B) The schematic illustration and characterization
of a DN hydrogel-based HECT. Schematic illustration of the DN hydrogel-based HECT (i) and (ii). (iii) Optical microscope images and photos of
the damaged and healed DN hydrogel electrolyte. The stability of the electrical properties of the DN hydrogel-based HECT including transfer
characteristics evaluated over time (iv), at different temperatures (v) and in damaged and healed states (vi). Reproduced with permission.®
Copyright 2021, Royal Society of Chemistry. (C) The schematic illustration and characterization of DN hydrogel-based dual-channel OECTs. (i)
Schematic structure of the DN hydrogel-based dual-channel OECTs. (ii and iii) Temperature dependence of dual-channel OECTs at various
electrolyte concentrations. (iv and v) Drain current behaviour under pulsed gate excitation with hydrogels containing various KCl,q) concen-

trations. Reproduced with permission.>® Copyright 2022, Elsevier.

stable contacts between hydrogel devices and tissues, thereby
enhancing overall performance.'®"* Achieving adhesion
involves introducing physical interactions and chemical bonds
between hydrogels and substrates, including hydrogen
bonding, hydrophobic interactions, metal complexation, -7
stacking, cation-m interactions, and covalent bonding.**®'%”
Hydrogel electrolytes with high adhesive strength facilitate full
contact with the channel, enabling effective ion penetration and
transport to the active channel layer.** Besides, many sensing
functions of OECTs require direct connection of their semi-
conductor channels to tissue surfaces, allowing electrostatic
modulation of bulk conductivity by using biopotential or tar-
geted biochemical signals.’*®'* The optimal interface involves
direct adhesion of the semiconductor channel to the tissue
surface,"® as biological signal transduction depends on the
microscale distance between the semiconducting channel and
the tissue surface.'"* Gels serve as a pliable medium that facil-
itates the interaction between electronic devices and biological
systems, enhancing contact and adhesion.>**

Shiming Zhang* introduced an OECT-based continuous
glucose monitoring (OECT-CGM) system comprising a hollow
microneedle patch, an adhesive glucose oxidase (GOx)-loaded
DN hydrogel film, and OECT glucose sensors (Fig. 5A(i and ii)).

This journal is © The Royal Society of Chemistry 2025

The microneedles provide a minimally invasive interface
between interstitial fluid (ISF) and the OECT-CGM system. The
adhesive DN hydrogel film, synthesized with an inter-
penetrating network (IPN) structure of PAAm and sodium algi-
nate loaded with GO,, serves as the gel electrolyte of the OECTs.
This structure not only enhances the stability of the interface
between the skin and device during movement but also facili-
tates the diffusion of glucose molecules from the ISF to the
OECT-CGM system via the microneedles and hydrogel. This
diffusion alters the current in the OECTs, enabling glucose
monitoring (Fig. 5A(iii-vi)). Moreover, previous studies have
leveraged the adhesive hydrogels for transferring conductive
polymer films in OECT applications. This approach facilitates
the transfer of conductive polymer films from rigid to flexible
substrates, addressing the difficulty of directly handling
conductive polymers on flexible materials."*>'** For instance, Ali
Khademhosseini'** employed hydrogel electrolytes to facilitate
the transfer of conductive polymer films from traditional rigid
substrates to flexible ones (Fig. 5B). Initially, a PEDOT:PSS
suspension, combined with surfactants like dodecylbenzene-
sulfonic acid (DBSA), was patterned on glass substrates. DBSA
reduced the adhesion between the PEDOT:PSS film and the
glass substrate. Given the stronger adhesion between

J. Mater. Chem. A, 2025, 13, 136-157 | 143
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(A) Fabrication and characterization of OECT-CGM. Schematic (i) and photos (i) of the OECT-CGM and the sensing mechanism. Output

curves (i) and transfer curves (iv) of flexible OECTs. (v and vi) Response of OECT-CGM. Reproduced with permission.** Copyright 2024, AAAS. (B)
Transfer process of PEDOT:PSS films and its soft OECT performance. (i-vi) Schematic illustration of the generic process for transferring
PEDOT:PSS films with the help of hydrogel electrolyte. (vii—ix) Output and transfer curves of OECTs under released (red), 5% stretched (blue) and
40% compressed (black) conditions; (x) on/off ratio and transconductance of initial OECTs and after being compressed 10 times. Reproduced

with permission.*** Copyright 2020, Wiley-VCH.

PEDOT:PSS and the hydrogel, PEDOT:PSS could be easily
transferred to various soft substrates (Fig. 5B(i-vi)). This tech-
nique enabled the creation of OECTs that are conformable and
attachable to the skin, demonstrating high transconductance
and a significant on/off ratio (Fig. 5B(vii-x)). These OECTSs
maintained stable performance even when subjected to
mechanical deformation of the skin. By integrating OECTs with
mobile electronic devices, a portable electronic readout system
for glucose concentration monitoring was developed.

2.2.6 Stretchability. Stretchable electronic devices have
garnered great attention in bioelectronics because they main-
tain functionality when subjected to mechanical deformation.
This property is particularly valuable for applications requiring
close contact with curved surfaces or sensitivity to movement,
such as artificial skin, implantable electronic devices, and
wearable health monitors."*>*® Wearable electronic devices
must conform to the skin and endure bending, twisting, and
stretching.™” Several studies have demonstrated that gel-based
OECTs have been identified as promising candidates for
stretchable bioelectronics."*®'** The high sensitivity of stretch-
able OECTs in wearable and implantable biosensing and bio-
electronics is crucial due to their skin-like softness and
stretchability, which enable seamless integration with curved
skin or tissue surfaces.”” The stretchable solid-state OECTs
enhance biocompatibility, daily usage comfort, and high-
fidelity signal transduction.*™

Sihong Wang"® and colleagues successfully fabricated
OECTs with high transconductance (223 S cm™'), biaxial
stretchability (100% of strain) and excellent skin compliance.
This was achieved wusing a polymerized stretchable

144 | J Mater. Chem. A, 2025, 13, 136-157

semiconducting  polymer,  poly(2-(3,3’-bis(2-(2-(2-methox-
yethoxy)ethoxy)ethoxy)-[2,2'-bithiophen]-5-yl)thiophene)
(p(g2T-T)), and commercially available gel electrolytes. Guoqing
Zu'* prepared stretchable OECTs using a stretchable active
material and gel electrolyte. PEDOT-based aerogel films or
poly(2,5-bis(3-triethyleneglycoloxythiophen-2-yl)-co-thiophene)
(Pg2T-T)-based aerogel films, prepared via spin coating, sol-gel
and freeze-drying protocols, served as the active layer. The
polymer sol is spin-coated on a pre-stretched polyurethane (PU)
to create stretchable semiconducting polymer-based aerogel
films. Stretchable PAAm ion gel or ionic liquid (tris(2-
hydroxyethyl)methyl ammonium methyl sulfate) was used as
electrolyte (Fig. 6A(i)). This OECT exhibits a high on/off ratio,
high transconductance, stretchability up to 100%, and tensile
stability for 10 000 cycles at 30% strain (Fig. 6A(ii-iv)). It can also
serve as a stretchable artificial synapse and biosensor for
detecting dopamine (DA) (Fig. 6A(v and vi)). Fabio Cicoira®
utilized a printed circuit board printer to fabricate fully printed
and stretchable OECTs on stretchable PU (Fig. 6B(i)). To ensure
overall device stretchability, printed planar gate electrodes and
polyvinyl alcohol (PVA) hydrogel electrolytes were used. Flexible
functionality was achieved using Ag paste for the drain, source,
and gate electrodes. The PVA precursor ink was printed on the
channel and gate electrodes, and crosslinked through the
freeze-thawing process, i.e., storing at —15 °C for 12 hours fol-
lowed by thawing at room temperature. The transconductance
(1.04 + 0.13 mS) and on/off ratio (830) of resulting OECTs are
comparable to those of inkjet or screen-printed OECTs
(Fig. 6B(ii)). It can maintain operation for at least 50 days, with
the transconductance remaining 60% of its initial value

This journal is © The Royal Society of Chemistry 2025
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(A) Fabrication and applications of semiconducting aerogel film-based OECTs. (i) The schematic illustration of a semiconducting aerogel

film and stretchable OECTs. The schematic illustration of fabrication of the printed OECTs. (ii—iv) Transfer curves of OECTs based on the
stretchable gel electrolyte with various tensile strains and during the stretching-releasing process for 10 000 cycles. (v and vi) The artificial
synapse and biosensor of the semiconducting aerogel film-based OECTs. Reproduced with permission.*??> Copyright 2024, Wiley-VCH. (B)
Preparation and characterization of printed and stretchable OECTs using PVA hydrogel electrolytes. (i) Step diagram of fabricating the printed

OECTs. (ii) Transfer and transconductance curves of electrolytes. (iii) Long-

term stability tests of OECTs. Transfer curves under strain in the length

direction (iv) and width direction (v) of the active channel. Reproduced with permission.*® Copyright 2023, Royal Society of Chemistry.

(Fig. 6B(iii)). Notably, the device exhibited a stretchability of
60% along the channel direction and 150% in the perpendicular
direction (Fig. 6B(iv and v)), making it well-suited for the
mechanical deformations encountered in wearable electronic
products.

Gel electrolytes applied in OECTs offer the advantages dis-
cussed above, yet they face various challenges and drawbacks.
Self-healing capability may be constrained by environmental
conditions, limiting the complete restoration of mechanical
and electrical properties in practical applications. High
stretchability can relax the material, reducing stability and
electrical conductivity. Mechanical stress during stretching may
cause delamination or failure at interfaces with other materials.
Responsive hydrogel electrolytes may make OECTs highly
sensitive to external stimuli, potentially causing false detections
or erroneous responses under non-ideal conditions like noise or
environmental variations; prolonged repetitive stimuli could
induce material fatigue, affecting response speed and accuracy.
To maintain thermal stability, hydrogel electrolytes require
compatible electrodes to prevent changes in physicochemical
properties at high temperatures, potentially reducing the device
lifespan. Moreover, the adhesive properties of gels are sensitive

This journal is © The Royal Society of Chemistry 2025

to environmental changes such as temperature and humidity,
potentially affecting the reliability and accuracy of OECT
sensing capabilities.

3. Application

OECTs utilizing hydrogel electrolytes provide an ideal interface
with biological environments due to their inherent biocom-
patibility and mechanical compatibility. These devices offer
local signal amplification resulting in high-fidelity sensor
detection, which is crucial for bioelectronics applications. A
common strategy involves modifying the gate electrode to
control its electrochemical potential, thereby converting various
biological signals."”*'** Rapid cyclic voltammetry serves as
a convenient characterization method for OECTs, offering
speed and cost-effectiveness compared to alternative
techniques.

The use of OECTs for detecting target biomarkers amidst
interfering elements provides several advantages, including
high selectivity, sensitivity, and low detection limits."** Prelim-
inary research has highlighted the significant potential of
OECTs in detecting various ions,"”***® biomolecules (such as
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enzyme," cortisol,”*® immune,"* glucose, and metabo-
lite*** detection), as well as physiological signals (such as
EMG"**¢ and ECG'). This section will delve into the explo-
ration of solid-state OECTs based on gel electrolytes in bio-
sensing and bioelectronics applications.

3.1 Biosensors

3.1.1 TIon sensors. Ion sensing is crucial for various appli-
cations, such as sports performance tracking, health moni-
toring, and clinical diagnostics. Research in ion sensing has
primarily focused on three ions: K*, Na*, and Ca®>". K" and Na*
are essential for transmitting nerve impulses, muscle contrac-
tion and relaxation, and maintaining proper water balance
across cell membranes.’® Ca®" is essential for building and
maintaining strong bones, teeth, and nails.”** Abnormal levels
of these cations can indicate various functional disorders,
including dehydration, uncontrolled diabetes, and kidney
failure.™’ Changes in ion concentrations in electrolytes typically
influence electrical signals of the OECTs,"" making them
valuable tools for ion sensing in healthcare and disease
diagnosis.

Ion sensitive and selective OECTs have been successfully
developed for various ion sensors, with notable progress in
selective ion sensing applications using solid-state OECTs with
hydrogel electrolytes. For instance, in 2014, Michele Sessolo®
developed a fully solid-state OECT for K selectivity utilizing
a hydrogel electrolyte. The device integrates a polymer
membrane allowing specific ions to pass (K'-selective electrodes
(ISM)) with the OECTs, employing a hydrogel as the electrolyte
in contact with the PEDOT:PSS channel. Fig. 7A illustrates the
layout of the ion-selective OECTs. The ISM is placed between the
hydrogel electrolyte and the target electrolyte, isolating the
channel from the gate of the OECTs. The hydrogel electrolyte,
prepared by gelation at room temperature from a dispersion
containing agarose, KCl, and ethylenediaminetetraacetic acid
disodium salt (Na,EDTA) as a thermal precursor, maintains K"
selectivity.!> A decrease in drain current proportional to K"
concentration was observed, attributed to an increase in the
number of permeating K' ions or a reduction in electrolyte
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resistance. Sensitivity to K* was much higher than to Na',
confirming the membrane's ion selectivity (Fig. 7B). Addition-
ally, the authors successfully prepared OECTs for asynchronous
ion-selective sensing of other cations (K*, Ca**, and Ag")*** as
well as synchronous ion-selective sensing of Ca®" and NH"" in
sweat using different ISMs."** Replacing the ion solution elec-
trolyte with a hydrogel electrolyte represents an effective
approach for fabricating solid-state OECTs for multifunctional
ion-selective specific sensing in the future.

3.1.2 Metabolite detection. OECTs also function as
metabolite sensors, playing a critical role in clinical diagnostics
and health monitoring. They detect intermediate or final
products of metabolism, and changes in metabolic rates can
indicate the presence of disease.'*® Metabolite sensing with
OECTs can be categorized into two types: electroactive metab-
olites undergoing oxidation-reduction reactions on the elec-
trode, and specific reactions of oxidoreductases with metabolite
molecules. Examples of the first type include dopamine (DA),"*®
ascorbic acid,"” and uric acid (UA).***'** Conversely, metabo-
lites that undergo specific reactions with oxidoreductases
include glucose,””***** lactate,"*>'** cortisol,"™* as well as
nucleic acids and amino acids.'*® Both types rely on changes in
channel current corresponding to metabolite concentration in
the electrolyte.

In recent years, solid-state OECTs based on hydrogel elec-
trolytes have made significant progress in detecting metabo-
lites. Researchers have achieved specific detection of
metabolites through clever design of hydrogel functional
groups or structures. For instance, Carlo A Bortolotti et al*
developed a flexible urea OECT-based biosensor by depositing
a cross-linked gelatin hydrogel doped with urease onto a fully
printed PEDOT:PSS channel material (Fig. 8A(i)). The ion
substances produced by urease-catalyzed urea hydrolysis regu-
late the channel conductivity, enabling urea detection. A
gelatin/tris hydrogel ensured the retention of protein catalytic
activity and enabled selective penetration of NH," into the
PEDOT:PSS channel for response specificity. This biosensor
exhibited a response time of 2-3 minutes, a limit of detection of
1 pM, and a dynamic range spanning three orders of magni-
tude, making it suitable for urea detection in biological samples
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Fig. 7 (A) Schematic of K*-selective OECTs. (B) Calibration curves of different ionic solutions obtained using K*- selective OECTs. Reproduced

with permission.* Copyright 2014, Wiley-VCH.
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(A) (i) Photographs and schematic of a flexible OECT-based biosensor for urea detection. (ii and iii) The current changes in the OECT-

based urea sensor response to different concentrations of urea for a hydrogel prepared by using crosslinked urease in gelatin and controlled
hydrogel without crosslinked urease. Reproduced with permission.*® Copyright 2018, IOP publishing, Ltd (B) (i) Schematic structure of the OECT
biosensor and the mechanism of UA detection. (ii and iii) The UA detection performance. (ii) Real-time drain current changes as a function of UA
concentrations. (iii) Normalized current change at changing UA concentrations in PBS (black dots) and artificial wound exudate (violet dots).

Reproduced with permission.** Copyright 2020, Wiley-VCH.

(Fig. 8A(ii and iii)). Given urea's significance in clinical analysis,
especially in chronic kidney disease (CKD) monitoring, the low
operating voltage (<0.5 V) of this biosensor makes it an attrac-
tive candidate for high-throughput CKD monitoring at care
points or on-site."*

Similarly, in another study, a low-cost, disposable OECT
sensor for detecting UA was developed.*' The sensor utilized
a double-layer hydrogel composed of polycationic and poly-
anionic gelatin with opposite charges as the electrolyte. UA
detection relied on the catalytic activity of uricase (UO,), ulti-
mately generating H,O, (Fig. 8B(i)). The double-layer hydrogel
electrolyte acted as a charge-selective barrier, permitting H,0,
diffusion to the gate electrode for oxidation while suppressing
faradaic reactions from the oxidation of electroactive mole-
cules. Specifically, gelatin A layer consisted of a polymer
network with positive charges and mobile anions to balance its
charge, enhancing selectivity by hindering cation diffusion to
the gate electrode. It crosslinked with UO,, penetrating UA to
react with uricase inside the gel network, catalyzing it into 5-
hydroxyisourate, and ultimately converting it to allantoin
spontaneously. Gelatin B, composed of a negatively charged
network with mobile counterbalancing cations, prevented the
diffusion of anionic electroactive substances to the gate

This journal is © The Royal Society of Chemistry 2025

electrode, thereby enabling a potential faradaic response. This
OECT-based biosensor could operate in artificial biological
fluids while maintaining sensitivity similar to that in model
solutions such as PBS buffer and artificial wound exudate
(Fig. 8B(ii and iii)). Elevated UA levels occur due to malnutri-
tion,"” metabolic disorders, or diseases such as cancer or dia-
betes,"™® resulting in phenomena such as urate crystal
deposition in joints and kidneys and gout."* These examples
illustrate the potential of solid-state OECTs with hydrogel
electrolytes in metabolite sensing, offering promising avenues
for clinical diagnostics and health monitoring.

Toshiya Sakata and colleagues** developed an OECT for
glucose sensing utilizing a DN hydrogel. The authors synthe-
sized the DN conductive hydrogel by polymerizing acrylamide
(AAm) in a PEDOT:PSS dispersion. The first network was
composed of PEDOT:PSS, while the second network was
composed of PAAm incorporating sulfonic acid to improve
compatibility with PEDOT and phenylboronic acid (PBA) to
enhance glucose-specific affinity (Fig. 9A). This hydrogel
exhibited excellent conductivity (20 S cm™" in PBS) and hydra-
tion properties similar to those of soft biological tissues. By
employing a simple thermal-mechanical annealing process,
low-resistance contacts with gold electrodes were established.
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Remarkably, the hydrogel remained stable even after contin-
uous immersion for one month, effectively serving as the
channel for OECTs. The equilibrium boronate esterification on
PBA, coupled with catalytic O, reduction on PEDOT, enabled
the direct detection and amplification of electrochemical
signals originating from glucose concentrations (Fig. 9B-D).
The OECTs demonstrated a transconductance of 40 mS and an
on/off ratio of 10° allowing for linear mode operation with
exceptional conductivity.

3.2 Electrophysiological signal detection

Investigating neural tissues and activities through recording
and stimulation offers valuable insights into the physiological
and pathological functions of the body and brain. While elec-
trocardiography remains pivotal for capturing cardiac activity,
traditional metal electrodes are not ideal for brain connectivity
due to their rigidity, which leads to tissue damage and inflam-
mation. Moreover, these electrodes are prone to noise inter-
ference from transmission lines and external circuits, reducing
their effectiveness. Achieving high-quality electroencephalo-
gram (EEG) and electrocardiography (ECG) signals often
requires strong chemical adhesives to bond electrodes to the
scalp surface or intracranially, potentially causing tissue
damage and immune system reactions in the brain.”*'** Soft
and flexible materials utilized in OECTs offer a promising
solution by directly amplifying input signals recorded from the
site, making them ideal for measuring electrophysiological
signals. To ensure stable and long-term measurements, hydro-
gels or IL gels are used to improve interaction between
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electronic devices and the skin, thereby providing valuable
techniques for study and diagnosis of brain-related diseases.

Khodagholy and colleagues* devised flexible, biocompat-
ible, internal ion-gated OECTs that feature high trans-
conductance, rapid response time, and great conformability to
amplify and record high-quality neural physiological activities
(EEG) in the brain (Fig. 10A(i)). This device uses a conductive
polymer PEDOT:PSS, combined with D-sorbitol to form an ionic
reservoir, which facilitates ion transport channels and
enhances the conductivity of PEDOT:PSS. A chitosan hydrogel
serves as an ion membrane between the gate and channel,
offering biocompatibility, stability, and solution processability.
This minimizes electrochemical impedance at the skin-elec-
trode interface, thus reducing skin redness or irritation. This
OECT successfully captured clear neural oscillations at
approximately 8-12 Hz («) from the occipital area during quiet
wakefulness with eyes closed, consistent with a posterior-
dominant rhythm (Fig. 10A(ii)). It also recorded higher-
frequency brain oscillations occurring simultaneously at (13-
25 Hz, ) and (30-50 Hz, v), highlighting the OECT's capability
to perform various neural computations and information
transmission between cortical areas.

Sahika Inal et al.>® developed three types of gel electrolytes
with the same polymer matrices but different ionic compo-
nents: saline solutions, ILs, and deep eutectic solvents (DESSs).
These electrolytes were evaluated for their performance in
OECTs to study the influence of electrolyte types on OECT
properties (Fig. 10B(i)). The DES electrolyte, prepared with poly
(diglycidyl ether of bisphenol-A) (DGLY) as the polymer matrix

This journal is © The Royal Society of Chemistry 2025
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and choline chloride (ChCl) with 1,3-propanediol as the ionic
component, outperformed the other two gel electrolytes, in p-
type depletion-mode and p-type and n-type enhancement-
mode OECTs. This OECT demonstrated excellent stability in
long-term ECG signal monitoring, maintaining a consistent
signal-to-noise ratio (SNR) even after 5 hours and 30 days of
continuous operation (Fig. 10B(ii)). Takao Someya et al.** re-
ported ultra-thin wearable OECTs for detecting ECG signals
based on non-volatile hydrogel electrolytes, capable of oper-
ating on dry biological surfaces. The gel electrolyte consists of
a dispersed phase of glycerol-ionic solution and a matrix of PVA
and PAAm (Fig. 10C(i)). The low volatility of glycerol ensures
stability and anti-drying properties. The gel also maintains good
mechanical stability under physical deformation. Moreover, the
developed OECTs can uniformly adhere to the skin, effectively
monitoring cardiac signals from the skin continuously for long-
term applications (Fig. 10C(ii)), thus overcoming the contact
limitations of previous OECTS.

The current existing solid-state OECTs based on gel electrolytes
and their performance are listed and compared in Table 1. The
development of solid-state OECTs has progressed from incorpo-
rating soft gel electrolytes with various properties to creating high-
performance OECTSs, and finally to integrating these devices into
wearable or implantable biosensors and bioelectronics.

4. Challenges and perspectives

In this comprehensive review, we systematically present the
latest advancements in solid-state OECTs based on gel electro-
lytes, encompassing the classification and properties of gel
electrolytes. The prolific research conducted on the OECT
underscores the persisting demand for their widespread appli-
cations. As elucidated, OECTs employing gel electrolytes hold
promise in various fields such as ion sensors, biosensors, and
electrophysiological monitoring devices. Despite significant
efforts directed towards exploring novel bioelectronic applica-
tions leveraging gel electrolytes for solid-state OECTsS, several
challenges remain to be addressed and improved upon.

In terms of manufacturing techniques, traditional OECT
device fabrication involves simple processes like inkjet
printing'®* and screen printing,*® offering unique advantages for
producing low-cost and large-area electronic devices. However,
the current approach of manually applying hydrogel electrolytes
to OECT devices constrains their scalability. Although previous
work has combined water-based inkjet-printed PEDOT:PSS
electrodes and solution-processable ionic gel dielectrics to
achieve fully printed OECTs in environmentally friendly
solvents,'** more work should systematically explore and design
hydrogel precursor solutions with tailored viscosities suitable
for various printing processes (e.g., low viscosity for inkjet
printers and high viscosity for screen printers), by studying
relevant standard parameters, thereby facilitating their inte-
gration into solid-state OECTs through printing processes.

Smart solid-state OECTs incorporating responsive hydrogel
electrolytes are still at nascent stages. Although some examples
exist of using acid- and alkali-modified gelatin to prepare elec-
trolytes capable of regulating channel conductivity by

This journal is © The Royal Society of Chemistry 2025
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modulating the concentration of H" and OH ™ at the electrolyte-
channel interface,” the development of responsive OECTs
remains relatively limited. Future endeavors could harness the
multi-responsiveness of hydrogel electrolytes (e.g., to ions,
temperature, light, electric field, magnetic field, etc.) to design
more intelligent solid-state OECT sensors or bioelectronic
devices, thereby broadening their application scenarios.
Particularly, integrating drug-controllable loading and release
mechanisms into responsive gels could confer dual-
functionality for diagnosing and treating diseases using solid-
state OECTs. Moreover, by judiciously incorporating various
endogenous (chemical and biological) and exogenous (physical)
stimuli-responsive units into hydrogel systems, a versatile
“toolbox” can be devised to tailor smart OECTs, representing an
effective approach for programming or integrating diverse
functional OECTs. Additionally, employing biodegradable
hydrogels can propel the development of implantable devices
for recording or stimulating electrogenic cells.

The pursuit of high-density and implantable biochips for real-
time health monitoring necessitates self-powered operation,
wireless communication, and low-power functionalities. To fulfill
these requirements, energy storage devices based on hydrogel
electrolytes have been extensively researched,'**'** including
freeze-resistant batteries capable of operating safely at low
temperatures,’®  stretchable flexible capacitors®® and
batteries,'*”'*® and long-lasting batteries.'® Integrating solid-
state OECTs based on hydrogel electrolytes with hydrogel
batteries holds promise for fully flexible, self-powered, and
biocompatible solid-state sensors. Moreover, the realization of
wireless signal transmission and noise suppression functional-
ities is anticipated through the integration of OECT technology
and the continuous advancement of current digital circuits.
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