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t between Anemone coronaria and
Quercus robur leaf extracts on mild steel corrosion
in HCl 1 M solution: electrochemical and
computational study
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and Latifa Bouissane ef

The leaves of Anemone coronaria (AC) and Quercus robur (QR) were evaluated as ecological corrosion

inhibitors for mild steel (MS) in 1 M HCl. Individual extracts (AC and QR) and a mixture of the two were

tested at concentrations ranging from 0.1 to 0.5 g L−1 to investigate potential synergistic effects. The

corrosion inhibition performance was assessed using potentiodynamic polarization (PDP) and

electrochemical impedance spectroscopy (EIS). The results showed that corrosion resistance increased

with inhibitor concentration, with individual efficiencies of 93.66% (AC) and 92% (QR), while the mixture

achieved a maximum inhibition efficiency of 95%, indicating a synergistic effect. Fourier-transform

infrared (FT-IR) spectroscopy revealed characteristic functional groups within the extracts, while

scanning electron microscopy (SEM) confirmed the formation of a protective barrier on the steel surface.

The adsorption process followed the Langmuir isotherm, and thermodynamic analysis revealed

a spontaneous, mixed physisorption–chemisorption mechanism. DFT calculations revealed a strong

interaction between the inhibitor molecules and the mild steel surface, characterized by a low energy

gap (DE), supporting excellent anticorrosion performance at the molecular level. These findings

demonstrate that the combined use of AC and QR extracts represents a novel, eco-friendly approach to

corrosion inhibition, offering high efficiency, biodegradability, and minimal environmental impact.
Sustainability spotlight

Corrosion of mild steel in acidic environments is a major industrial problem that leads to material degradation, economic losses, and environmental concerns.
Conventional corrosion inhibitors, oen synthetic and toxic, pose risks to human health and ecosystems. In this work, we present a sustainable alternative by
using eco-friendly extracts from Anemone coronaria and Quercus robur. Electrochemical experiments and density functional theory (DFT) conrm high inhibition
efficiency (95%) and strong molecular interactions with steel surfaces. By reducing reliance on hazardous chemicals and promoting renewable natural
resources, this research advances safer industrial practices and contributes directly to UN Sustainable Development Goals 9 (Industry, Innovation and Infra-
structure), 12 (Responsible Consumption and Production), and 13 (Climate Action).
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1. Introduction

The degradation of metallic materials represents a widespread
challenge in numerous industrial sectors. Steel, widely used
thanks to its favorable properties, cost-effectiveness and high
strength, is particularly vulnerable to corrosion in many appli-
cations. Also, industries oen rely on acidic environments for
operations such as cleaning, oil well acidication, and chemical
pickling of steels.1,2 However, these acidic environments induce
physicochemical changes in metal surfaces, leading to material
deterioration and causing signicant environmental and health
concerns.3 The corrosion of mild steel in acidic environments is
an electrochemical process involving both anodic and cathodic
reactions. The anodic reaction is characterized by the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Molecular structures of the major phytoconstituents present in
the Anemone coronaria and Quercus robur.
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dissolution of iron into Fe2+ ions, while the cathodic reaction is
mainly the reduction of hydrogen ions to form hydrogen gas. In
hydrochloric acid solutions, chloride ions play a critical role by
penetrating the oxide lm and accelerating the dissolution
process, which results in a higher corrosion rate of steel.4–6

To mitigate such degradation, numerous inorganic and
organic inhibitors have been developed. Inorganic inhibitors,
including chromates, phosphates, and silicates, have been
widely employed, but their use is increasingly restricted due to
their toxicity and adverse environmental impact.7,8 Similarly,
several synthetic organic inhibitors containing N, S, or O atoms
have shown high efficiencies in acidic media.9,10 However, their
high cost, non-biodegradability, and potential carcinogenic
risks limit their practical applications. These limitations have
shied research efforts toward the exploration of plant-derived
extracts as green corrosion inhibitors, since they can effectively
reduce steel corrosion while minimizing ecological risks.11 Such
natural inhibitors are biodegradable, non-toxic, cost-effective,
and fully consistent with the principles of green chemistry.12

Several researchers have reported the successful use of
natural plant extracts for the corrosion inhibition of mild steel
in various acidic media.13–21 The leaf extract of Eucalyptus acted
as a mixed-type inhibitor in 0.5 M H2SO4 and 0.5 M H3PO4

solutions, showing higher efficiency in sulfuric acid, reaching
up to 91% at a concentration of 0.4 mol L−1.22 Hyssopus offi-
cinalis (hyssop) leaf extract exhibited good inhibition in 0.5 M
HCl for both mild steel and zinc alloy, achieving efficiencies up
to 80%, primarily through physical adsorption.23 Furthermore,
Salix (willow) leaf extract acted as a mixed-type inhibitor in
0.5 M HCl and 0.5 M HNO3, with higher efficiency in nitric acid
(∼90%).24 These studies demonstrate that plant extracts, which
are rich in bioactive compounds such as avonoids, tannins,
and phenolic acids, can effectively adsorb onto steel surfaces
and form protective lms, thereby signicantly reducing
corrosion in acidic environments.

Anemone coronaria and Quercus robur were selected as
potential eco-friendly corrosion inhibitors due to their high
content of bioactive compounds and their ecological and
medicinal signicance. Anemone coronaria is rich in avonoids,
alkaloids, and phenolic compounds, which are well-known for
their strong antioxidant properties and ability to adsorb onto
metallic surfaces, thereby facilitating the formation of protec-
tive lms that inhibit steel corrosion.25 Quercus robur,
commonly known as English oak, contains abundant tannins,
polyphenols, and avonoids, compounds that can effectively
interact with iron substrates through electron donation and p–

p interactions, leading to the retardation of both anodic and
cathodic reactions.26 Moreover, the combination of these two
plant extracts has not been extensively studied, and their
complementary phytochemical proles suggest a potential
synergistic effect, which could enhance the overall inhibition
efficiency compared to individual extracts. The selection of AC
and QR is therefore based not only on their rich phytochemistry
but also on their potential to provide a sustainable, biode-
gradable, and non-toxic alternative to conventional chemical
inhibitors, aligning with the principles of green chemistry and
current environmental regulations.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Based on previous studies,27,28 representative molecules were
selected for DFT analysis, including catalin, thaliporphine, and
glaucine found in Anemone coronaria, and gallic acid, vanillic
acid, and syringic acid found in Quercus robur (Fig. 1). These
molecules were chosen due to their reported bioactivity, making
them suitable candidates for exploring the molecular-level
mechanisms of corrosion inhibition.

Building on this rationale, the present study evaluates the
corrosion-inhibiting performance of extracts from Anemone
coronaria and Quercus robur, both individually and as
a combined mixture, acting as eco-friendly inhibitors against
mild steel degradation in 1 M HCl. The novelty of this work lies
in the simultaneous investigation of two plant extracts and their
representative bioactive molecules, supported by DFT calcula-
tions, electrochemical techniques (PDP and EIS), SEM, and FT-
IR analyses, to elucidate inhibition mechanisms at both
molecular and surface levels. This approach not only provides
insight into the adsorption behavior of natural inhibitors but
also highlights their key advantages, including low toxicity,
biodegradability, cost-effectiveness, and minimal environ-
mental impact.

2. Experimental
2.1. Materials

The corrosion tests were performed on a mild steel sample
corresponding to AISI 1018 grade and composed of Fe (96.2%),
C (0.164%), Mn (0.710%), Si (0.260%), S (0.001%), and P
(0.005%). Before each experiment, the steel surface was
mechanically polished with successive grades of SiC abrasive
papers (#400–2000) in order to obtain a smooth and uniform
surface. The samples were then thoroughly rinsed with distilled
water, degreased with ethanol, and nally air-dried. The 1 M
HCl solution was then employed, and its molarity was veried
through acid–base titration using a sodium hydroxide (NaOH)
solution.

2.2. Extracts preparation

Leaves of Anemone coronaria were harvested from Boufekrane,
Morocco, while those of Quercus robur were collected from the
Beni-Mellal region. The collected plant material was thoroughly
RSC Sustainability, 2025, 3, 5580–5593 | 5581
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Fig. 2 Flowchart of leaves extraction procedure.
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washed with distilled water and shade-dried for 10 days at
ambient temperature. Subsequently, 15 g of the dried leaf
powder were extracted with 250 mL of acetone under contin-
uous stirring for 48 h. The mixture was ltered, and the solvent
was removed by rotary evaporation, yielding a concentrated
crude extract (Fig. 2).

A stock solution was prepared by dissolving the crude extract
in 1 M HCl, and working solutions with concentrations of 0.5,
0.4, 0.3, 0.2, and 0.1 g L−1 were obtained by appropriate dilu-
tion. These concentrations were selected to investigate the
effect of inhibitor dosage on the corrosion protection efficiency.
2.3. Electrochemical experiment

Electrochemical measurements were carried out using
a controlled potentiostat (OrigaStat) equipped with OrigaMaster
analysis soware. A conventional three-electrode corrosion cell
was employed, consisting of a platinum counter electrode
(surface area 1 cm2), a Hg/Hg2Cl2/KClsat (SCE) reference elec-
trode, and a mild steel (MS) working electrode. Prior to
measurements, the MS was immersed in the test solution under
open circuit potential (OCP) conditions for 0.5 h to ensure
stabilization and determine the equilibrium potential (Eocp).

EIS data was acquired at frequencies ranging from 1 kHz to
100 mHz with a 10 mV peak-to-peak sinusoidal potential. PDP
techniques were used to capture current–potential curves
within a potential variation between −750 mV and −100 mV at
a scan rate of 1 mV s−1.
Fig. 3 FTIR spectra of (A) Anemone coronaria and (B) Quercus robur
extracts.
2.4. Surface analysis

FT-IR spectroscopy was employed to identify the bioactive
phytoconstituents of Anemone coronaria and Quercus robur and
to characterize the functional groups and bonding patterns
present on their surfaces. FTIR analysis was conducted using
a JASCO FT/IR-4600 spectrometer equipped with an ATR
accessory. Spectra were recorded over the 4000–600 cm−1 range
at a resolution of 4 cm−1, accumulating 16 scans.

The metal specimens were polished, degreased with acetone,
dried, and subsequently immersed in 1 M HCl solution for 24 h
at 293 K in the absence and presence of the plant extracts.
Surface morphology was then analyzed utilizing a scanning
electron microscope (SEM, JSM-IT10) at a magnication of 32×
5582 | RSC Sustainability, 2025, 3, 5580–5593
to evaluate the effects of corrosion and the possible develop-
ment of protective lm.
2.5. Density functional theory (DFT)

Density functional theory (DFT) is increasingly employed to
describe molecular properties, elucidate mechanisms of action,
and predict the efficiency of corrosion inhibitors. In this study,
DFT calculations were performed using Materials Studio 2023
(ref. 29) with the DMol3 module. The geometry of the selected
corrosion inhibitor molecules was optimized, and their elec-
tronic properties were calculated using the generalized gradient
approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE)30

functional and a double numerical plus polarization (DNP)
basis set. The self-consistent eld (SCF) convergence criterion
was set to 0.00005 Ha. HOMO–LUMO energies and electrostatic
potential (ESP) surface maps were obtained to analyze the
electronic distribution and identify potential reactive sites.31,32
3. Results and discussion
3.1. FTIR

Fig. 3 presents the FT-IR spectra of Anemone coronaria (A) and
Quercus robur (B) extracts. Both extracts are rich in bioactive
substances including avonoids, polyphenols, alkaloids, and
tannins, which provide a signicant contribution to the inhi-
bition of corrosion. The spectra reveal the existence of different
functional groups: carbonyl, hydroxyl, aromatic rings, amine
and ether. These polar groups are known to enhance the affinity
of organic molecules for metal surfaces by facilitatingmolecular
interactions and surface coverage. Their presence suggests that
the extracts' molecules can effectively attach to the steel
substrate, creating a barrier that protects it from the aggressive
acidic medium.33–35
3.2. Effect of concentration

3.2.1. PDP study. PDP curves of MS in 1 M HCl at 293 K,
obtained in the absence and in the presence of varying doses of
the three tested inhibitors, are shown in Fig. 4. Inhibited and
uninhibited solutions present similar polarization curves, sug-
gesting that the extracts have no inuence on the corrosion
process of the steel.36 As the inhibitors' concentrations rises, the
curves shi toward lower current densities, reecting a decline
in corrosion rate. Additionally, the (+) shi observed in the Ecorr
shows that the extracts reduce steel dissolution and inhibit
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 PDP curves of the MS in HCl medium with varying concen-
trations of AC, QR and mixture.
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hydrogen evolution in the acidic medium.37 The parallel
cathodic branches imply that the hydrogen evolution reaction
mechanism remains activation-controlled.38

Table 1 summarizes the electrochemical data obtained from
the linear regions of the anodic and cathodic Tafel plots. The
IEPDP, % was calculated using eqn (1):39

IEPDP% ¼ Icorr � IcorrðinhÞ
Icorr

� 100 (1)

where Icorr and Icorr(inh) are the corrosion current densities in
the absence and presence of the inhibitor.

The literature reports that an inhibitor can be classied as
anodic or cathodic if its corrosion potential (Ecorr) shis by
more than ±85 mV. In this work, the Ecorr displacement
observed for the combined extract lies between −70.73 mV and
−82.85 mV, which indicates that the inhibitionmechanism is of
mixed type.40,41 As shown in Table 1, increasing the inhibitor
concentration signicantly reduced the corrosion current
Table 1 Polarization data for MS in the presence and absence of inhibit

C Ecorr (mV) Icorr (mA

HCL 1 M −535.823 229.76
AC 0.5 g L−1 −456.755 13.4

0.4g L−1 −452.966 15.9
0.3 g L−1 −445.097 16.9
0.2 g L−1 −479.520 18.0
0.1 g L−1 −483.120 20.4

QR 0.5 g L−1 −465.072 20.6
0.4g L−1 −468.018 22.9
0.3 g L−1 −474.285 33.7
0.2 g L−1 −462.353 35.7
0.1 g L−1 −473.917 43.1

Mixture 0.5 g L−1 −465.085 8.9
0.4g L−1 −456.641 13.4
0.3 g L−1 −452.966 15.9
0.2 g L−1 −451.466 18.5
0.1 g L−1 −463.110 20.2

© 2025 The Author(s). Published by the Royal Society of Chemistry
density (Icorr), from 229.76 mA cm−2 in the blank solution to
20.4, 43.1, and 20.2 mA cm−2 for Anemone coronaria, Quercus
robur, and their mixture, respectively, with the highest inhibi-
tion efficiency (96.12%) obtained for the combined extract,
reecting the restricted access of the electrolyte to the steel
surface.42 In parallel, both anodic (ba) and cathodic (bc) Tafel
slopes decreased with increasing inhibitor concentration. This
behavior suggests that the adsorption of inhibitor molecules
onto the steel surface blocks active sites for electrochemical
reactions, while allowing electron transfer during hydrogen
evolution.43 Overall, these results demonstrate that the mixture
acts as an efficient mixed-type inhibitor, signicantly reducing
the corrosion rate.

3.2.2. EIS study. Electrochemical impedance spectroscopy
(EIS) is a widely used technique for evaluating the corrosion
inhibition performance of green inhibitors at the steel–HCl
interface. This approach provides essential information on the
insulating and barrier properties of the protective layer formed
by the inhibitors, while maintaining the advantage of being
non-destructive owing to its operation at low applied potentials.

The characteristic capacitive loop observed in the Nyquist
diagram reects both the electrochemical susceptibility of MS
to corrosion and the ability of the plant extracts to mitigate this
process by forming a resistive lm at the metal–solution inter-
face. Fig. 5 displays the Nyquist diagrams of MS in HCl medium
with different concentrations of inhibitors. All spectra exhibit
capacitive semicircles, conrming that the corrosion mecha-
nism is controlled by a charge-transfer process.44 The slight
distortion of the semicircles is attributed to the surface
heterogeneity of the electrode.45 The similarity in the overall
shape of the plots, regardless of the inhibitor concentration,
indicates that the fundamental corrosion mechanism remains
unchanged, revealing that the corrosion process is not inu-
enced by the presence of inhibitors. However, the progressive
enlargement of the capacitive loops with increasing inhibitor
concentration reects a signicant increase in charge-transfer
resistance. This behavior is associated with the formation of
a protective lm at the steel/HCl interface, which acts as
ors

cm−2) ba (mV) −bc (mV) IEpdp%

175.357 142.955
55.6 126.5 94.16
50 128.7 93.07
54.5 147.4 92.64
62.6 97.9 92.16
70.7 150.2 91.12
83.2 128.8 91.03
60.8 128.2 90.03
83.1 126.6 85.33
88.5 149.5 84.46
99.8 136.2 81.24
53.1 100.7 96.12
55.6 126.5 94.16
58 128.2 93.07
56 137.7 91.94
57.7 125.8 91.20

RSC Sustainability, 2025, 3, 5580–5593 | 5583
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Fig. 5 Nyquist plots of the MS in the presence and the absence of
various amounts of AC, QR and mixture in 1 M HCl at 293 K.

Fig. 6 (A) Bode impedance and (B) Bode theta spectra of the MS in the
presence and the absence of 0.5 g L−1 of AC, QR and mixture in 1 M
HCl at 293 K.
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a barrier limiting the access of aggressive species to the metal
surface and thereby enhancing corrosion resistance.46

The corresponding electrochemical parameters (Rs, Rct and
Cdl) are summarized in Table 2.

The Bode impedance spectra presented in Fig. 6A show that
the addition of inhibitors increases the impedance modulus,
implying that they effectively retard the corrosion rate of mild
steel in the acidic medium. The phase angle values shown in the
Bode theta plot (Fig. 6B) are lower than 90°, indicating non-
ideal behavior that reects the presence of inhomogeneities
in the system. Moreover, the phase angle is observed to increase
with the addition of inhibitors. This increase can be attributed
to the reduction of the capacitive behavior at the mild steel
surface, resulting from its lower dissolution rate in the presence
of the extracts.47,48

The Randles equivalent circuit is commonly used to model
electrochemical interfaces, assuming an ideal capacitive
behavior of the electrode surface. However, even aer careful
Table 2 EIS data for MS in the presence and the absence of inhibitors

C Rs (U cm2) Rct (U cm2)

HCl 1 M 2.377 70.68
AC 0.5 g L−1 1.163 1050

0.4 g L−1 0.656 932.6
0.3 g L−1 0.464 887.2
0.2 g L−1 0.125 744.2
0.1 g L−1 0.115 706.6

QR 0.5 g L−1 0.151 882.7
0.4 g L−1 0.118 819.1
0.3 g L−1 0.102 749.1
0.2 g L−1 0.213 593.4
0.1 g L−1 0.872 516.6

Mixture 0.5 g L−1 2.898 1416
0.4 g L−1 3.504 1108
0.3 g L−1 0.023 1076
0.2 g L−1 2.69 931.5
0.1 g L−1 0.737 842.7

5584 | RSC Sustainability, 2025, 3, 5580–5593
cleaning, MS surfaces remain heterogeneous due to micro-
structural variations and surface roughness, leading to devia-
tions from this ideal behavior. To account for this, the double-
layer capacitance (Cdl) was replaced by a Constant Phase
Element (CPE), which more accurately represents non-ideal
interfaces by combining capacitive and resistive characteris-
tics. The use of a CPE reects the heterogeneous nature of the
system and provides a better t to impedance data. Accordingly,
the EIS results were simulated using an electrical circuit model
composed of the solution resistance (Rs) in series with a parallel
branch of the charge-transfer resistance (Rct) and the CPE, as
illustrated in Fig. 7.49,50 The inhibition efficiency (IE%) was
calculated using eqn (2):51

ðIEEIS%Þ ¼ Rct � R
�
ct

Rct

� 100 (2)

where Rct and R
�
ct represent the charge transfer resistance in the

presence and absence of the inhibitor.
Table 2 summarizes the EIS parameters, including Rs, Rct,

CPE and n, which provide insight into deviations from ideal
capacitive behavior. The exponent n, ranging from 0 to 1,
characterizes this deviation and is oen associated with surface
heterogeneity and roughness. When n approaches 0, the
Constant Phase Element (CPE) behaves predominantly as
a resistor, whereas values close to 1 indicate behavior similar to
an ideal capacitor.
Cdl (mF cm−2) n IEEIS% Fmax

96.26 0.90 2 × 10−5

51.42 0.85 93.66 3 × 10−6

50.64 0.83 92.42 3.37 × 10−6

54.66 0.85 92.03 3.28 × 10−6

57.66 0.85 90.50 3.7 × 10−6

49.95 0.86 89.99 4.5 × 10−6

56.85 0.83 92 3.17 × 10−6

54.75 0.85 91.37 3.29 × 10−6

55.5 0.85 90.56 3.82 × 10−6

70.75 0.85 88.08 3.8 × 10−6

64.07 0.83 86.31 4.8 × 10−6

55.06 0.85 95 � 0.21 2.04 × 10−6

55.87 0.85 93.62 � 0.44 2.57 × 10−6

38.67 0.86 93.43 � 0.16 3.82 × 10−6

52.05 0.84 92.41 � 0.39% 3.28 × 10−6

59.64 0.83 91.61 � 0.47% 3.16 × 10−6

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Equivalent circuit model used to fit EIS data for MS in 1 M HCl.

Fig. 8 SEM images of (a) polished steel (b) steel immersed in unin-
hibited 1 M HCl (c) steel immersed in 1 M HCl + Anemone coronaria (d)
steel immersed in 1 M HCl + Quercus robur (e) steel immersed in 1 M
HCl + mixture.

Fig. 9 The PDP plots of MS in 1 M HCl + 0.5 g L−1 of the mixture at
different temperatures.

Paper RSC Sustainability

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
0/

20
26

 1
0:

03
:5

9 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
The data reveals that the n ranges from 0.83 to 0.86, indicating
that the corrosion behavior of MS deviates from the ideal
response predicted by the equivalent circuit in the presence of
inhibitors.52 The decrease in n values suggests a reduction in the
double-layer capacitance and further conrms that the CPE does
not behave as a purely capacitive element.53 Such deviations from
ideal behavior are expected, as the dissolution process in the HCl
solution produces a heterogeneous surface on theMS. Relative to
the blank solution, the charge-transfer resistance (Rct) exhibited
a marked increase upon the addition of inhibitors and further
increased with higher inhibitor concentrations. This trend
reects the formation of a protective adsorption layer on the steel
surface, which limits charge transfer and improves corrosion
resistance.54 As shown in Table 2, increasing the inhibitor
concentration led to a corresponding increase in both Rct and
inhibition efficiency (IE%), achieving maximum values of 92%
for Quercus robur, 93.66% for Anemone coronaria, and 95% for
their mixture at 0.5 g L−1. These results are in strong agreement
with the ndings from the PDP analysis, conrming the effec-
tiveness of the combined extract in providing superior protection
compared to the individual components.

3.3. SEM analysis

In this study, SEM analysis was performed to examine the
surface morphology of MS aer exposure to 1 M HCl for 6 h in
the absence and presence of plant extracts. Fig. 8(a) displays the
polished steel surface before immersion, showing a smooth and
uniform appearance with no visible defects. In contrast,
Fig. 8(b) illustrates the specimen immersed in uninhibited 1 M
HCl, where severe surface degradation is evident, characterized
by deep pits and irregularities resulting from intense corrosion
attack.55,56 However, the surface of the samples treated with
Quercus robur Fig. 8(d) and Anemone coronaria Fig. 8(c) extracts
exhibit a noticeable improvement, showing reduced roughness
and fewer defects compared to the blank, which conrms the
surface coverage by the inhibitors. Remarkably, the specimen
treated with the mixture of both extracts Fig. 8(e) presents the
smoothest morphology with minimal irregularities, suggesting
the formation of a dense and protective adsorbed layer,
demonstrating superior inhibition efficiency compared to the
individual extracts.

3.4. Effect of temperature

The effect of temperature on the inhibition process is complex,
as it impacts both the corrosion behavior of MS and the stability
© 2025 The Author(s). Published by the Royal Society of Chemistry
of the inhibitor. At elevated temperatures, accelerated desorp-
tion of inhibitor molecules may occur, leading to a decrease in
protective performance.57 In the present work, the inuence of
temperature was investigated in the range of 293 K to 323 K
using the combined extract of Anemone coronaria and Quercus
robur, which previously exhibited the highest inhibition effi-
ciency (IE%). The tests were conducted at an inhibitor
concentration of 0.5 g L−1. The resulting current–potential (I–E)
curves are illustrated in Fig. 9, and the corresponding
RSC Sustainability, 2025, 3, 5580–5593 | 5585
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Table 3 Electrochemical parameters of MS in a 1 M HCl medium at 0.5 g L−1 of inhibitor

T (K) Icorr (mA cm−2) −Ecorr (mV) ba (mV) −bc (mV) IEpdp%

293 Blank 229.76 487.88 86 107.7 —
303 286.97 494.72 96.8 115.5 —
313 398.52 494.54 110.2 121.4 —
323 635.62 476.51 93.1 114.1 —
293 Mixture 8.9 −465.08 53.1 100.7 96.12
303 17.2 −453.89 77 108.1 92.51
313 30.2 462.03 71.4 115.3 86.85
323 89.438 477.370 84.7 122.075 61.08

Table 4 The values of activation parameters for MS in 1 M HCl in the
absence and presence of 0.5 g L−1 of inhibitor

Activation parameters Blank Mixture

Ea (KJ mol−1) 26.23 57.73
DH° (KJ mol−1) 23.36 55.17
DS° (KJ mol−1) −120.29 −38.96
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electrochemical parameters (Ecorr, Icorr, and IE%) are summa-
rized in Table 3.

The results show that Icorr increases with temperature in
both inhibited and uninhibited media, indicating that corro-
sion becomes more severe at higher temperatures. However, the
inhibition efficiency of the extract drops from 96.12% to
61.08%. This decrease can be attributed to the partial desorp-
tion of inhibitor molecules from the MS surface at elevated
temperatures, which reduces the stability of the protective layer
and enhances metal dissolution.58 At higher temperatures, the
steel surface becomes rougher, which hinders the adsorption of
the inhibitor. The increase in temperature enhances molecular
kinetic energy, leading to more vigorous interactions between
the steel and the acidic medium, which accelerates metal
dissolution. Additionally, it promotes greater dissociation of
HCl, releasing more hydrogen ions, increasing acidity, and
intensifying the corrosion process. This accelerated corrosion
generates deeper pits and imperfections, further roughening
the steel surface and allowing aggressive ions to penetrate more
easily, thereby increasing the corrosion rate.59,60

To gain deeper insight into the corrosion inhibition mech-
anism, activation parameters including the activation energy
(Ea), enthalpy of activation (DH°), and entropy of activation (DS
°) were determined using the Arrhenius equation and transition
state theory, as expressed in eqn (3) and (4). The Arrhenius and
transition state plots are presented in Fig. 10A and B,
respectively:

Icorr = Ae−Ea/RT (3)

Icorr ¼ RT

NH
eDS

�=Re�DH
�=RT (4)

A is the frequency factor, R is the universal gas constant, N is
Avogadro's and h is Planck's constant.
Fig. 10 (Left) Arrhenius plots and (Right) transition state plots of MS in
1 M HCl in the absence and presence of 0.5 g L−1 of inhibitor.

5586 | RSC Sustainability, 2025, 3, 5580–5593
The calculated values of the activation parameters for MS in
1 M HCl, in the absence and presence of 0.5 g L−1 of the
combined extract, are summarized in Table 4.

The results show that the activation energy increases
signicantly in the presence of the inhibitor, from
26.23 KJ mol−1 for the blank solution to 57.73 KJ mol−1 for the
combined extract, suggesting that the inhibitor raises the
energy barrier for the corrosion process. Such an increase in Ea
is indicative of a physical adsorption (physisorption) mecha-
nism, where the extract molecules form a protective layer that
hinders mass and charge transfer at the MS surface.61,62 Simi-
larly, the enthalpy of activation (DH°) rises from 23.36 to
55.17 KJ mol−1, conrming the endothermic nature of the
corrosion process and supporting the stabilization of the
protective lm at lower temperatures.63Moreover, the entropy of
activation (DS°) is negative in both cases, reecting a decrease
in disorder as the system transitions from reactants to the
activated complex. These trends collectively support a predom-
inantly physical adsorption mechanism, in which molecules
interact with the steel surface through electrostatic forces and
van der Waals interactions. The protective lm limits mass and
charge transfer, thus slowing down the corrosion process.
Nevertheless, at higher temperatures, partial desorption of
inhibitor molecules may occur, increasing the exposed metal
surface and diminishing the inhibition efficiency. Overall, the
combined extract stabilizes the transition state and forms
a robust barrier, effectively mitigating MS corrosion in 1 M HCl.
3.5. Adsorption isotherm

Adsorption isotherms are essential tools for understanding the
interaction mechanism between inhibitor molecules and the
metal surface, providing insight into the nature, strength, and
mode of adsorption.64 In this study, the adsorption behavior of
the inhibitor molecules on the MS surface in an acidic medium
(1 M HCl) was thoroughly investigated to elucidate the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Summary of adsorption isothermmodels applied in corrosion
inhibition study

Isotherm model Linear equation Eqn

Langmuir Cinh

q
¼ 1

kads
þ Cinh

(5)

Freundlich log q = log kads + 1/n log Cinh (6)
Flory–Huggins

log
�

q

Cinh

�
¼ log kads þ n logð1� qÞ (7)

El-Awady
log

�
q

1� q

�
¼ y log kads þ y log Cinh

(8)
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corrosion inhibition mechanism. The adsorption process plays
a central role in corrosion protection, as the efficiency of an
inhibitor is strongly correlated with its ability to form a stable
and protective layer on the metal surface. A higher inhibition
efficiency generally reects an increased surface coverage (q),
indicating that the inhibitor molecules successfully replace
water molecules and aggressive ions (Cl−) at the steel/solution
interface, thereby minimizing metal dissolution.65

To determine the most suitable adsorption model for
describing this behavior, different isotherm models were
examined, including Langmuir, Freundlich, El-Awady and
Flory–Huggins, as presented in Table 5. Each of these models
provides specic information on the adsorption mechanism:
for instance, Langmuir assumes monolayer adsorption on
a homogeneous surface, while Freundlich accounts for hetero-
geneous surface characteristics. By plotting the experimental
data according to the linearized forms of these isotherms and
calculating their correlation coefficients (R2), the model that
best ts the experimental results can be identied. This
comparison not only conrms the adsorption mechanism but
also allows the calculation of thermodynamic parameters, such
as the adsorption equilibrium constant (Kads) and the standard
free energy of adsorption ðDG�

adsÞ, which provide further insight
into whether the process follows physisorption, chemisorption,
or a mixed mechanism.
Fig. 11 Langmuir, Freundlich, Frumkin and Flory–Huggins isotherm
models of mixture extract onto the MS.

© 2025 The Author(s). Published by the Royal Society of Chemistry
The linear regression analysis (R2) (Fig. 11) indicates that the
Langmuir adsorption model provides the best t for the EIS data
obtained with the mixture extract in acidic medium, out-
performing other models such as Freundlich, El-Awady and
Flory–Huggins. The Langmuir plot displayed an excellent linear
relationship with a correlation coefficient of R2 = 0.999, which is
very close to unity, conrming that the adsorption of inhibitor
molecules on the MS surface follows the Langmuir model
assumptions. According to this model, adsorption occurs at
specic homogeneous sites on the metal surface, forming
a uniform monolayer without signicant interactions between
adsorbed molecules.66 This strong agreement suggests that the
inhibitor molecules occupy the active sites of the steel surface in
a one-to-one manner, creating a protective barrier that reduces
metal dissolution. Furthermore, the equilibrium adsorption
constant (Kads) was derived from the intercept of the linear plot,
and the standard free energy of adsorption ðDG�

adsÞ was subse-
quently calculated following the eqn (9) and providing deeper
insight into the spontaneity and nature of the adsorption process.�

DG
�
ads

� ¼ �RT lnð55:5 KadsÞ (9)

Table 6 shows that the adsorption equilibrium constant
(Kads) for the mixed extract was found to be 114.94, indicating
a strong affinity between the inhibitor molecules and the MS
surface. Additionally, the negative value of DG

�
ads

(−21.34 KJ mol−1) conrms that the adsorption process is
spontaneous and thermodynamically favorable.67 Additionally,
it is generally accepted that values of DG

�
ads more positive than

−20 KJ mol−1 indicate physisorption, while those more negative
than −40 KJ mol−1 correspond to chemisorption, however,
when DG

�
ads lies between these two limits, the adsorption is

considered to involve a mixed mechanism of both physical and
chemical interactions.68,69 In the present case, the obtained
value (−21.34 KJ mol−1) falls slightly below −20 KJ mol−1,
suggesting that the adsorption process predominantly involves
physisorption with a minor contribution from chemisorption.
These interactions likely occur through electrostatic forces and
possible weak chemical bonding between the active species of
the inhibitor and the metal surface. Furthermore, the good
agreement with the Langmuir isotherm highlights the strong
surface coverage and effective interaction of the mixed extract
with the steel substrate.
3.6. Theoretical calculation

Quantum chemical approaches, particularly density functional
theory (DFT), are increasingly employed to investigate molec-
ular characteristics, elucidate inhibition mechanisms, and
estimate the efficiency of corrosion inhibitors. As a widely
Table 6 Summary of adsorption isothermmodels applied in corrosion
inhibition study

Isotherms R2 Kads Slope DG
�
ads

Langmuir 0.999 114.94 1.033 −21.34
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Fig. 12 Single point energy calculation, electron density surface and
molecular orbitals of (a) gallic acid (b) glaucine (c) syringic acid (d)
thaliporphine (e) vanillic acid (f) catalin.

Table 7 Calculated electronic parameters (HOMO, LUMO, DE, hard-
ness h, and softness S) of the main molecules

Molecule EHOMO (eV) ELUMO (eV) DE (eV) h (eV) S (eV−1)

Catalin −0.190123 −0.147163 0.042960 0.021480 46.534
Thaliporphine −0.169643 −0.136055 0.033588 0.016794 59.529
Gallic acid −0.210901 −0.085694 0.125207 0.062603 15.972
Syringic acid −0.207916 −0.090436 0.117480 0.058740 17.026
Vanillic acid −0.210471 −0.077663 0.132808 0.066404 15.060
Glaucine −0.183320 −0.066934 0.116386 0.058193 17.184

Fig. 13 Illustration of the corrosion process of MS in 1 M HCl (a) in the
absence of the inhibitor (b) in the presence of the combined AC–QR
extract as a green corrosion inhibitor.
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adopted theoretical method in materials science, DFT offers
signicant insights into the electronic structure and chemical
reactivity of compounds, enabling predictions regarding their
performance as corrosion inhibitors.70 The spatial distribution
of reactive sites and the electronic properties that govern the
adsorption of the studied molecules on the MS surface were
thoroughly investigated through the electrostatic potential
(ESP) and frontier molecular orbital (HOMO–LUMO) analyses
(Fig. 12), which were conducted using Material Studio.

The ESP mapping revealed distinct regions of high electron
density (deep blue to purple), which were primarily concen-
trated around hydroxyl (–OH), carboxyl (–COOH), and methoxy
(–OCH3) groups, as well as over the p-electron clouds of
aromatic rings. These electron-rich domains, which are notably
evident in gallic, syringic, and vanillic acids, function as robust
nucleophilic centers that can donate electron density to the
vacant 3d orbitals of surface iron atoms, thereby facilitating
chemisorption through coordinate bonding. In contrast, the
electron-decient zones (yellow) that were observed are elec-
trophilic sites that may facilitate the back-donation of electrons
from themetal surface into the inhibitor's antibonding orbitals,
thereby reinforcing the adsorption process. Although its
adsorption footprint is more localized, glaucine still possesses
polar functional groups and a polycyclic backbone that enable
p–d interactions, hydrogen bonding, and coordinate interac-
tions, despite its reduced size and structural simplicity. Thali-
porphine is distinguished by its polyaromatic backbone and
extended conjugation, which promote strong p–d orbital over-
lap and multi-point adsorption, thereby contributing to its high
binding stability.

Frontier molecular orbital analysis reinforces these ndings
by quantitatively assessing electron transfer tendencies. Catalin
exhibits the lowest energy gap (DE = 0.04296 eV), a hallmark of
high electronic polarizability and rapid charge transfer capa-
bility, which makes it exceptionally reactive toward the steel
surface.71 Thaliporphine presents the highest HOMO energy
(−0.169643 eV), indicating superior electron-donating power and
strong affinity for vacant metal orbitals.72 Phenolic acids such as
gallic (DE = 0.125207 eV), syringic (DE = 0.117480 eV), and
vanillic (DE = 0.132808 eV) possess moderate DE values but
benet from multiple oxygenated functional groups and
extended aromatic systems, enabling them to form dense, stable
adsorption layers through both chemisorption and phys-
isorption mechanisms. Glaucine (DE = 0.116386 eV) has
5588 | RSC Sustainability, 2025, 3, 5580–5593
a comparable reactivity to thaliporphine but plays a supplemen-
tary role by targeting sites inaccessible to bulkier molecules. The
remarkable inhibition efficiency observed experimentally for the
molecular mixture arises from a pronounced synergistic effect
between these compounds. Catalin and thaliporphine act as
primary anchors, initiating strong interactions due to their high
soness (low DE) and efficient electron donation/acceptance
balance. Around these anchoring points, phenolic acids
assemble into extended adsorption networks via p–d interac-
tions and multiple coordination bonds, effectively increasing
surface coverage and reducing defect density in the protective
lm. Glaucine, owing to its favorable polarity and orbital char-
acteristics, inltrates residual micro-pores or gaps, interacting
with remaining active sites and further blocking corrosive agents
such as Cl− and H+. This multi-scale cooperative adsorption not
only maximizes the coverage of the steel surface but also
enhances the mechanical integrity and electrochemical stability
of the inhibitor layer, thereby suppressing both anodic dissolu-
tion and cathodic hydrogen evolution reactions. To complement
this qualitative interpretation, quantitative electronic descrip-
tors—namely the energy gap (DE = jE_LUMO − E_HOMOj),
electronic hardness (h = DE/2), and molecular soness (S = 1/
h)—were calculated. These parameters are critical in correlating
molecular electronic structure with inhibition performance:
a small DE reects high reactivity and adaptability to electron
exchange, low hardness indicates greater ease of polarization,
and high soness enhances adsorption kinetics. The calculated
values for each molecule are presented in Table 7, providing
a rigorous theoretical framework to explain and predict their
corrosion inhibition behavior.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 8 Evaluation of inhibitory efficiency of numerous sustainable synergistic inhibitors for MS corrosion in the corrosive solution

Synergistic inhibitors Corrosive solution Conc. Max. EI% References

Quinoa seed + oestrus ovis larvae 1 M HCl 1 g L−1 86% 76
Lycoris radiata + lycoris chinensis HF/HCl — 91.5% 77
Mixture extract of date seeds 1 M HCl 2 g L−1 94.16% 37
Banana peel + rice straw 1 M HCl 750 ppm 96.36% 78
Maple leaves + KI 0.5 M H2SO4 200 mg per L MLE + 200 mg per L KI 93.4% 79
Anemone coronaria + Quercus robur 1 M HCl 0.5 g L−1 95% Present work
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3.7. Proposed adsorption mechanism

Through comprehensive electrochemical analyses, surface
characterization, adsorption studies and quantum chemical
calculations, it has been established that the combined extract
of Quercus robur and Anemone coronaria exhibits superior inhi-
bition performance MS corrosion in 1 M HCl solution. This
synergistic mixture provides remarkable protection at all tested
concentrations, forming a dense and stable adsorption layer at
the metal/solution interface, as evidenced by SEM observations
showing a smooth, defect-free surface compared to the severely
corroded blank specimen. The outstanding inhibition efficiency
is attributed to the rich diversity of bioactive compounds
present in the extracts, including polyphenolic acids (gallic,
syringic, vanillic), alkaloid derivatives (thaliporphine), and
small polar molecules. These constituents contain multiple
electron-donating functional groups (–OH, –COOH, –OCH3),
aromatic p-systems, and heteroatoms, which signicantly
enhance their ability to adsorb on the steel surface through
a mixed mechanism of physisorption and chemisorption. In
acidic media, steel dissolution occurs via anodic Fe oxidation to
Fe2+, while Cl− ions strongly adsorb on the surface and H+ ions
participate in cathodic hydrogen evolution (Fig. 13(a)).73 When
the inhibitor mixture is introduced, its molecules become
protonated due to the acidic environment,74 allowing electro-
static attraction to the negatively charged metal sites and
creating an initial protective layer. Subsequently, chemisorptive
interactions occur: oxygen atoms from –OH and –COOH donate
lone-pair electrons to vacant Fe orbitals, forming Fe–O coordi-
nation bonds, while p-electrons from aromatic rings establish
p–d interactions, reinforcing the adsorption layer.75 ESP
mapping and frontier orbital analysis conrm that electron-rich
regions localized around these functional groups serve as active
sites for interaction, while molecules with high HOMO energy
and low DE (catalin, thaliporphine) act as primary anchors,
initiating strong surface bonding. Phenolic acids further
enhance surface coverage by forming multi-point coordination,
and small polar molecules such as glaucine inltrate residual
pores, sealing defects. This multi-scale cooperative adsorption
leads to the formation of a compact lm that hinders Cl−

penetration and blocks both anodic and cathodic reactions
(Fig. 13(b)). Thermodynamic parameters support this mecha-
nism: the negative DG

�
ads (−21.34 KJ mol−1) indicates a sponta-

neous adsorption process involving predominantly physical
adsorption with a minor chemisorptive contribution, while the
increased activation energy (from 26.23 to 57.73 KJ mol−1)
conrms that the barrier effect signicantly slows down charge
© 2025 The Author(s). Published by the Royal Society of Chemistry
and mass transfer. Consequently, the synergistic action of the
extract components provides exceptional protection by
reducing metal dissolution and suppressing hydrogen evolu-
tion, ensuring the durability of MS in aggressive acidic envi-
ronments. Table 8 presents a comparison of various sustainable
synergistic inhibitors for MS corrosion in an acidic medium,
highlighting the remarkable performance of our inhibitor,
which achieved 95% inhibition efficiency at an optimal
concentration of 0.5 g L−1. This result conrms the potential of
Anemone coronaria + Quercus robur extract as an effective green
inhibitor.
4. Conclusion

The corrosion inhibition performance of Anemone coronaria (AC)
and Quercus robur (QR) leaf extracts for mild steel in 1 MHCl was
systematically evaluated. Individual extracts achieved high effi-
ciencies (AC: 93.66%, QR: 92%), while their combination reached
95%, indicating a synergistic effect. Compared to previously re-
ported plant extracts, the AC–QR mixture shows superior inhi-
bition, highlighting the benet of combining extracts with
complementary phytochemicals. FT-IR analysis revealed the
presence of functional groups responsible for adsorption, and
SEM observations showed the formation of a compact protective
layer on the steel surface. Adsorption studies indicated that the
process follows the Langmuir isotherm and occurs spontane-
ously, involving a mixed physisorption and chemisorption
mechanism. DFT calculations supported these results, revealing
strong interactions and high reactivity of inhibitor molecules
with the steel surface. The novel combination of AC and QR
extracts provides a sustainable, highly effective approach for
corrosion mitigation, highlighting its potential for eco-friendly
industrial applications in acidic environments.
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