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This investigation assesses electrochromic windows as a novel green alternative to traditional double-pane

windows through a life cycle assessment, which analyzes and compares both types of windows. The life

cycle assessment was conducted using the impact categories of TRACI 2.1 in the SimaPro 9.1

application, with ecoinvent, and 1 m2 of each window type as the functional unit for the comparisons.

The manufacturing of EC windows yielded a total CO2 generation of 49.6 kg CO2, and the

manufacturing of double-pane windows resulted in 76.05 kg CO2. In the manufacturing of

electrochromic glass windows, the float glass production process contributed 9.79 kg of CO2 at that

stage of fabrication. From the sensitivity analysis, it was determined that using 10% less electricity during

electrochromic window production can lower carbon emissions for electrochromic windows by 1.51 kg

CO2. These life cycle assessment impact results were later used for advanced AI-predictive modeling

using Python's scientific ecosystem, including PyTorch for neural network implementation, scikit-learn

for data preprocessing and metric calculation, and custom-built hierarchical architectures to develop

both Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System models. Considering that

200 m2 of double-pane windows were replaced by electrochromic windows, the embodied impact of

electrochromic window production would be offset by the operational impact of 30.1 t CO2 in 10.5

months. Since the lifespans of both window types are similar, electrochromic windows are promising

green alternatives to double-pane windows.
Sustainability spotlight

Life Cycle Assessment (LCA) is a critical tool for evaluating the environmental impacts of any product and pathway and their sustainability. On the other hand,
electrochromic windows (EC) are now considered a new, energy-efficient technology by adjusting their tint in response to external conditions. Due to the lack of
any LCA on EC windows, there was a need to ensure their sustainability throughout the production pathway, from rawmaterial extraction and manufacturing to
installation and operation, by comparing them to conventional windows, which helpsmanufacturers to identify areas where energy use, emissions, and resource
consumption can be minimized. Furthermore, articial intelligence (AI) can help to predict the future emissions and environmental impacts of the current
pathways of any product, such as EC windows. AI models can analyze vast amounts of data, optimize material choices, and predict long-term sustainability
outcomes, leading to more accurate and promising results for achieving a sustainable and more environmentally friendly approach.
Introduction

Electrochromic (EC) windows can signicantly reduce the
amount of electricity required for lighting, heating, and cooling
in buildings. Electrochromic layers on indium tin oxide (ITO)-
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coated glass enable manual or programmable control of the
window's opacity. In the most common device architecture,
applying a small electrical charge to the electrochromic layers
causes lithium ions to transfer from one electrode to another,
which in turn allows for redox switching of one or more
electrochromic materials, which results in window tinting.1 By
reversing the polarity of the applied voltage, the opposite reac-
tions occur, and the window lightens. By increasing the opacity
of a window at certain times of the day, the amount of sunlight
and heat can be reduced without the use of curtains or blinds.2

The implementation of EC windows thus reduces energy costs
for lighting, heating, and cooling in buildings.
RSC Sustainability, 2025, 3, 5653–5664 | 5653
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Fig. 1 Simplified system boundary to produce a 1 m2 EC window (no
wastes and co-products considered).
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In developed countries, buildings can account for up to 40%
of total energy consumption in terms of carbon emissions.3

Medium- and large-office buildings are particularly vulnerable to
unnecessary energy consumption due to their high ratio of
windows to square footage. Up to 64% of a building's energy
consumption is due to a combination of lighting, heating, and
cooling.4 These energy costs contribute signicantly to global
warming. Implementing EC windows can help achieve net zero,
LEED (Leadership in Energy and Environmental Design)
building criteria, and Passive House sustainable building targets.
Air conditioning energy consumption can be reduced by up to
50% compared to external shading, depending on the local
climate, the building's glass-to-wall ratio, and its usage. Addi-
tionally, lighting energy can be reduced by up to 60% due to
retained visibility through the window and the ability to control
the level of shading, as opposed to window curtain or blind use.5

Due to the technologically advanced nature of EC windows,
the environmental and nancial costs of manufacturing and
installation are considerably higher than those of double-pane
(DP) windows. An EC window costs between $550 and $1600
per square meter of glass. The setup process of EC windows
requires the installation of physical glass and frame, as well as
the installation of frame cables, which are necessary for the
electrical control of the window. DP windows cost between $350
and $950 per m2 of glass. These estimates both include instal-
lation costs, albeit EC windows require more time andmoney to
install due to the electrical components. EC and DP windows
are structurally similar and are packaged as insulated glass
units (IGUs). IGUs have multiple glass panes separated by
a space lled with a noble gas and sealed to prevent conden-
sation buildup, thereby improving insulation characteristics.
IGUs have an average lifespan of 10 to 20 years, during which
the seal and insulation are likely to become less effective.6 EC
windows can functionally change opacity for up to 30 years,
assuming the window is cycled ve times daily.7 However, the
seals in the IGU structure of the EC window typically fail before
then. Considering all these benets, the environmental impacts
of EC windows have not been evaluated recently. On the other
hand, articial intelligence (AI) can facilitate not only assessing
all potential aspects of the environmental prole but also
accurately predicting it by considering all materials/energy ow
inputs to the process.8–10

Therefore, the research will address the existing gap in the
environmental impact of EC window production and demon-
strate the long-term benets of producing and implementing
these windows, in direct connection to the environmental
prole of DP windows. The manufacturing process of EC
windows and the operational use of these windows were
analyzed using a life cycle assessment (LCA) and an analysis of
CO2 emissions, respectively. Additionally, AI was used to ensure
that all inputs into the process were taken into account.

Methodology
Goal and scope

System boundary and functional unit. This study investi-
gates and compares the environmental impact of producing EC
5654 | RSC Sustainability, 2025, 3, 5653–5664
and conventional DP windows. The operational impact and
energy savings to offset the production impact of EC windows
are analyzed. The functional unit that establishes the reference
ow of input and output of the system boundary is 1 m2 of EC
and DP window units. According to the ISO 14040 standard for
LCAmethodology, which was used for conducting this research,
the standard LCA approach includes four steps: scope deni-
tion, life cycle inventory analysis, life cycle impact assessment,
and interpretation.11 The system boundary of the current study
is shown in Fig. 1.

The LCA was conducted based on the Cut-Off, U, to assign
burdens only to the initial production process or allocate them
to waste treatment, rather than the product itself. The materials
and energy volumes required to produce an EC window are
outlined in Tables S1–5, grouped according to the six main
production stages. The inputs include both the materials and
energy requirements in terms of electricity and natural gas for
the respective production stages and units. The overall output is
1 m2 of an EC window. Like Syrrakou et al., due to the lack of
data on EC window production, data gathering was done
considering different ways and similar products.12

Conventional DP window. The inventory for the life cycle
assessment of producing 1 m2 of a conventional argon-lled DP
window is presented in Table S6. The production is considered
a complete unit, and the inputs covered to enable comparative
analysis with the EC window include the materials and energy
requirements (electricity and natural gas).

Articial neural networks (ANNs). Articial neural networks
(ANNs) are computational models developed to emulate the
human brain's system of processes. Articial neurons comprise
the network, which collectively processes and learns from data
to add pattern recognition and solve problems across machine
learning, deep learning, and AI.13 Articial neurons are
supposed to mimic the way human biological neurons process
signals in ANNs. This entails receiving an input, applying
weight coefficients and bias terms, executing it through an
activation function, and forwarding the result to the following
layer of neurons.14
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Visual representation of ANFIS's five-layer architecture with
input datasets and a final output, and (b) multi-level ANFIS's visual
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The model is constructed using a feed-forward articial
neural network (FNN). This aligns with a training-based
predictive model designed for regression-oriented tasks. For
instance, for the case study of one of the stages in EC glass
production, in particular “Electrochromic preparation”, the
following energy and materials are input to our model: oat
glass, water, and electricity. Additionally, there are environ-
mental impacts. The model uses the following mean squared
error formula as the loss function.

MSE ¼ 1

n

Xn

i¼1

ðyi � ŷiÞ2 (1)

where (yi) represents the actual values from the output in the
dataset, while on the other hand, (ŷi) shows the predictive values
that the model will extrapolate. The following procedure
outlines the steps the formula follows.15 For each data point (i),
the model computes the difference between the actual value
and the predicted value, squares this difference to subjugate
larger errors, and then sums these squared differences across
all (n) samples.16,17 Finally, the total is divided by n, which is the
number of observations, to obtain the average squared error
across the dataset. The error metrics of RMSE, R, and MAPE%
are also applied to test the validity and quality of the ANNmodel
predictions and the TRACI-assessed outputs:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ2
s

(2)

R ¼
Pn
i¼1

ðyi � yÞ
�
ŷi � ŷ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðyi � yÞ2
s

$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
ŷi � ŷ

�2
s (3)

MAPE ¼ 100%

n

Xn

i¼1

����ðyi � ŷiÞ
yi

���� (4)

To ensure reproducibility and minimize overtting, inputs
were normalized usingMinMax scaling, and random seeds were
set for both NumPy and PyTorch.

Adaptive neuro-fuzzy inference system (ANFIS). The adaptive
neuro-fuzzy inference system (ANFIS) is a hybrid system that
integrates ANNs with the reasoning of human-like ability of
fuzzy logic systems (FLS) concerning its ability to learn data. The
primary operations of ANFIS involve mapping the inputs in
terms of membership functions and a collection of fuzzy
inference rules to forecast the outputs. The parameters are set
using training data, typically, but not always, through one of the
methods, such as backpropagation or hybrid learning algo-
rithms.18 ANFIS has two signicant kinds of fuzzy inference
systems: the Mamdani-type and the Takagi–Sugeno-type (or
Sugeno-type) FIS. The Mamdani system is characterized by its
language rule output and interpretability. In contrast, the
Sugeno system is more favored in ANFIS, as it can be compu-
tationally efficient and better adapted to adaptive techniques,
since it uses polynomial functions in the consequent part of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
rules.19 ANFIS typically employs the Sugeno-type FIS due to its
mathematical consistency and its integration with optimization
and learning methods.20

The basic architecture of ANFIS is a ve-layer feed-forward
network. The input values are rst fuzzied using the fuzzi-
cation layer. The second layer is account-encoded processing,
where the processing is performed in terms of a set of rules
(typically fuzzy rules, oen derived from Takagi–Sugeno). The
third layer computes the ring strengths of these fuzzy rules by
adjusting the ring strength between the input data and the
fuzzy conditions for each rule. The difference is that the fourth
layer produces all subsequent parameters (the outputs of each
rule). The 5th equation, which is applied for computing the
summation of those results to make the nal result, is the next
state.19 In Fig. 2(a), this overall structure can be seen.

Although these models are capable of capturing nonlinear
relationships well, they experience a similar loss of performance
at high-dimensional input due to the exponential growth of
fuzzy rules when a large number of input variables come into
play. The “curse of dimensionality” results in computational
inefficiency and overtting. A straightforward yet effective
means to circumvent this problem is to cluster the data. The
idea is to group similar input variables into clusters, enabling
the ANFIS model to evaluate a smaller number of input
combinations effectively. For example, twelve input variables
could be clustered into six groups, then into three groups, and
ultimately into one output through hierarchical stages, which
demonstration of the Hot Coater stage's final predictions.

RSC Sustainability, 2025, 3, 5653–5664 | 5655
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creates model complexity reduction and allows the model to
scale effectively. With a group, the group can be assigned to its
own ANFIS subnetwork, and the outputs can be summed
together to create an overall prediction, which also allows
manageable rule generation and better generalization.21

The structure shown in Fig. 2(b) suggests that the input data
is composed of several material types, which can also be
expanded to include input parameters such as process condi-
tions, material type, and chemical composition. In this case,
those inputs would be clustered (e.g., by function or material
type) and fed into different ANFIS subnetworks. If six distinct
inputs were present, they could be grouped into three clusters,
then into two, and eventually into one nal model, forming
a layered, modular system of ANFIS units. This hierarchical
clustering approach enables the system to scale up while
keeping the number of fuzzy rules in each subnetwork within
a feasible range, making complex environmental impact
modeling both accurate and computationally efficient.21

Just as the ANN model is assessed, the quality of the ANFIS
model is also validated using the error metrics of RMSE, R, and
MAPE%. The models are coded using Python's deep learning
library, PyTorch, which utilizes the datasets of input and output
data from EC production to generate predictions.

Results and interpretation
Life cycle inventory analysis

The inventory EC window production pathway. Fig. S1
displays the main stages of EC window production. The
production of EC windows begins with the manufacturing of
insulating glass units, which in this study are made from oat
glass. Float glass is a sheet of glass made from molten glass
formed over a bed of molten metal of low melting point, typi-
cally a tin alloy.22 A slightly reducing environment is maintained
in the oat chamber to avoid oxidation and unwanted reactions.
The glass may spread uniformly at the high entrance tempera-
ture, smoothing uneven surfaces and creating a at ribbon on
the liquid metal bath. Conveyor rollers are used to draw ribbons
continuously. At the same time, it cools over the tin alloy bath,
reaching a temperature of roughly 1100 °F (590 °C), which
permits it to be lied without deformation or damage. The
ribbon is then trimmed to size aer being annealed to relieve
stress. Through this method, at glass with consistent thick-
nesses ranging from 2.5 mm (0.100) to more than 25 mm (100) is
produced.23

In the manufacturing plant, the oat glass is cut to the nal
size aer which it is subjected to electrochromic processing.
The glass is washed roughly rst to remove all the cutting debris
and then washed again in a ne way to remove ner particles.
Air plasma is also applicable in the ne wash to clean organic
contaminants on the glass surface. The glass is then subjected
to four cleaning steps using clean water. Lastly, the oat glass is
dried twice to prepare it for the following process. The step
eliminates all the particles of water, which may pose a barrier to
the electrochromic application.24 This phase of production
involves coating the electrochromic layers onto the glass units.
The prepared glass is heated in a vacuum chamber. To form the
5656 | RSC Sustainability, 2025, 3, 5653–5664
WO3 working electrode on FTO (uorine-doped tin oxide) on
glass, a vanadium(V) oxide (V2O5) counter electrode, and an
electrolyte containing lithium perchlorate (LiClO4), sputter
deposition is utilized.24–27

The coated glass is transferred to the next step, where the
laser stage comprises three different cutting steps, where laser
cuts are made through the coater to the glass, enabling the
correct functioning of the internal circuitry upon the intro-
duction of electricity.28 Cold coating is used aer the laser cut
stage to add the nal layer of the electrochromic material. No
extreme heat is used in this step, hence the name, though the
temperature still reaches about 150 °C.29

The second and third production steps primarily involve
patterning of the device to make the nal EC window product.
The P2 laser cuts the panel into individual window units, which
will be broken out during thermal layer separation. Before
adding wires and curing in the oven, the P3 laser electrically
isolates the windows, making them functional electrochromic
devices. The window unit is manually inspected for defects,
scribed by a high-power laser, and broken out manually aer
going through the x and y breaker bars.24 The window units are
then inspected for edge defects and then laminated. The device
is then cured in an autoclave under heat and pressure aer the
array of glass units is done. The unit is wired and sealed, ready
to be framed.23

The external frame, which holds the unit together, is typi-
cally made of stainless steel and is designed and cut out ready
for assembly. A copper pigtail wire connected through the frame
to the internal circuitry allows the transfer of electric charges,
which brings about the desired tinting effect, i.e., the electro-
chromic effect.30 The frame design and assembly stage precede
the nal quality checks and distribution of the EC windows for
installation.

Conventional DP window pathway. Double-pane or double-
glazing windows utilize two different sets of glass, with an air-
or gas-lled space sealed between the pieces. There is an
aluminum or composite spacer between these two pieces of
glass. To boost thermal performance, the cavity may be lled
with either air or various types of insulated gases, such as argon
or krypton. The thermal performance of double-pane windows
is enhanced over that of single-pane windows due to the addi-
tion of an air gap, spacers, and the type of glass employed,
which may consist of plain oat glass, tempered glass, or low-
emissivity (low-e) glass, offering improved energy efficiency
and UV protection. Even in low-e glass, it is primarily the layer of
gas, or the gas trapped in the cavity, that provides the insulation
and low heat transfer property to the double-glazed design. The
design signicantly reduces heat transfer through the window,
maintaining a more consistent indoor temperature. However, it
can also provide benecial sound insulation, creating a quieter
interior environment compared to single-pane window designs.
The manufacturer of oat glass units for a typical, argon-lled
double-pane (DP) window will rst smelt and rene the raw
materials to form a bed of melted metal for its DP window units.
Float glass is manufactured from raw materials such as silica
sand, alumina, and soda, according to the Pilkington
process.22,31
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Depending on the desired glass type, the glass undergoes
post-forming processes such as annealing, lamination, and
tempering. The glass is then cut, trimmed, and washed. The
spacer is cut to size and shape to t between two glass panes.32 A
sealant is applied on the edges to hold the unit together and
provide an airtight space within which the insulating air is l-
led. The space is then evacuated, followed by the injection of
insulating gas. Secondary sealing is done to ensure the unit is
air and watertight.33 A frame typically made of wood or stainless
steel is fabricated and assembled with a gas-lled unit. It then
undergoes rigorous quality checks and is packaged for
distribution.32
Fig. 3 Stepwise contribution of environmental impacts of stages to
the whole environmental profile for the EC window manufacturing
pathway.
Environmental impact assessment in the EC window
production pathway

Electrochromic preparation. The contribution of process
energy and materials in the electrochromic preparation step is
illustrated in Fig. S2. All environmental categories are primarily
dominated by at glass production, followed by electricity used
in substrate preparation, the application of electrochromic
layers, and electrode integration. These steps are performed
using automatic robots/machinery, where electricity is needed
to produce high-quality EC windows.34

Hot coater stage. As shown in Fig. S3, cold or hot sputter
deposition has an equal environmental impact across all cate-
gories. The main reason for high electricity usage in this step is
related to the plasma-assisted deposition for the electrochromic
layer, where a high-voltage electrical eld is applied to create
plasma.24 Additionally, other chemicals used in this step had
varying impacts on different categories, such as the signicant
impact of V2O5 on the smog and acidication categories.

First preparation loop. The effect of all materials/energy
ows in the rst preparation loop is displayed in Fig. S4. The
electricity used in the oven for heating was the primary ingre-
dient in this step, dominating all environmental categories. The
oven is used to either facilitate the drying process or heat the
coating substrates to enhance the properties of the applied
electrochromic layer.35 Therefore, electricity consumption
during this step results in signicant environmental impacts.

Second and third preparation loops. The resultant environ-
mental effect of every material and energy ow on both the
second and third loops of preparation is shown in Fig. S5. The
ndings indicate that the inputs that occupy the highest place
in the overall environmental category include electricity and
natural gas. Indicatively, an example of grinding and edging,
and cleaning and surface preparation, where electricity is used,
provides a signicant contribution to all the categories of the
environment. This powerful inuence of electricity is the result
of the electricity sources of production.36 In one instance, the
generation of electricity using fossil fuels has more environ-
mental impacts than renewable sources.37

Frame design. Fig. S6 displays the environmental impact
resulting from material and energy ows during the frame
design stage. The silicon dioxide gel had the most signicant
environmental impact, followed by stainless steel and copper
wire. The signicant environmental impact of the silicon
© 2025 The Author(s). Published by the Royal Society of Chemistry
dioxide gel was due not just to the sodium silicate production
process, but also the benchmark chemical process required to
yield high-purity silicon dioxide gel.38 Also, environmental
impacts associated with stainless steel arise from its intense
energy-consuming process, dust emissions into the air, landll
waste, and water discharge during its production.39,40 The high
impact of stainless steel on carcinogens stems from the use of
nickel and chromium in stainless steel manufacturing.41,42

Copper wire production, another prominent contributor, has
unique environmental impacts resulting from mining, copper
production, and the wiring process, requiring signicant
amounts of energy, rawmaterials, and land use. All of these lead
to greenhouse gas emissions, air/water pollution, soil erosion,
and habitat destruction.43 However, it is possible to recycle
copper to reduce its environmental impacts, both embodied
and operational.44
Contribution of stages to the whole EC window production
process

Due to the different environmental impacts resulting from
various stages in the EC window production pathway, it was
interesting to determine the contribution of each stage to the
overall environmental prole. Fig. 3 shows the stepwise
contribution of any stage of the EC window manufacturing
process to the entire environmental prole. The frame design
step contributes to all environmental categories. For example,
approximately 60% of ecotoxicity is attributed to the frame
design step.

Moreover, the frame design, followed by the second and
third preparation loops, electrochromic preparation, and the
hot coater stage, were other steps that made signicant
contributions. As mentioned earlier, these signicant environ-
mental impacts result from the electricity used in these steps.

Conventional DP window. The environmental impacts of the
materials and energy ows in the production of a typical argon-
lled stainless steel frame DP window are presented in Fig. S7.
Aluminium is the highest contributor across almost all impact
categories. The production of aluminium is energy-intensive,
RSC Sustainability, 2025, 3, 5653–5664 | 5657

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5su00638d


RSC Sustainability Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
3/

20
26

 2
:2

0:
04

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
considering the involved processes like electrolysis and alumina
rening.45 This is also accompanied by the release of CO2,
thereby increasing its environmental impact. This is minimal
when aluminium is sourced from recycled products. Previous
researchers have corroborated this46 and have determined that
recycling is the more environmentally friendly option.

Notably, the silica gel desiccant category is impacted by
ozone depletion, which is generally achieved by acidifying
a silicate solution, such as water glass. This reaction leads to the
release of sulphur dioxide gas, which has a ripple effect on
ozone depletion.47 Soda, adhesives, and vinyl have signicant
impacts across all impact categories. The remainder is attrib-
uted to the energy impact of the high amounts of electricity and
natural gas required to produce oat glass for stages such as
melting, annealing, and tempering.

Comparison. Most relevant to this study is the impact of the
two types of windows on global warming. The analysis yields
49.6 kg of CO2 equivalent in the production of the EC window,
while the DP window generates 76.05 kg of CO2, representing
about 1.5 times that of the former, as shown in Fig. 4. The
environmental impacts resulting from the conventional
windows were higher in all environmental categories.

The reason synthetic materials (such as vinyl and poly-
propylene) are more ecotoxicologically relevant is that they are
in other ways more ecotoxicologically hazardous. They are non-
biodegradable; as a result, they will take a long time to
decompose and generate durable areas of pollution, such as
environmentally hazardous waste, which will have a material
impact on plants and animals. Aluminium, which is used as
a spacer material in DP windows, is absent in EC windows, and
is one of the metals that consumes a high amount of energy in
its production.48 In a work by Zhang et al.49 regarding the
environmental footprint of aluminium production in China,
aluminium production is accompanied by CO2 and methane
emissions, which contribute to global warming, as well as
nitrogen oxide gas, which signicantly impacts terrestrial
acidication and respiratory health. These ndings were
Fig. 4 A comparison between EC windows and DP windows based on
the environmental impacts resulting from the production of 1 m2 of
them using TRACI.

5658 | RSC Sustainability, 2025, 3, 5653–5664
consistent with the high aluminium impact observed in the
production stage and its contributions, resulting in overall
higher impacts in the ecotoxicity, carcinogenicity, eutrophica-
tion, respiratory effects, and acidication impact categories.

Sensitivity analysis. To conduct a comprehensive LCA study
in accordance with ISO 14040, a sensitivity analysis was per-
formed to assess the reliability and uncertainty of the results. In
this regard, the primary input, electricity, has signicant envi-
ronmental impacts throughout the entire process. The sensi-
tivity analysis results for three environmental categories of
ozone depletion, global warming, and fossil fuel depletion are
displayed in Fig. 5, showing±10% change in inputs. The results
showed that a 10% decrease in electricity led to a 1.51 kg CO2 eq
reduction in the global warming category, equivalent to
approximately a 3% decrease in CO2 emissions.

ANN results. The assessment of the predictive outputs from
an ANN model based on PyTorch, relative to the ve stages of
the electrochromic glass supply chain, reveals sizable differ-
ences in environmental impacts based on stage and material
selection. The ANN outputs presented in Table S7 show that the
electrochromic preparation stage produces the maximum
global warming potential (9.72 kg CO2 eq) and maximum smog
formation (1.03 kg O3 eq) from oat glass, but de-ionized water
is identied as the least impactful throughout most of the
environmental categories.50,51 Table S9 indicates that during the
hot coater stage, sputter deposition processes (both hot and
cold) generate the highest global warming potential (2.52 kg
CO2 eq) and ecotoxicity impacts (30.3 CTUe). At the same time,
the uorine-doped tin oxide coating exhibits minimal environ-
mental impact across most categories. Table S11 reveals that in
the rst preparation loop stage, the oven process generates
substantially higher impacts than laser-based data matrix
coding, particularly in terms of global warming (0.162 vs. 0.030
kg CO2 eq) and fossil fuel depletion (1.80 vs. 0.031 MJ surplus).

As shown in Table S13, the second and third stages of the
preparation loop involve glass cutting and grinding/edging,
which are similar processes, and they have the most signi-
cant impact on global warming (1.03 and 1.76 kg CO2 eq,
respectively). Meanwhile, the assembly and integration stages
have relatively lower environmental burdens compared to all
Fig. 5 Sensitivity analysis results indicate that electricity usage in the
whole process is the primary contributor to high environmental
impacts.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Contribution of process energy and material flows in all stages
of 1 m2 EC glass production using (a) PyTorch's ANN model and (b)
PyTorch's three-level ANFIS model.
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impact categories. Table S15 shows that, in the frame design
loop, silicon dioxide gel has environmental impacts across all
categories, with the highest impacts being specically in global
warming (10.39 kg CO2 eq) and ecotoxicity (117.45 CTUe).
Lastly, plastic lm (polypropylene) has the lowest environ-
mental burden overall, indicating that material selection is
a crucial factor in determining the environmental performance
of electrochromic glass production systems.

The ANN model demonstrated varied performance in pre-
dicting the eco-impact at ve stages of electrochromic glass
manufacturing and across three categories of impact assess-
ment. In the case of electrochromic preparation stages (Tables
S7 and S8), the overall correlation ranged from poor (R = 0.195
for respiratory impacts) to moderate-good (R = 0.761–0.774 for
smog and acidication), with RMSE values remaining low (5.04
× 10−3–3.14 × 101), indicating a reasonable prediction of
output levels.52,53 In the case of hot coater stages (Tables S9 and
S10), R-values ranged from poor (0.208 for acidication) to
excellent (0.990 for eutrophication), and RMSE values were
relatively low (1.88 × 10−4–1.93 × 101). However, MAPE was
higher for some categories.

At stage one of the preparation loop (Tables S11 and S12), the
model predicts all environmental impacts with great accuracy
(R = 1.00), as well as low RMSE (1.14–14.6) and MAPE values,
conrming accurate predictions. For stage two and three of the
prep loop (Tables S13 and S14), the aggregate R values showed
moderate overall prediction performance, ranging from −0.323
(ecotoxicity) to 0.993 (fossil fuel depletion), with only a few
outputs poorly predicted; RMSE (3.08 × 10−4–7.41 × 10) and
MAPE (2.72–261) values were reasonable. At the frame design
stage (Tables S15 and S16), most impact categories are pre-
dicted with accuracy, including global warming (R = 1.00) and
smog formation (R = 1.00), while impacts like fossil fuel
depletion (R = −0.799) and carcinogenics (R = −0.185) are not
predicted nearly as well. Overall, the chosen ANN model
successfully captures absolute and relative environmental
impacts across all stages with a moderate level of condence;
that condence is more pronounced when R > 0.5, RMSE is low,
and the MAPE is considered an acceptable value; collectively,
these metrics provide a slightly reliable basis for lifecycle
impact analysis.54

All stages' contributions to all impacts have shown some
interesting information based on Fig. 6. For example, the frame
design manifested the most signicant contribution associated
with a number of environmental impact categories (fossil fuel
depletion, ecotoxicity, respiratory effects, and acidication).
Additionally, the electrochromic preparation stage made the
most signicant contribution to smog formation (approxi-
mately 60%) and signicantly contributed to the impacts of
acidication and fossil fuel depletion. This was also supported
by ndings fromWang et al.55 who found that coating processes
made a substantial contribution to the environmental effects in
advanced glazing systems.

The rst preparation loop, specically, utilizes the impacts
of carcinogens and non-carcinogens (almost 100%), indicating
that this phase includes materials or processes of toxicological
relevance. Although the hot coater phase displays relatively
© 2025 The Author(s). Published by the Royal Society of Chemistry
lower error metric values in Table S10, its overall environmental
impacts were balanced against those of other phases in the
product system module and were primarily related to respira-
tory effects, eutrophication, and global warming. This trend was
also observed in energy-dense thermal processes, as discussed
by Lamnatou et al.56 and Feizizadeh et al.57 in the context of
advanced materials processing systems.

Multi-layer ANFIS results. The ANFIS modelling approach,
applied in PyTorch, reveals variations in environmental impact
across different stages of electrochromic glass production.58

The preparation stage for electrochromic coating (Table S17)
shows that oat glass is the most environmentally disadvanta-
geous material, with global warming impacts of 10.1 kg CO2 eq
and ecotoxicity impacts of 77.6 CTUe. In contrast, water has
RSC Sustainability, 2025, 3, 5653–5664 | 5659
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a very low environmental impact across most indicators. The
hot coater stage (Table S19) uses sputter deposition methods,
and in particular hot deposition methods, which have signi-
cant environmental burdens, contributing 30.5 kg CFC-11 eq to
ozone depletion and 2.62 kg CO2 eq to global warming overall,
as opposed to the uorine-doped tin oxide coat, which has
negligible or no impacts on the environment across the vast
majority of the categories that were studied.59 The rst prepa-
ration loop stage (Table S21) demonstrates a clear environ-
mental benet for laser data matrix (DM) coding over oven-
based processing, with which the global warming contribu-
tions are both substantial (0.030 kg CO2 eq versus 1.74 kg CO2

eq), and the ecotoxicity effects are considerable (0.36 CTUe
versus 21.0 CTUe). In the second and third preparation loop
stages (Tables S23), glass cutting and grinding/edging
contribute signicantly to global warming impacts, at 1.31
and 1.79 kg CO2 eq, respectively. At the same time, assembly
and integration show relatively minor environmental impacts
across most of the evaluated impact parameters.60

According to the frame design phase analysis from the three
level ANFIS models (Table S25), silicon oxide gel would have the
highest total environmental impacts across most TRACI cate-
gories (e.g. global warming: 9.99 kg CO2 eq; smog: 0.625 kg O3

eq; acidication: 0.469 kg SO2 eq; respiratory impacts: 0.00932
kg PM2.5 eq; fossil fuel depletion: 18.00MJ) while polypropylene
lm would have the lowest total impacts at 0.55 kg CO2 eq and
2.01 MJ, respectively. Ecotoxicity impacts were higher for copper
wire (221 CTUe) than for stainless steel (144 CTUe), silicon oxide
gel (111 CTUe), and polypropylene materials (4.92 CTUe).
Normalized by total mass (reecting consumption quantities in
Table S5), global warming potentials are approximately 3.04 kg
CO2 eq per kg for polypropylene (0.55O 0.18 kg) vs. 3.02 kg CO2

eq per kg for silicon oxide gel (9.99 O 3.31 kg) and fossil fuel
depletion about 11.17 MJ kg−1 vs. 5.44 MJ kg−1, respectively.

The ndings show that while the mass, which acts as the
mass input of the silica gel, drives absolute stage impacts
greater than those of polypropylene, the mass used for poly-
propylene would yield greater intrinsic impacts on a per-unit
mass basis and hence emphasize the need to differentiate
absolute environmental effects in relation to mass effects. The
ANFIS model accurately captures trends, both in terms of
absolute material impact and per-mass material impact, with
low RMSE values and high correlations (Table S26), making it
useful for understanding and further advancing insights into
the environmental impacts of raw materials. The assessment of
error metrics throughout the ve stages of electrochromic glass
production using ANFIS modelling shows considerable varia-
tion in prediction accuracy and overall model dependability.
For electrochromic preparations (Table S18), the model
performs exceedingly well, recording the highest values of
correlation (R = 1.000) with almost all impact categories in all
three ANFIS congurations. In contrast, the RMSE values
remain incredibly low, from 1.000 × 10−8 to 33.2%, thus con-
rming extremely accurate predictions of environmental
parameters.55

For the hot coater manufacturing stage (Table S20), we
observe that the system performs very well in terms of
5660 | RSC Sustainability, 2025, 3, 5653–5664
prediction performance, with a perfect correlation coefficient of
1.000, which is the norm across all ANFIS models. There is,
however, some variation in RMSE, which is evident in ecotox-
icity and fossil fuel depletion issues, where reported values
range from 1.64 to 47.2%.61 In the rst preparation loop phase
(Table S22), we note great consistency out of the model with
1.000 R-values reported for all impact categories and ANFIS
setups, which also report very low RMSE numbers that range
from 1.00 × 10−6 to 8.21%; thus, we have very reliable model
performance for that particular production step.62 In the second
and third preparation loop phases (Table S24), we observe good
performance from different ANFIS congurations (ANFIS 1
through 7), which report correlation coefficients of 1.000 for
most impact categories. Additionally, we observe RMSE
numbers that, although ranging widely from 1.010 × 10−10 to
7.130 × 10−5, still validate the model's ability to capture
changes in environmental impact in these complex
manufacturing processes.

The model performs exceptionally well in this nal
manufacturing phase, as the frame design phase (Table S26)
reports very high predictive accuracy, with R-values of 1.000 for
ozone depletion, global warming, smog, andmany other impact
categories. We also observe very low RMSE values, although
occasionally ANIS 3 exhibits slightly off performance with R
values that drop to nearly 99.8%, which is still within the
trustworthy range. The three-level ANFIS model's overall
contribution reveals different patterns of environmental effect
distribution across the ve stages of electrochromic glass
production (Fig. 6). In particular, nearly all carcinogens and
non-carcinogens are associated with the hot coater step, along
with ozone depletion, indicating signicant toxicological
problems with sputter deposition.63

Due to its energy-intensive nature and material require-
ments, the electrochromic preparation stage contributes
signicantly to respiratory impacts, smog generation, and
global warming (20–35% each). Due to the production of
components such as silicon dioxide gel and metal frames,
frame design is responsible for a signicant portion (20–25%) of
various impact categories, including ecotoxicity and the deple-
tion of fossil fuels. Approximately 70% of the acidication
impact is attributed to the hot coater stage, with electrochromic
preparation accounting for a tiny portion of the total. It is
surprising to learn that the initial preparation loop makes
a signicant contribution to respiratory impacts and
eutrophication.

The depletion of fossil fuels and respiratory consequences,
on the other hand, are primarily caused by the second and third
preparation loops. Eco-design strategies for more sustainable
electrochromic glass production could be informed by the
potential optimization targets identied by this stage-specic
environmental impact distribution, especially for toxic
impacts in the hot coater stage and climate impacts in the
electrochromic preparation stage.

ANFIS and ANN comparison. In terms of the coefficient of
determination (R2), the ANFIS model consistently outperforms
the ANN approach in each of the ve steps of the EC glass
manufacturing process. For all environmental effect categories,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Energy consumed in a 10 000-square-foot office building per
year

Energy
purpose

DP window
consumption

EC window
consumption Units

Lighting 25 500 10 200 kWh
Cooling 16 500 8250 kWh
Heating 326 800 163 400 3

Global warming impact 56 600 26 500 kg CO2 eq
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ANFIS has a perfect or near-perfect prediction capability (R2 z
1) during the electrochromic preparation step (Fig. S18). On the
other hand, ANN behaves poorly for respiratory impacts (R2 <
0.1) but moderately for smog and acidication (R2 z 0.6). ANN
performs well in forecasting respiratory effects, carcinogenicity,
and eutrophication (R2 > 0.9), but struggles with projections for
smog and acidication (R2 < 0.1), according to the hot coater
stage comparison (Fig. S19).

There was less linear variability during production compared
to the preparation phase, as all categories' rst preparation loop
models were nearly perfectly tted (R2 = 1) (Fig. S20). Although
the ANN architecture reached different performance levels (R2 <
0.1) at the frame design stage, the ANFIS achieved perfect
prediction scores for the second and third preparation loops
(Fig. S21) and for the frame design stage (Fig. S22). This
difference is consistent with earlier work that has shown ANFIS
to perform better at modeling non-linear environmental
systems, and with recent work showing that fuzzy-based models
are superior to conventional ANNs in modeling complex
manufacturing processes with uncertain parameters.58,59

Uncertainties and limitations in ANN/ANFIS-based LCA
modelling. As with all predictive models, the predictions from
the ANN and multi-level ANFIS models are subject to several
sources of uncertainty. Overtting was a specic concern for the
models, particularly since the subnetworks are small and the
number of stage-specic training data points is small. For
ANFIS, the R values for the majority of impact categories lie
between 0.999 and 1.000, which indicates a near-perfect t on
the training data. It is shown that for ANN, the R values between
training and testing data vary from 0.195 to 0.987, depending on
the stage and category. Some uncertainty in the results can arise
from variations in raw material consumption and energy use
across different life cycle stages, for example, for oat glass,
ranging from 9 to 57 kg and 10 to 28 kWh.

Predictive stability is also compromised by model sensitivity
to hyperparameters (fuzzy rule counts, membership function
variables, hidden layer numbers, epochs, and hierarchical
clustering in ANFIS). At the same time, uncertainties stemming
from the LCA inventory and characterization factors also
transfer through the models (where global warming potentials
range from \∼∼0.54–10.43 kg CO2 eq and ecotoxicity impacts
range from 5–220 CTUe between materials and construction
stages \[stage-specic LCA datasets\]). Furthermore, scenario
dependence complicates universality, as the trained models rely
on the production conditions and material inputs from the
training datasets. Thus, a better approach is to view model
output as predictive approximations with uncertainty ranges,
especially in light of the proven cross-validation efforts and
sensitivity assessments, which provide added support for using
ANN and ANFIS to investigate such sustainability-driven
production patterns. These patterns ultimately still require
tailored interpretation.

Operational energy consumption

Aer the windows are manufactured, they will be installed and
utilized as energy-saving devices.5 Prior studies have shown that
© 2025 The Author(s). Published by the Royal Society of Chemistry
the performance of EC windows is highly sensitive to building
and climate parameters. For instance, according to a study in
South Korea, EC windows reduce AC energy consumption by up
to 50% and achieve a 60% reduction in lighting energy by using
a window-to-wall ratio of 60%.5 In another study done by Detsi
et al. in 2024, it was found that 7–16% energy saving, leading to
18% cost reductions, can be achieved by using EC windows in
warmer climates and high glazing ratios.64 Furthermore, it has
been reported that south-facing windows showed limited
advantages compared to west-facing facades in Mediterranean
climates.65

Based on these reports, considering four sunny days in
different seasons, if EC windows replace 200 m2 of DP windows
in a 10 000 2 medium office building, there is a possibility of
signicant energy savings. The energy saved by implementing
EC windows can be converted to kg CO2 eq and compared to the
global warming contribution of their manufacturing. If 15 kWh
of electricity and 38 3 of natural gas are used per square foot of
an office building, the total kg of CO2 eq generated by lighting,
cooling, and heating can be determined. This operates on the
assumption that in a medium office building, approximately
17% of total electricity use is for lighting, 11% of total electricity
use is for cooling, and 86% of total natural gas is used for
heating. The difference in consumption is summarized in
Table 1.

As anticipated, a medium-sized office building will consume
less energy and therefore generate 30 100 fewer kg CO2 eq when
equipped with EC windows. 131.7 kg CO2 eq is generated during
the manufacturing process for every m2 of EC windows.
Therefore, it can be concluded that aer 12 months of opera-
tion, the manufacturing global warming impact will be
mitigated.
Conclusion

An LCA study was conducted to assess the environmental
footprints of EC windows, using SimaPro 9.1. and Ecoinvent.
TRACI 2.1. was used to evaluate the environmental impacts
associated with various stages to produce 1 m2 of EC windows.
Based on results obtained from different stages, it was found
that the frame production stage made the highest contribution
to the overall process, accounting for approximately 33% of the
total CO2 eq (13 kg CO2 eq) emitted from this step.

The results revealed that energy resources, including natural
gas and electricity, contributed mainly to all environmental
categories in all stages of the EC window production pathway.
RSC Sustainability, 2025, 3, 5653–5664 | 5661
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Other prominent contributors with signicant environmental
impacts were stainless steel, copper wire, and alumina. Another
LCA study was conducted for the environmental assessment of
DP window production. The results showed that, in addition to
energy resources, such as natural gas, there were other inputs,
including alumina, soda, and silica gel, which had signicant
environmental impacts.

The impacts of the EC and DP windows were compared, and
it was found that the EC window production pathway had
higher environmental impacts in the categories of ozone
depletion, global warming, smog, and fossil fuel depletion. On
the other hand, the DP window showed higher environmental
implications in the remaining categories, particularly in eco-
toxicity. The sensitivity analysis on EC window production
revealed that a 10% decrease in electricity usage throughout the
process would result in a reduction of 1.51 kg of CO2 eq per m2.
The majority of electricity and natural gas used in office
buildings is due to lighting, cooling, and heating. The energy
use for these variables can be reduced by implementing EC
windows. In a 10 000 sq  office building, it will take 10.5
months to offset the global warming impact of 200 sq m of EC
windows.

The study's ndings, which compare ANN and multi-level
ANFIS models for predicting environmental impacts of
electrochromic window development, illustrate apparent
differences between the two systems. They both accurately
assessed areas of concern related to this production process,
demonstrating that oat glass preparation components have
a signicant impact on global warming, with a total of 10.1 kg
CO2 equivalent. Meanwhile, silicon dioxide gel represents
a substantial impact, with melting and rening impacts of
117.45 CTUe. In addition, the thermal coating process, partic-
ularly related to sputter deposition, is a signicant environ-
mental contributor, generating as much as 30.5 kg of CFC-11
equivalent ozone depletion potential alone over one production
cycle. Ultimately, the model of multi-level ANFIS provides
consistent results of high accuracy, as evidenced by correlation
values of 1.000 in most impact assessment areas and stages of
the production process. In contrast, the ANN model showed
more variability, generating correlation coefficients from 0.195
to 0.987 depending on the areas of production and environment
measured.

High environmental differences were caused by the choice of
material, as evidenced by the low global warming potential of
polypropylene plastic lm (0.539 kg CO2 equivalent) compared
to the high global warming potential of silicon dioxide gel (9.99
kg CO2 equivalent). The three-tier ANFIS model, with epoch
settings ranging from 200 to 1000, demonstrated an
outstanding ability to recognize complex environmental trends,
with root mean square errors at or below 0.01 in most
measurement classes. An analysis of errors revealed that ANFIS
models had very low values of mean absolute percentage error,
ranging from 0.18% to 48%. In comparison, ANN models were
more inconsistent, ranging from 2.78% to 1.49 × 105, which
represents the error depending on the manufacturing stage
under investigation.
5662 | RSC Sustainability, 2025, 3, 5653–5664
The impact of environmental differences across different
stages of production processes was a signicant 1.31 to 1.79 kg
CO2 equivalent of the global warming impact, which, relative to
the activities of assembly and integration, was below 0.20 kg
CO2 equivalent. Lastly, though both methods of articial intel-
ligence gave similar guidance on the sustainability of the
production, the multi-level ANFIS approach was found to be
more credible due to the consistently high correlation coeffi-
cients higher than 0.999 and lower rates of error with a contin-
uous production of the electrochromic window and with the
multi-level ANFIS being the method of choice when analyzing
the sustainability of the production process and establishing
the needed parameters that must be met to consider the envi-
ronmental impact in a certain way.
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