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prediction of the reversible
capacities of a biomass-derived hard carbon anode
for sodium-ion batteries†

Stephen Yaw Owusu *

This project is among the pioneering works that incorporate machine learning (ML) modeling into the

development of biomass-derived sodium-ion battery anodes for sustainable energy storage

technologies. It was conceptualized and executed to satisfy a desire to use computational techniques to

fill the research gap in a paper authored by Meenatchi et al. in 2021. The authors asserted that an

activated orange peel-derived hard carbon (AOPDHC) can be used as an anode for sodium-ion batteries,

yet the evidence for this claim was lacking. This work therefore sought to utilize ML to verify the claim

by investigating the reversible capacities of AOPDHC at different initial coulombic efficiencies (ICE) and

current densities. Data used to train the algorithms were mined from literature and applied in a 4 : 1

training-to-testing data split. Models that gave good correlations between experimental and predicted

capacities for some assumed unknowns were used to predict the reversible capacities of AOPDHC. The

maximum capacity obtained for AOPDHC was 341.1 mA h g−1 at a current density of 100 mA g−1 and an

ICE of 48% and the minimum capacity was 170.3 mA h g−1 at a current density of 100 mA g−1 and an ICE

of 43%. Lastly, the modeling found ICE to be a very important factor that influences the reversible

capacities of hard carbon anodes for sodium-ion batteries, which matches literature findings, and

possibly validates the modeling procedure. This study is of utmost importance since biomass-derived

hard carbons are versatile, cost-effective, environmentally friendly and sustainable.
Sustainability spotlight

This study helps to advance knowledge on how to computationally verify the potential use of biomass-derived hard carbon anodes for battery applications-
exemplied with an activated orange peel-derived hard carbon (AOPDHC). The modeling procedures described in this work not only accelerate the development
of novel biomass-derived materials but also provide new insights for the development of sustainable energy storage technologies. This effort is in tune with the
UN Sustainable Development Goal 7: to provide affordable, reliable, sustainable, andmodern energy for all. The paper mainly revolves aroundmachine learning
modeling and a few kinetic studies which can eventually create an energy-dominant circular bioeconomy and reduce waste and exposure to hazardous
substances generated from conducting numerous trial-and-error experiments.
1. Introduction

Modern civilization has increased the demand for energy
storage devices with quick response time, rapid construction
and cycling exibility.1,2 Additionally, factors such as global
warming, increasing fossil fuel consumption, and environ-
mental pollution signicantly hinder the progress of renewable
energy source usage.3,4 A challenge, which has made it inevi-
table to develop energy storage systems that can sustain the
power output demands. Batteries can conveniently foot the bill
due to their high energy capacity, high power and rapid
lla, MO 65409, USA. E-mail: sadnd@mst.

tion (ESI) available. See DOI:

the Royal Society of Chemistry
response.5,6 Lithium-ion batteries (LIBs) have distinguished
themselves as better alternatives in the energy storage sector
due to their high energy density, elevated open-circuit voltage,
and cycling stability.7,8 However, they struggle to meet the
increasing demand for large scale energy storage systems
because of their low natural abundance and limited global
reserves. This problem has encouraged research advancements
to nd alternatives to LIBs. Sodium-ion batteries (SIBs) emerged
as an option that can curb the shortcomings of LIBs since
sodium is highly abundant and cost effective. However, it is not
free from limitations. SIBs have lower energy density, and
a shorter life cycle compared to LIBs. Putting all these together,
it was recommended that future research on energy storage
focus on fabricating anode and cathode materials for SIBs,
which have higher specic capacities, higher voltages and can
produce energies closer to 200 Wh kg−1, which is similar to that
RSC Sustainability, 2025, 3, 3133–3143 | 3133
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of LIBs.9 An appreciable number of cathodes for SIBs have been
fabricated, however, a suitable anode is needed to facilitate
their commercialization.10 Also, a search for anodes is needed
since the anode is an important factor that inuences the
energy density, cycling stability and efficiency of the battery.11

Hard carbon stands out among the various anode materials
for SIBs due to their structure, which facilitates the adsorption
and desorption of sodium ions. They are prepared by heating
thermosetting carbon-containing precursors under an inert
atmosphere (pyrolysis).12 Hard carbons are non-graphitizable,
and disordered materials. Due to their excellent sodium
storage performance, alongside their low cost, low voltage and
high capacity, hard carbon anodes appear to be the most likely
anode to be commercialized.13 The cost of the anode can be
further reduced by using biomass as the hard carbon precursor.
Biomass is obtained from organic substances such as plants,
animals, and their waste products. Compared to other hard
carbon precursors, biomass-derived hard carbons are highly
abundant, cheap, renewable, and mostly rich in heteroatoms,
which is essential for battery applications.14 The preparation
process of hard carbons is oen optimized by tuning the
synthesis parameters or changing the biomass precursor used.
Biomass derived hard carbons prepared at pyrolysis tempera-
tures between 1200 °C and 1400 °C have been identied to
exhibit improved structural properties benecial to sodium-ion
storage performance.12,15

Traditional experimental methods of analyzing the electro-
chemical properties of hard carbons include measuring the
surface area, ratio of defective to graphitic carbon, ICE, and
other material properties, and correlating them with their
reversible capacities at different charge densities. However,
these strategies are laborious, time-consuming and costly to
perform. It is therefore advantageous to use machine learning
(ML), deep learning and data mining techniques to study the
electrochemical properties of novel hard carbons. ML is
a subdivision of articial intelligence used to analyze large
datasets. It has been extensively used in scientic research to
study and establish structure–property–performance relation-
ships, which can eventually cause signicant advancements in
the fabrication of novel materials.16,17

The ML approach has been demonstrated in this work using
AOPDHC as an anode for sodium ion batteries. AOPDHC was
chosen primarily to ll the research gap in a paper authored by
Meenatchi et al.18 Additionally, orange peels are cheap, abun-
dant, environmentally safe, and sustainable. Compared to other
biochar-based materials such as those derived from rape straw
pyrolysis,19 AOPDHC presents a signicantly lower surface area
(60.16 m2 g−1) as against HC from rape straw (2046.92m2 g−1) at
the same pyrolysis temperature (700 °C). This high surface area
of rape straw-derived HC could hinder their applicability for
sodium-ion batteries as a low surface area is required to reduce
the solid electrolyte interphase (SEI), and improve ICE.20

Seven ML algorithms have been used in this study to
predict the reversible capacities of AOPDHC as an electrode
material. Material characterization data was used as input
features and reversible capacity values as response or target.
Features input into the models as its training conditions were
3134 | RSC Sustainability, 2025, 3, 3133–3143
ICE, pyrolysis temperature, current density, surface area, pore
volume, interlayer spacing (d002), crystallite sizes (La and Lc),
annealing time, heating rate and the ratio of defective to
graphitic carbon. The study combined statistical and mathe-
matical analysis to evaluate which algorithm best ts our
dataset in terms of prediction accuracy. The best models were
then used to predict the reversible capacities of the unknown
sample (AOPDHC) at different current densities and ICEs.

Presently, a minimal number of studies have been reported,
which utilize ML algorithms for investigating the performance
of sodium-ion batteries. Amongst the few, this work presents
a signicant difference and advancement. Tianshuang et al.
recently used ML to predict the discharge performance of hard
carbon materials for sodium-ion batteries.21 Though it was an
extensive study, they didn't incorporate pyrolysis temperature
and annealing time of the hard carbons as input features. Also,
current density and ICE were missing from the features for their
modeling. This presents a signicant limitation since these
factors are known to strongly inuence battery capacity
performance.20 Here, the limitation has been catered for by
incorporating all these features into the modeling of reversible
capacities for AOPDHC. A different work conducted by Yang
et al. used ML models to predict the specic capacitance of
biomass-derived carbon materials and compared the predicted
results to their corresponding experimental values in litera-
ture.22 Their work is similar to this one as they didn't perform
actual laboratory experiments to augment the modeling results.
However, it is still a little beneath this work due to some
signicant differences in the validation approaches. In this
study, the validation procedure is signicantly improved by
employing both random sampling and cross-validation tech-
niques. Additionally, some known experimental values were
assumed to be unknown to the algorithms and predicted by the
models for validation purposes. Furthermore, just like the study
conducted by Tianshuang et al., Yang et al.'s work omitted some
key features such as interlayer spacing (d002), crystallite sizes
(La, and Lc), ICE, current density, and ID/IG from the modeling,
which limits its reliability and applicability to some extent.
These limitations have been catered for in this study. Another
notable difference in this work compared to the others is that
models that gave good predictions to reversible capacities
unknown to the algorithms were used to predict the actual
unknowns (AOPDHC) in addition to the test and score results
obtained from the modeling. Hence, this work provides new
insights and approaches to test the usage of biomass-derived
anodes for sustainable battery technologies.

Finally, feature datasets were investigated for their contribu-
tion and impact on the reversible capacities of AOPDHC. This was
done through model accuracy analysis and was illustrated by
further visualizations using shapley additive explanations anal-
ysis (SHAP). The SHAP ndings were further authenticated using
feature ablation. The ndings from this project will hopefully
provide a better understanding of the relationship between the
various factors that inuence the reversible capacities of biomass-
derived hard carbons and will rapidly and accurately guide future
experimental or computational studies through quick optimiza-
tions in the hard carbon's preparation and application process.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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2. Methodology
2.1 Dataset

In mining the data, precision and quality were prioritized.
Furthermore, the number of observations analyzed was more
than ten times the number of features. These were carefully done
to ensure the accuracy of the modeling and predictions.23,24

Data for 170 samples are used for all analysis in this work.
141 samples were used to train the models, and the remaining
were used to validate the electrochemical data obtained for
AOPDHC. Data used for this study was mined through
a combination of small experimental datasets from several
publications as shown in Table 1.

2.2 Feature selection

Factors that are generally known to signicantly inuence the
reversible capacity of hard carbons for sodium-ion battery
Table 1 Sources used for dataset collection

No. Hard carbon precursor Abbrev

1 Epoxy phenol novalac EPNHC
2 Navel orange NOHC
3 Natural cotton HCT
4 Corn cobs —
5 Banana peel BPPG
6 Cedarwood bark CBC
7 Orange peel AOPDH
8 Pomegranate peel PGPC
9 Cellulose CHC
10 Corn cobs CC
11 Mangosteen shell MHC
12 Rice husk RHHC
13 Agar/urea/graphene oxide CA
14 Cellulose nanocrystals —
15 Polyurea-Si PUA@
16 Sugarcane-bagasse SCA
17 Phenolic resin —
18 Resorcinol-formaldehyde RFHC
19 Phenolic resin —
21 Biomass starch —
22 Biomass —
23 Eucalyptus wood EHC
24 Date palm
25 Camellia seed shell TS
26 P-doped carbon nanobers CFs
27 Sycamore fruit seed SFS
28 Maple tree MAHC
29 F-doped hard carbon F-HC
30 Corn straw piths —
31 N-doped hard carbon —
32 Walnut shell WAHC
33 N-doped hard carbon —
33 P-doped olive kernel OHC
34 P-doped sisal ber PSHC
35 Asphalt/pecan shells —
36 Bamboo HCB
37 Corn starch SCHC
38 Sawdust HC
49 Petroleum asphalt PHC
50 Shaddock peel —
51 Phenolic resin —
52 Hydroxymethylfurfural —

© 2025 The Author(s). Published by the Royal Society of Chemistry
applications include ICE, pyrolysis temperature, current density,
surface area, pore volume, interlayer spacing (d002), crystallite
sizes (La and Lc), annealing time, heating rate and the ratio of
defective carbon to graphitic carbon obtained from Raman
analysis of the hard carbon. Given this, only publications that
have data for almost all these factors were selected for the
modeling of this study. The distribution in relation to each of
these key inuencing factors used to determine the electro-
chemical performance of the hard carbon anode is presented in
Table 2.

Though a few of the input features (e.g. ID/IG) have a high
standard deviation relative to their means, attempting to
manipulate the data largely will affect the accuracy of study. In
this study, the accuracy of the data and its' ndings were
prioritized compared to a good-looking statistic. Given this, all
data were retained rather than replacing them with a new data
that is different from the actual experimental values.
iation Reference Samples in dataset

25 4
26 3
27 3
28 3
29 6
30 3

C 18 6
31 3
32 4
33 4
34 19
35 3
36 4
37 4

Si 20 4
38 1
39 2
40 4
41 1
42 6
43 6
44 8
45 10
46 6
47 2
48 4
49 3
50 3
51 4
52 3
53 6
24 3
54 3
55 1
56 2
57 4
58 2
59 2
60 3
61 4
62 3
63 1

RSC Sustainability, 2025, 3, 3133–3143 | 3135
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Table 2 Input features used in this study and their corresponding
statistical values

Input features Median Mean
Standard
deviation

Reversible capacity (mA h g−1) 262.80 252.52 93.47
ID/IG 1.02 1.84 7.68
Surface area 41.91 126.21 192.62
Current density (mA g−1) 30.00 72.10 149.25
Pyrolysis temperature 1100.00 1138.50 318.15
ICE 70.00 66.22 18.18
Interlayer spacing (A°) 3.84 3.85 0.17
Crystallite size (Lc) 1.58 2.75 3.04
Crystallite size (La) 4.29 5.66 3.37
Annealing time (h) 2.00 2.11 0.79
Heating rate (°C min−1) 5.00 4.22 1.54
Pore volume (cm3 g−1) 0.04 0.12 0.24
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Additionally, in dealing with outliers in a dataset for ML
modeling, several factors must be considered. This includes
their potential impact on the analysis. Since a factor such as ID/
IG critically affects the performance of hard carbons for battery
applications, it is better to maintain them. Furthermore,
attempting to remove all outliers can cause a signicant
reduction in the amount of data used for the study. This can
affect the overall reliability of the modeling, since it is generally
not acceptable to train ML algorithms with a very small dataset.

Aside from all these factors, outliers contribute to the
weakness of some models in giving accurate predictions. There
are other models that can effectively handle outliers and
prevent them from signicantly affecting the accuracy of the
modeling. For this reason, some models performed better than
others in the ML predictions. In the end, the best modeling
results were used to draw conclusions for this work.

2.3 Data preprocessing

Preprocessing of data is commonly done in ML and data anal-
ysis to enhance the usefulness of the data and improve the
accuracy of the modeling results.64 To obtain only valid data for
all analysis of this study, literature that had data for almost all
the input features was selected. For the few missing data, the
average of all data for that parameter was entered to ll the
gaps. This is an acceptable procedure for numerical variables in
ML modeling and was done to prevent the presence of missing
data from potentially affecting the performance of the machine
learning algorithms.65

2.4 Soware

The Orange soware was used for all computations. This soware
was developed by the bioinformatics lab at the University of
Ljubljana, Slovenia, in collaboration with the open-source
community. Orange is an open-source data mining and machine
learning toolkit that can be used to visualize and analyze data.

2.5 Machine learning modeling

Seven machine learning models: linear regression, support
vector machines (SVM), k-nearest neighbors (KNN), random
3136 | RSC Sustainability, 2025, 3, 3133–3143
forest, gradient boosting, adaboost, and trees were used to train
the reversible capacities data to facilitate accurate predictions of
the unknowns. These are existing programs in the orange
soware used for this study.

Linear regression ML model is an algorithm that models the
relation between a dependent (target) and one or more inde-
pendent variables (predictor). The model assumes that this
relationship is linear. Due to the linearity it assumes, it is
particularly useful and easy to interpret when analyzing a small
dataset.66

Unlike the linear regression algorithm, decision trees (DT) or
trees can t complex datasets. It learns from layers of problems
to arrive at relevant conclusions. Its working principle is to
utilize an entire dataset and divide it by a true or false desig-
nation of a certain test condition. To get the best training
process, the dataset is further divided by a true/false designa-
tion continuously for as many times as possible.67 Decision tree
is good for predictions and classication since it is not affected
by data scaling.68,69 For example, Cosgun et al., used DT to
optimize biomass growth and lipid yield conditions for
producing renewable biofuel from microalgae, which guided
their new experimental work.70

Random Forest (RF) also utilizes a decision tree, just like
trees (it optimizes the decisions and improves on the results of
simple trees by using multiple trees for its predictions). During
the modeling with RF, each tree is established with indepen-
dent and randomly selected samples. This randomness reduces
the possibility of overtting, which leads to more accurate
predictions.71 Feature selection is not required for this model,
and this makes it particularly useful for processing high-
dimensional data. Besides, unbiased estimation is used in
training this model. This unbiased estimation enables it to have
a strong model generalization ability.72

For gradient boosting algorithm, simple decision trees are
combined with larger ones to make predictions. Since this
model makes minimal assumptions about the data, it works
better compared to random forest when dealing with large and
complex data. The minimal assumptions made also cause it to
have a reduced mean square error and improved R2 value
compared to random forest.73 AdaBoost uses adaptive learning
technique where weak learners are manipulated to favor previ-
ously misclassied data. This method makes adaboost less
susceptible to overtting compared to other algorithms.
Though the individual learners may be weak, they can join to
form a stronger learner if the performance of each data is better
than random guessing. As a result, adaboost works best when
handling a noisy data full of outliers.74

Support vector machine (SVM) model makes decisions on
training data in a manner that results in maximizing the deci-
sion border margins in the featured space. By doing so, classi-
cation errors areminimized, and a better generalization ability
is obtained making this model useful for both small and
complex dataset.75

K-nearest neighbor algorithm classies data points by
nding the most common point to them. It basically makes
predictions of data points based on the values of its neighbors
© 2025 The Author(s). Published by the Royal Society of Chemistry
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and is useful for small datasets. However, it tends to be overly
sensitive to unnecessary data.76

2.6 Predicting unknown reversible capacities

For the analysis conducted with ML here, the reversible capac-
ities of various biomass-based hard carbons are predicted by
rst using a training set to train the models and allowing the
models to use the patterns learnt to predict the unknowns.
Training data is prepared in an excel spreadsheet and uploaded
as a le into the orange soware. The input parameters are
characterized as features or categorical. In this work all input
parameters are features. The le is then transposed as a data
table and mapped to the various models. Model parameters are
adjusted till a best t is obtained, which can be seen in the test
and score tab. Aer dragging from test and score to predictions,
the reversible capacity for each set is predicted based on the R2

values obtained for each model under test and score. To predict
the reversible capacity for unknown variables, all unknowns are
entered with question marks in a spreadsheet and uploaded as
File 1 and Data Table 1. Aer mapping File 1 and the best
models to Predictions 1 as illustrated in Fig. 1, the algorithms
give predictions of the data for each unknown variable.

This procedure is followed to obtain data for all samples with
unknown reversible capacities. For all analysis, data output
Fig. 1 Flow of machine learning modeling procedure.

© 2025 The Author(s). Published by the Royal Society of Chemistry
from the algorithms are based on the average of a random
sampling procedure, which was set to twenty repeated runs.

2.6.1 Balancing dataset and hyperparameter tuning in
running the algorithms. An imbalanced data, where the effect
of some dataset classes is severely suppressed, can lead to a bias
in ML modeling and predictions. To alleviate this challenge,
a balanced data split of 80% for training and 20% for validation
was employed in all analysis. Also, the models were not run on
only their default settings since this approach signicantly
hindered the performance of the models. Instead hyper-
parameter tuning strategies were employed. For number of
trees, gradient boosting is set to 250 and random forest is set to
300. The learning rate for both models is 0.1. The number of
estimators in the adaboost model is 600 and the learning rate is
set to 1. The number of attributes considered at each split for
random forest was 5. KNN model was given ten neighbors. For
tree algorithm, subsets smaller than 5 were not split and their
classication were set to stop when the majority reaches 95%.
Detailed parameters used for each model prediction are given.
(see ESI† (Fig. S-1)).

2.7 Validation of modeling results

No actual experimental data from AOPDHC is accrued in this
study to verify the modeling data, however, experimental results
RSC Sustainability, 2025, 3, 3133–3143 | 3137
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from other biomass-derived hard carbons were modeled
simultaneously with AOPDHC for authentication purposes (see
Table S-1†). The known reversible capacities from these samples
were assumed to be unknown and le blank when imputing
data into the algorithms. This was done to investigate if there
will be a correlation between the experimental and predicted
values and thereby enhance the reliability of the modeling
results. The approach described here was employed in
a previous study for the rst time77 and is an improvement to
other works where no known data were assumed to be
unknown, but rather only a comparison between the imputed
data and predicted data was used to conclude.78

This technique is useful since obtaining experimental data
can be hindered by a lack of resources, time, effort, funding,
safety and many other factors. Computational works in data
science come in handy in these circumstances as it ll the gaps
where it is practically impossible to obtain actual experimental
data. To further enhance the validation approach of this work,
both random sampling and cross-validation techniques (K-fold
= 10) were employed.
Table 3 The mean squared error (MSE), root mean square error
(RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), and coefficient of determination (R2) of the various ML models
used in this study – random sampling technique employed

Model MSE RMSE MAE MAPE R2

Adaboost 5252.123 72.472 50.370 0.263 0.402
Random forest 5338.342 73.064 53.134 0.289 0.392
2.8 Evaluating the impact of training features on predictions

To evaluate the impact of training features on the predictions,
the relative importance of ICE, pyrolysis temperature, current
density, surface area, pore volume, interlayer spacing (d002),
crystallite sizes (La and Lc), annealing time, heating rate and ID/
IG on the reversible capacity of AOPDHC was evaluated and
ranked. (see Fig. 5). Ranking was performed via two techniques,
the shapley additive explanations analysis (SHAP) and the
feature importance analysis via the ablation technique. These
methods were programmed into the orange soware using the
explain and feature importance widgets, respectively. In the
SHAP ranking, the model is trained with all features in the rst
interaction and values are computed for each feature. Then the
widget ranks the most important features for modeling the
target variable based on game theory. On the other hand,
feature importance conduct ranking in a single step during the
modeling.79
Gradient Boosting 4680.299 68.413 47.120 0.255 0.467
Tree 7077.600 84.128 63.688 0.319 0.194
SVM 6092.398 78.054 57.319 0.315 0.307
KNN 6687.577 81.778 59.193 0.324 0.239
Linear Regression 7650.113 87.465 67.640 0.351 0.129

Table 4 The mean squared error (MSE), root mean square error
(RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), and coefficient of determination (R2) of the various ML models
used in this study-cross validation technique employed

Model MSE RMSE MAE MAPE R2

Adaboost 5554.037 74.525 49.970 0.241 0.361
Random forest 5530.483 74.367 52.507 0.260 0.364
Gradient Boosting 4788.885 69.202 45.886 0.228 0.449
Tree 6833.056 82.662 59.094 0.272 0.214
SVM 6327.576 79.546 57.126 0.283 0.272
KNN 6456.778 80.354 56.420 0.283 0.257
Linear Regression 7349.207 85.728 65.972 0.320 0.155
3. Results and discussion
3.1 Training of the algorithms

Pyrolysis temperature for all hard carbons used in this study
ranged from 700 to 1600 °C, but was mainly concentrated
around 1200 °C. This is about the average temperature mostly
used for preparing hard carbons for sodium-ion batteries.12,80

The statistical results indicate that the distribution of features
is not within a very close range (based on the standard devia-
tions from Table 2). The observation here could be because the
hard carbons used to train the models are obtained from
different precursors, which was done to assist in limiting the
potential for a biased training of the algorithms and add to the
veracity of the predictions.

The correlation between the predictions and actual values
indicates that KNN and SVM are poor algorithms for this study
as their R2 values were below 0.5. This may result from the
3138 | RSC Sustainability, 2025, 3, 3133–3143
unbiased nature of KNN modeling, which makes it very sensi-
tive to unnecessary dataset features.81 The non-suitability of
SVM on the other hand may be because this model assumes
a balanced class,82 which is not the case in this study.
Comparatively, Fig. 3 shows a better correlation between the
experimental and predicted values for random forest, gradient
boosting, adaboost, and linear regression models used for the
training dataset, with their R2 values being greater than 0.5.
These analyses were based on a random sampling technique
using a balanced 80% training and 20% validation data split.

According to Table 3, which indicates the coefficient of
determination values (R2), and the root mean squared error
(RMSE) for each model, gradient boosting, adaboost and
random forest are best in predicting the reversible capacities of
the training data set.

A cross-validation approach was also conducted on the
predictions to ensure the accuracy of random sampling results,
and its ndings are given in Table 4.

Comparing both validation techniques, it is observed that
cross validation (K-fold = 10) gave similar outcomes as the
random sampling technique.
3.2 Predicting reversible capacities of assumed unknowns

All the algorithms were used to predict the reversible capacity
data for select samples whose experimental reversible capacities
were assumed to be unknown (see Table S-1†), and the results
are presented in Fig. 2.

To get a better view of how each model performs in terms of
predicting reversible capacity values that are approximately the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Prediction of the reversible capacities of some samples whose
capacities were assumed to be unknown and modeled for authenti-
cation purposes. Predicted values for reversible capacities are
compared with their corresponding experimental values.

Fig. 4 Trend in reversible capacity changes due to varying ICE and
current densities for all ML algorithms except SVM and KNN. For the

−1

Fig. 3 Prediction of the reversible capacities of some samples whose
capacities were assumed to be unknown and modeled for authenti-
cation purposes. R2 values are determined to evaluate each model's
performance in their potential to give accurate predictions for the
assumed unknowns.
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same as those obtained experimentally, data for eachmodel was
plotted independently and their correlation coefficients were
determined as shown in Fig. 3.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Based on the R2 values obtained, Fig. 3 shows a better
predictability potential for the unknown using linear regression
compared to the remaining models. However, since it failed to
give good predictions during the model training, it couldn't be
relied upon. As a result, the ndings from Fig. 3 lead to the
conclusion that gradient boosting is the best algorithm for this
study.
3.3 Predicting reversible capacities of actual unknowns
(AOPDHC)

Inspired by the good predictions obtained for the assumed
unknowns, all known samples were used as training set for the
algorithms to determine the reversible capacities for AOPDHC
at different current densities and ICEs, and the ndings are
presented in Fig. 4. This procedure was followed to determine
how different parameter switches affect the reversible capacity
of the material and to observe any potential trends in the
reversible capacities observed due to changing current densities
and ICEs.

As seen from Fig. 4, the maximum capacity obtained for
AOPDHC was 341.1 mA h g−1 at a current density of 100 mA g−1

and an ICE of 48% and the minimum capacity was
170.3 mA h g−1 at a current density of 100 mA g−1 and an ICE of
43%. Even at low current density (30 mA g−1), gradient boosting
could still predict a capacity greater than 250 mA h g−1, which is
like the experimental results obtained from most of the litera-
ture used here. Though the model's performance in predicting
the data in the training set was average, they performed better
when predicting the reversible capacities of the actual samples,
which were assumed to be unknown. The data for AOPDHC
were modeled simultaneously with the assumed unknowns,
and since good correlations were obtained between the experi-
mental and predicted data for the assumed unknowns, it
suggests that the data obtained for the actual unknown
current densities, the dashed line = 100 mA g , and solid line =
30 mA g−1.
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(AOPDHC) is also reliable, regardless of the average perfor-
mance of the model with the training dataset.

Computational modeling from this study via machine
learning could therefore address the research gap le by Mee-
natchi, et al. in their manuscript18 and proves that AOPDHC can
be used as an anode for sodium-ion batteries. Though there
were a few outliers, it could be seen from Fig. 4 that for each
current density, improvement in ICE resulted in an increase in
the reversible capacities. This is expected since for hard
carbons, a higher ICEmeans less energy is lost during the initial
charge cycle due to irreversible reactions, which translates to
the storage and retrieval of more energy from the battery. This
trend is like the observations made with other hard carbon
systems for sodium-ion batteries.20,83 The linear relationship
seen with the models further conrms the reliability of these
predictions since it is known from literature that increasing ICE
leads to an increase in reversible capacity values.36,84
Fig. 5 Ranking the influence of features on the reversible capacity
predictions as interpreted by four models with good predictabilities in
this study. Ranking was performed with SHAP and feature importance
via ablation widgets. The models were gradient boosting, adaboost,
random forest and linear regression.
3.4 Ranking the impact of training features on predictions

The relative importance of ICE, pyrolysis temperature, current
density, surface area, pore volume, interlayer spacing (d002),
crystallite sizes (La and Lc), annealing time, heating rate and ID/
IG on the reversible capacity of the AOPDHC was modeled and
ranked. Ranking was performed via two techniques as shown in
Fig. 5. The shapley additive explanations analysis (SHAP) (using
the explain model widget) and the feature importance analysis
via the ablation technique (using the feature importance
widget). In the SHAP results, the closer the color of the points to
red, the higher its contribution to the model prediction and the
closer the color of the points to blue, the lower its contribution
to the model prediction. A SHAP value greater than zero indi-
cates that it promotes model prediction and vice versa. For
feature importance via the ablation technique, a larger decrease
in R2 value when a particular feature is removed during the
analysis, the greater the effect of that feature on the reversible
capacity predictions and vice versa.

Fig. 5 ranks the importance of each feature in predicting the
reversible capacities of AOPDHC via four modeling techniques
(gradient boosting, random forest, adaboost and linear regres-
sion) using the training dataset whose data summary is given in
Table 2. These models were chosen since they gave good
predictions of the assumed unknowns. Since some models
performed better than others, it is useful to investigate how
each model arrives at their predictions. The reason for the
differences seen in the ranking by each model may be because
each model has a different way of analyzing the data to arrive at
their predictions. Hence, the rankings can provide a better
understanding of the features that each model prioritizes in
arriving at their conclusions. To further validate the SHAP
results, feature importance via ablation analysis was conducted
as a follow-up. In view of this, only rankings that are similar
between the two techniques are used in drawing conclusions
and analyzing how each model interprets feature relevance.

It is seen from Fig. 5 that, except for adaboost, all models
ranked ICE as the most important factor that inuences the
reversible capacity predictions. This is supported by literature
3140 | RSC Sustainability, 2025, 3, 3133–3143
as a low ICE, oen caused by the poor reversibility of sodiation/
desodiation reaction and the decomposition of electrolytes to
form SEI in the rst cycle, has a direct negative effect on the
battery's capacity and vice versa.83

The second most important factor per the rankings of all
models, except adaboost, was current density. This feature was
ranked rst by adaboost, and these observations signify the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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importance of current density to the reversible capacity
predictions. The ndings here are supported by literature,
which has experimentally proven that high current densities
lead to low reversible capacities.85

The boosting algorithms (gradient boosting and adaboost)
considered interlayer spacing as an important factor, whilst
linear regression ranked it among the least inuential factors.
Also, linear regression ranked crystallite size (Lc) over interlayer
spacing, whereas for all remaining models, it was ranked the
worst factor that inuenced the capacity predictions. The
rankings observed here with linear regression could be because
the interlayer spacing values for all hard carbons were similar
with a lower standard deviation relative to their mean. This may
hinder the ability of the model to nd a linear relationship
between the input (interlayer spacing) and the output (revers-
ible capacity). This observation differs from that seen with
crystallite size (Lc) since that parameter has values with a higher
standard deviation relative to their mean. The boosting algo-
rithms on the other hand improves the performance of weak
learners to build a better predictive model and therefore are
powerful even in modeling complex, non-linear relationships.86

Adaboost ranked ID/IG as the second most inuential factor
in predicting the reversible capacities, whereas it was ranked as
an average inuencing factor for gradient boosting. This could
be because in improving weak learners to create better predic-
tive models, adaboost starts by building short trees as
compared to gradient boosting that dives deeper by starting
with building leaves.77 As a result, the high standard deviation
of the ID/IG data may have little inuence on the adaboost
predictions.

The two ranking techniques have different principles and
hence give slightly different results. This difference could be
because SHAP results not only rank features based on their
importance but also based on how much each feature contrib-
utes to the models' predictions. Regardless, the overall ndings
are similar, and the effect of key features on each factor is
identied.

Overall, it is reported that surface area has a direct rela-
tionship with ICE value, which was ranked as the most inu-
ential factor by most of the models, while pyrolysis temperature
directly affects the graphitization degree of the carbonmaterials
as reected in their ID/IG.25 Due to the interrelationships
between all the features considered in reversible capacity
predictions, it is recommended to take all these into consider-
ation when preparing hard carbons for sodium-ion batteries
regardless of their rank in this study.

4. Conclusion

Machine learning algorithms successfully predicted the
reversible capacity of a biomass-derived hard carbon (AOPDHC)
using ICE, pyrolysis temperature, current density, surface area,
pore volume, interlayer spacing (d002), crystallite sizes (La and
Lc), annealing time, heating rate and the ratio of defective
carbon to graphitic carbon obtained from Raman analysis of the
hard carbons as input features. The maximum capacity ob-
tained for AOPDHC was 341.1 mA h g−1 at a current density of
© 2025 The Author(s). Published by the Royal Society of Chemistry
100 mA g−1 and an ICE of 48% and the minimum capacity was
170.3 mA h g−1 at a current density of 100 mA g−1 and an ICE of
43%. The results were validated by simultaneously predicting
the capacities of other samples with known experimental values
alongside the unknown (AOPDHC). Upon ranking the input
features based on their contribution to the predictions (using
SHAP and feature importance), it was found that ICE is the most
important factor that needs to be optimized to realize a high
reversible capacity. The rankings therefore conrmed what is
experimentally proven and thereby validated the rationale for
the modeling. The correlation between the experimental and
predicted values (Fig. 2 and 3), the trend of ICEs versus the
predicted values (Fig. 4), and the match between the feature
importance rankings and experimentally proven facts (Fig. 5)
enhances the reliability of the modeling results. This work
assists in laying a foundation for further understanding of the
relationships between the factors that inuence the perfor-
mance of hard carbon anodes and advances knowledge on how
to computationally explore the potential use of hard carbon
anodes for sodium-ion batteries.
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