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General component additivity, reaction
engineering, and machine learning models for
hydrothermal liquefactiont

Peter M. Guirguis ® and Phillip E. Savage © *

Hydrothermal liquefaction (HTL) is the process of breaking down renewable biomass resources in hot
compressed water to produce crude bio-oil. There are more than a thousand experimental biocrude
yields in the literature. We use this extensive data set to parameterize new models for HTL. These new
models are general in that they can handle any biomass feedstock and HTL at any set of reaction
conditions. We report new component additivity, reaction engineering, and machine learning models
that correlate the experimental data and predict biocrude yields with a median absolute residual of no
more than 6.3 wt%. These new models predict literature biocrude yields more accurately than any of the
previously published models for HTL of biomass. The new component additivity model employs
coefficients that are continuous functions of reaction severity and biomass loading (wt%). The new
reaction engineering model includes the possibility of portions of the initial feedstock (e.g., lipids) being
in one of the product fractions (e.g., biocrude) at t = 0. The decision tree model provided the best fit of
the biocrude yields, but it also had far more parameters than did the other models. The component
additivity model was superior to the reaction engineering model in fitting the HTL biocrude yields.
However, the reaction engineering model is statistically better than the component additivity model at
predicting biocrude yields. We use the new models to identify HTL reaction conditions that would
maximize yields of biocrude for different types of biomass yet to be investigated experimentally.

Hydrothermal liquefaction (HTL) provides a sustainable route to convert wet biomass into renewable biocrude oil, addressing the global need for cleaner energy.

This work advances sustainability by creating predictive models that optimize HTL efficiency across varied feedstocks, reducing resource waste and enhancing
biofuel viability. By leveraging a large dataset and innovative modeling approaches, this study supports UN SDGs 7 (Affordable and Clean Energy) and 12
(Responsible Consumption and Production), offering tools for better process design, economic assessments, and environmental impact reduction in biofuel

production.

1 Introduction

feedstock composition with important HTL outputs (e.g., yield
and quality of biocrude oil) would facilitate more complete

Hydrothermal liquefaction (HTL) converts renewable wet
biomass into biocrude oil via thermochemical processing
around 150-600 °C, 30 seconds to 1.5 hours, and 10-25 MPa. A
wide variety of biomasses have been used as feedstocks in HTL.
These include micro and macro-algae, food waste, sludge, and
lignocellulosic biomass. There has been work examining the
technoeconomic feasibility of HTL, the life-cycle environmental
impacts, and operation of continuous processes approaching
commercial scale.'” Accurate mathematical models that
connect the HTL process variables (e.g., temperature, time) and
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economic and environmental assessments as well as better-
optimized process designs.

Modeling has been an active area in HTL research, and one
of three approaches is generally taken. One approach is to
assume some output from HTL (e.g., biocrude yield) can be
estimated as the sum of the individual contributions from
different biochemical components in biomass. A second
approach is to assume that the numerous components and
individual elementary reactions taking place during HTL can be
described by global reaction pathways that connect lumped
reaction products (e.g., biocrude, aqueous-phase products,
solids, gases). Standard chemical reaction engineering proce-
dures then lead to mathematical models. The final approach is
to use machine learning to fit a set of experimental data.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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The models published to date have been handicapped by
using only a small set of data for parameter estimation. In
a typical investigation, the researchers would conduct HTL
experiments with some specific biomass, formulate a model,
and then use their results to determine the model parameters.
This approach works well if interest is limited solely to that
specific biomass, but the model lacks more general applica-
bility. Moreover, the field has progressed and there is now
a wealth of published data on HTL outputs from a large range of
biomass feedstocks over a wide range of processing conditions.

In our previous work, we used a dataset with 1294 unique
experimental biocrude yields (3867 data points in total, for
yields of solid, biocrude, aqueous, and gas-phase products) to
review and assess all the published component additivity
models and reaction engineering models in the literature. We
used the fitted parameters provided in each publication and
calculated the biocrude yields each model would predict.®* Some
models worked well for some feedstocks, but none could give
accurate predictions of biocrude yield for all biomass feed-
stocks at all HTL operating conditions. Yet, it is precisely this
type of robust, general model, that would be most useful in the
field. In the present work, we use the new, large dataset that is
now available to develop the most general component addi-
tivity, reaction engineering, and machine-learning models to
date for predicting biocrude yields from HTL of biomass. These
models can predict biocrude yields for HTL of any biomass
feedstock at any combination of processing time and
temperature.

2 Data and methods

We used 1144 unique measurements of the biocrude yield from
HTL along with 2130 corresponding measurements for the
yields of solid, aqueous, and gas phase product fractions from
HTL.®* We were unable to use 150 of the biocrude yields in the
database as they were not accompanied by the biomass loading
or compositional information. The feedstocks in the dataset
include whole biomass such as wood, algae, food waste, and
sewage sludge; defatted biomass; isolated biomass components
such as protein isolate, and kraft alkaline and dealkaline lignin,
as well as model biomolecules such as stearic acid. For each
reported HTL product yield, we collected the set-point temper-
ature of the heating source, the holding and heating times of
the reactor, the biomass loading (mass percentage of feedstock
to water), and the reactor heating rate, if available.

We use 90% of the dataset for model discrimination and
parameter estimation and 10% of the dataset for testing
predictive ability. The 10% subset was chosen by first using
a pseudo-random algorithm, which selects one data point
randomly from each publication with more than two biocrude
yields reported. The remainder of the 10% was filled randomly.

We use seven different statistical metrics to evaluate the fit
and predictive ability of a given model. We use the median
residual, Med[¢], in eqn (1), the mean absolute residual, E, in
eqn (2), median absolute residual, Med][|¢|], in eqn (3) Mean
Absolute Percent Error (MAPE) in eqn (4), Akaike Information
Criteria (AIC) for normally distributed error in eqn (5), and the
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percentage of predictions within 5 wt% and 10 wt% of the
experimental values.

el " i 1 is odd
Med|e] = (1)
els] +e[5+ 1]
if n is even
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e Z Yeale — Vex
| | — ‘ p P! (2)
H”er 1] if nis odd
Med]le]] = (3)
o[3l]+e+1]
PRIV B2 1 e s even
2
100% Veale — Vexp
MAPE = where e, #0 4
n Z Yexp p ( )
Z (ycalc - yexp)z
AIC =2k +nln = (5)

where ¢ is the residual, 7 is the number of data points, Y. is the
value calculated by the model, y. , is the experimental value,
and k is the number of parameters fitted.

The Med|¢] statistic reveals any bias in the parameter esti-
mation. An unbiased Med[¢] is zero, meaning the same number
of residuals are below zero as are above zero. The values for |¢|,
Med[|¢|]] and MAPE demonstrate how close the model predic-
tions are to the experimental data. AIC is a relative measure of
goodness of fit leveraging the likelihood function while avoid-
ing over-fitting the model by penalizing use of an unnecessarily
large number of fitted parameters. A low AIC indicates that the
error is randomly distributed based on a normal distribution
weighed against the number of parameters. The AIC metric is
a relative score to compare models. The score is only mean-
ingful if the parameters are the optimal (fitted) parameters for
the data used.

3 Component additivity model

A component additivity model is an algebraic expression as in
eqn (6) that uses the composition of a biomass feedstock to
predict some outcome from HTL. These outcomes typically
focus on the biocrude and have included its heating value,
elemental composition, and yield Yg.

11
YB% = Z C,A/l
i=1
4 4
D D CuXiXa (6)

j=1 k=j+1
4 4 4

N CGuXiXiX + Ciaum X Xi XX,

Jj=1 k=j+1 I=k+1

X; is the mass fraction of biochemical component i in the
biomass feedstock, and the subscripted C's are fitted
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parameters. The present general model considers 11 individual
biomass components. They are cellulose (Ce), hemicellulose
(He), starch (St), other uncharacterized carbohydrates (Un),
polypeptides (Pe), lipids (Lp), lignin (Lg), saccharides (Sa),
amino acids (AA), fatty acids (FA), and phenolics (Ph). There are
four lumped biomass components, total carbohydrates (Cy),
total proteins (P,), total fats (F,), and total lignin (L,). C; collects
together cellulose, hemicellulose, starch, other uncharacterized
carbohydrates, and saccharides. P; collects polypeptides and
amino acids. F; collects lipids and fatty acids. L, collects lignin
and phenolics.

Initial component additivity models for HTL considered just
a single time and temperature combination and their predic-
tions were limited to HTL conditions near that single combi-
nation. Subsequent component additivity models incorporated
the effects of temperature and time, often by using different
discrete sets of parameters for different HTL times and
temperatures.” ™ A general model for HTL needs to account for
the influences of reaction time and temperature, ideally as
a continuous function. Herein we use the severity index (SI) (eqn
(7)) to combine the effects of time and temperature into a single
variable.

()
SI = J e dr (7)
0
where ¢; is the reaction time in minutes, 7T is the absolute
temperature of the heat source, E, is an activation energy (taken
as 83 k] mol %), Ty, is a reference temperature (taken as 700 K),"
and R is the gas constant (8.314 ] mol " K™ 1).

When the reactor heating profile was provided in the publi-
cation, we modeled the reactor temperature as a function of
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time using a Morse-like potential shown in eqn (8). Otherwise,
the reaction is treated as isothermal.

() = Tf<1 - e*“‘“[l-\/m])z (8)

Ty is the temperature of the heat source, and b is a fitted
constant. Finally, we use differences between two sigmoidal
functions, g, eqn (9), one increasing and one decreasing, to
create parameters that vary continuously with reaction severity
and biomass loading as shown in eqn (10).

g(kavs) = m (9)
C(In(ST),w) = L(g(In(ST), k1, 51) — g(In(SI), k, 52) + M) (10)

(8w, ks, 83) — g(w, k4, 54))

where w is the biomass loading in wt% (mass solids/mass
water%) and L, ki, ks, ks, ks, S1, Sz, S3, Ss, and M are fitted
parameters. The value of the sigmoidal function varies only
between 0 and 1, so the fitted parameter L represents the
highest (or lowest if negative) value the function can reach. M is
the limit as In(SI) goes to negative and positive infinity.

We fit the models using Python version 3.11.7, 64-bit. We used
the minimize function from the scipy.optimize version 1.13.0
library with the Nelder-Mead method to minimize the sum of
absolute residuals in eqn (2)." The component additivity model
that best fits and predicts the collected data for biocrude yields
from HTL of biomass is shown in eqn (11). The C parameters
are functions of the severity index and the biomass loading
(Wt%), per eqn (9). Numerical values for the C parameters for
this model at different values of SI and different biomass
loadings are provided in Table S1.f There are 15 C parameters

Table 1 Parameters evaluated for the component additivity model in egn (11)

Parameters evaluated at different In(SI) and

Parameters evaluated at different loadings (Zsolids/Swater) %
and fixed In(SI) = 1.64 which corresponds to 350 °C

Parameters  fixed 10 (Zsolids/Gwater)% loading and 30 min
ln(SI) —-10 -5 —2.5 0 2.5 5 10 1.64 1.64 1.64 1.64 1.64 1.64 1.64
Loading mass 10 10 10 10 10 10 10 2.5 5 10 15 20 25 30
Cst 1.82 1.81 2,17 7.18 8.34 8.35 8.33 26.7 18.9 8.28 3.24 1.21 0.444 0.162
Cce 2.57 1.44 4.18 10.0 12.0 11.3 8.96 16.0 14.7 11.8 9.06 6.60 4.61 3.12
CHe 8.20 7.99 6.85 26.8 28.5 11.2 8.24 55.1 51.9 38.5 25.0 14.7 8.07 4.25
Cpe 16.0 16.0 16.0 16.0 18.5 18.5 18.5 4.47 x 1077 0.000185 18.5 44.9 44.9 44.9 44.9
Crp 63.3 70.5 75.5 80.5 78.9 49.0 30.3 61.4 69.3 81.4 885 914 90.1 83.3
Crg 0.894 0.894 0.894 2.35 14.9 0.894 0.894 0.0692 5.46 14.7 20.6 23.7 25.1 25.7
Csa 1.19 x 107° 2.49 x 10°° 1.57 1.57 0.930 1.19 x 10 ° 1.19 x 10° 0.515 0.884 1.57 215 2.62 298 3.25
Can 1.02 1.02 1.02 1.05 1.33 3.61 0.258 0.237 0.554 116 1.72 2.19 2.58 2.89
Cra 36.3 49.6 55.6 60.3 159 15.0 17.2 0.0160 64.3 62.6 60.9 59.3 57.6 56.0
Cpp 28.8 41.1 471 471 26.3 3.88 2.98 0.0584 29.0 36.1 36.2 36.2 36.2 36.2
Ce,p, —27.1 —10.1 10.2 39.8 37.8 —62.9 —40.4 46.7 49.3 54.4 59.3 —-27.9 -23.7 -19.9
Ce,r, 13.8 27.0 33.3 —22.8 —18.6 —15.3 —11.3 —5.93 —52.4 —20.0 —6.23 —1.81 —0.516 —0.146
C'P”F\ —92.2 —92.2 —92.2 —92.2 —92.2 —92.2 91.8 86.7 90.3 —92.2 —86.4 —79.3 —72.5 —65.9
Ce,p,F, —366 —137 65.7 308 542 727 925 268 344 466 —38.6 —13.6 —4.65 —1.57
CoPoL, 125 248 225 180 132 90.0 36.7 —155 —151 148 131 115 99.7 85.7
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and 150 parameters in total. Table 1 gives the parameters
evaluated at different values of In(SI) at 10% loading mass and
different loading masses at In(SI) = 1.64.

10
Y% = Z CX;
i=1

303
+Z Z Ci i X; X

j=1 k=j+l1
+Ce, . XcXp Xp + Co rn Xe Xr XL,

(11)

This model is a simpler version of the more general model in
eqn (6). Analysis of that more general model revealed that many
interaction terms were statistically insignificant and could be
omitted. More specifically, we were able to combine cellulose
and the uncategorized carbohydrates into a single biomass
pseudo-component. This consolidation reduced the number of
individual biomass components to 10 (from 11). We also
determined that many interactions involving total lignin were
statistically insignificant. Binary interactions are only between
C,, P, and F,.

The values of C; represent the expected yield of biocrude
from HTL of that component alone at the given conditions. For
the three carbohydrates, note that C; decreases as the biomass
loading increases. This trend aligns with and is influenced by
the data from Gollakota and Savage,'* which showed the bio-
crude yield decreasing with increasing biomass loading for HTL
of polysaccharides. For nearly all of the individual biomass
components, the biocrude yield (C,) first increases and then
decreases with increasing reaction severity.

Fig. 1 compares the calculated and experimental biocrude
yields for the data set used to fit and predictions for the model
parameters. Table 2 summarizes the statistics for each. The
model predicts biocrude yields to within 6.3 wt% median abso-
lute error.

Fig. 2 compares predictions from the new component addi-
tivity model with predictions from 17 component additivity
models®?*>'?3 in the literature, using the parameters provided
in literature. We tested five models capable of predicting

1007 Fit Residuals §
: a Prediction Residuals -
H
o X
3 A
S
Q
2
a
()]
=
©
>
T
2
K}
=]
S
©
3}
1 1
0 20 40 60 80 100

Experimental Data (biocrude wt%)

Fig. 1 Parity plot for the new component additivity model fit and
predictions.
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Table 2 Statistical analysis for fitting and prediction for the new
component additivity model

Statistic Fit Prediction
Number of data 1032 112
points

Med[e] 0.0233 1.61

Jel 6.18 8.33
Med][|e|] 4.07 6.33
MAPE 75.5 67.9

AIC (Wt%) 4812.9 —

% <5 56.7 42.9

% <10 78.8 67.0

biocrude yields from HTL of lignin-containing biomass, shown
in Fig. 2a, and 12 models that did not include lignin as part of
the composition, shown in Fig. 2b. The models without lignin
were tested on the subset of the prediction dataset that con-
tained no lignin-containing biomass. Statistical details are
available in Tables S2 and S37 in the ESI.f The new model
provides the best predictions, both statistically and visually,
compared to the published component additivity models.

In addition to comparing the new model to the published
models with the published parameters, we fitted the general
forms of these published models to the large datasets to get
updated parameter values. Even here, the predictions from the
new model were superior to those from the published models.

4 Reaction engineering model

Reaction engineering models are based on chemical reaction
networks that describe the conversion of material from one
chemical component to another (e.g., from biomass to bio-
crude). Combining reaction rate equations for each path in the
network with the design equation for the type of chemical
reactor used in the HTL experiments leads to a set of simulta-
neous equations that govern the evolution of species concen-
trations over time. All the biocrude yields in the database used
herein were obtained in batch reactors, and we used the
appropriate set of differential equations for the modeling. We
used mass action rate equations and Arrhenius rate constants.
The Arrhenius parameters served as the fitted parameters.

A general reaction engineering model for HTL of biomass
would include all the biopolymers likely to be in biomass as
reactants, allow each to react at its own rate, and account for
interactions between biochemical components that influence
the yields of product fractions. A general model would also be
able to handle smaller biomolecules such as amino acids,
saccharides, phenolics, and fatty acids, that are not in poly-
meric form. The model developed herein meets these criteria.
Biomass is treated as a mixture of protein, lipids, lignin, and
carbohydrates. The final group is subdivided into cellulose,
hemicellulose, and starch, to account for reactivity differences
for these polysaccharides. Carbohydrates that are not clearly
identified as one of these three in the published work are
treated as cellulose for modeling purposes. The reaction
network (Fig. 3) allows for binary interactions between carbo-
hydrates, proteins, lipids, and lignin in the biomass as they

RSC Sustainability, 2025, 3,1788-1799 | 1791
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Fig.2 Comparing predictions from component additivity models using a violin plot. The outer curve is the distribution of the residuals, the solid
line in the middle is the median residual, and the dashed lines are the upper and lower quartiles: (a) Models that include lignin-containing

biomass. (b) Models without lignin. @

additivity model in © with interactions. *The residuals extends 167 wt%.

—
Ce, He, St, G
Pe, Ft, Lg 4

~ 6
~

Fig. 3 Reaction network for modeling HTL of biomass.

react to form aqueous-phase (A) and biocrude (B) products.
Products in the aqueous phase can react to form gases (G) or
molecules that partition into the biocrude phase. Likewise,
molecules in the biocrude phase can react to form a water-
soluble product or a gaseous product.

Eqn (12) provides the governing differential equations.

dX 2 4
5 = = (ki + ko) X; — Z anz‘.inXj
r J

dXA Zkl X+ 22 Z kl m, nXn Xy — (k3 + kS)XA + k4XB
m  n=m+1

dXB Z kz,X +2 Z E k2m 7 Xn X — (k4 + ks)XB + k3XA
m  n=m+1

%%:h&+&%

(12)
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The component additivity model using HTL of soy protein, cornstarch, and castor oil. ©
additivity model using HTL of cellulose, albumin, and sunflower oil. © The component additivity model in @ with interactions. ¢

The component
is the component

X denotes mass fraction, k denotes a rate constant, i denote one
of the biopolymers or lipids, j, m, and n correspond to
biochemical components that have binary interactions, and r is
the reaction path for biomass conversion (1 or 2), where i # j
and i ¢ j.

The HTL products are defined operationally as being gases,
solids, or material soluble in water or in an organic solvent
(biocrude). In many instances, material present in the original,
unreacted biomass can be extracted by water or an organic
solvent. Accordingly, these systems would contain “biocrude”
molecules and “aqueous-phase product” molecules, even before
HTL takes place. The initial conditions for the present model
accounts for these materials being extractable into those phases
at t = 0, before the HTL reaction has begun. We take all lipids
and fatty acids to be in the biocrude phase at t = 0. We also take
60 wt% of any phenolics present and 30% of any amino acids
initially present in the feedstock to be in the biocrude phase.*®
The balance of these smaller biomolecules would reside in the
aqueous phase, along with any saccharides initially present in
the biomass feedstock. We take 46 wt% of the protein, 3 wt% of
the hemicellulose, and 11 wt% of the starch to be in the
aqueous phase at ¢ = 0.*” The rest of the biopolymers in the
biomass feedstock are taken to reside in the solid phase when
HTL begins. Through the use of the reaction network for the
biopolymers and product fractions and these initial conditions
for any smaller biomolecules, we have developed a general
model that can be applied to a wide range of biomass feed-
stocks. We assume the interactions of the other biopolymers
with the polysaccharides (Ps), cellulose, hemicellulose and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Parameters for the reaction engineering model in Fig. 3 coupled with egn (12)

Parameter In[A] In[A]

label (In[min™"])  E, (k] mol ™) k @350 °C (min™") Parameter label ~ (In[min~'])  E, (k] mol™") k @350 °C (min™")
K1 pe —0.107 0.00860 0.897 Ky pe.r, 40.6 203 4.26

Kur 10.2 33.5 40.7 K1 pe,ps 10.9 105 9.04 x 107°
k1 ce 7.55 47.9 0.184 K pe e 20.6 85.5 62.7

k1 pre 13.8 88.1 0.0387 1 ps 7.88 25.2 20.2

k1,s‘ 7.42 40.5 0.668 kl,Fl,Lg 4.73 1.33 87.6

Kiig —2.82 4.35 0.0257 1P Lg 45.3 248 0.0758

Ko, pe 0.370 5.18 0.533 Ko,per, 15.4 54.5 126

ko 1.73 3.39 2.93 Ko, pe,ps 9.62 49.7 1.02

kace 10.1 69.9 0.0353 Ko,pe e 4.47 17.9 2.74

Kame 14.3 86.8 0.0887 Ko, ps 16.0 57.4 133

kas, 9.18 58.7 0.116 Ko p, 1 19.1 36.7 1.66 x 10°
Korg —2.05 13.9 0.00872 Kopsig 25.7 227 1.35 x 10°°
ks 6.30 214 6.07 x 107 ¢ ks —2.86 10.9 0.00696

ky 2.11 48.9 0.00066 ke 14.3 107 0.00181

starch, is identical. Fitting the model to the large dataset gives
the parameter values in Table 3. The model has 56 parameters.

We fit all the models in Python version 3.11.7, 64-bit using
solve_ivp from scipy.integrate version 1.13.0 with the Radau stiff
solver to calculate the numerical solution for the system of
ODEs. We used the minimize function from the scipy.optimize
library with the Nelder-Mead method to minimize the sum of
absolute residuals in eqn (2).**

Fig. 4 compares the calculated and experimental biocrude
yields for the data set used to fit and predictions for the model
parameters. Table 4 summarizes the statistics for each. The
model is able to correlate and predict biocrude yields with an
median absolute residual of about 5.5 wt%.

Fig. 5 compares predictions from the new reaction engi-
neering model to predictions from 15 reaction engineering
models***”” in the literature. Fig. 5a displays violin plots of the
distribution of residuals for the new model, three models that
explicitly include lignin in biomass, and four models that do
not require biomass composition. The new model gives better
predictions. Fig. 5b displays violin plots of the distribution of
residuals for the new reaction engineering model and eight
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Fig. 4 Parity plot for the new reaction engineering model fit and
predictions.

© 2025 The Author(s). Published by the Royal Society of Chemistry

models that do not include lignin as part of the biomass. We
include data only from HTL of the lignin-void biomass in the
testing dataset in Fig. 5b. All the statistical data is provided in
the ESI in Tables S2 and S3.}

We also fit the parameters for the reaction networks from
Valdez et al.,* Sheehan and Savage,** Obeid et al.,** and Hietala
and Savage® to the new, larger dataset. The statistics for bio-
crude fit and predictions are available in Tables S6 and S7.7 The
results show the new reaction engineering model is superior to
the other networks using the same dataset to parameterize all
the models.

5 Machine learning model

Machine learning models explain and predict outputs by iden-
tifying the connections and patterns between inputs and
outputs. These models require user input parameters such as
the number of estimators and minimization criteria. To deter-
mine the optimal parameters for predictions, we separate the
fitting dataset, 90% of the total dataset, into 80% training and
20% testing data subsets. While varying the user input param-
eters, we optimized the predictions for the 20% testing data
subset. We then fit the model to the full 90% fitting dataset and
used the optimal parameters to predict the 10% prediction
dataset.

Table 4 Statistical analysis for fitting and prediction for the new
reaction engineering model

Statistic Fit Prediction
Number of data 1032 112
points

Med[s] —0.0195 0.950

el 7.62 8.04
Med][|e[] 5.86 5.53
MAPE 112 77.2

AIC (Wt%) 4939.7 —

% <5 44.5 47.3

% <10 72.0 67.0
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pine wood data. © The reaction network fitted to HTL of microalgae data. ¢ The reaction network with the interactions. © The reaction network

including the interactions.

We tested supervised, continuous input and output machine
learning models. The model algorithms are from the sklearn
version 1.4.0 library in Python version 3.11.7, 64-bit.*®

Of all the machine learning models, the decision tree algo-
rithm provided the highest performance in fitting and predict-
ing of the data. The model is set to a maximum depth of 14,
three random states, the minimization criterion set to absolute
error, and the rest of the options as default choices. The model
results in a 924-leaf tree network. We provide the code on
GitHub (https://github.com/pguirguis/Model_Comparison) to
print the tree and use it for predictions. The Gaussian Process
Algorithm has the optimal statistics (see the ESIf), but its
Gaussian structure does not align with the relationship

100 A
¢ Fit Residuals o

a Prediction Residuals .

Calculated Value (biocrude wt%)

0 20 40 60 80
Experimental Data (biocrude wt%)

1
100

Fig. 6 Parity plot for the new decision tree model fit and predictions.
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between the HTL conditions and biocrude yields, resulting in
a distinct inability to predict the data accurately. Additionally,
the random forest algorithm shows a good fit and the
outstanding prediction with 7241 leaves. However, this model
is not chosen because its AIC is four times that of the
decision tree algorithm. Tables S8-S11f provide statistics for
all models that we considered.

Fig. 6 compares the calculated and experimental biocrude
yields for the data set used to fit and predictions for the model
parameters. Table 5 summarizes the statistics for each. The
model predicted biocrude yields to within 4.6 wt% median
absolute residual.

6 Comparing the new models

Fig. 7 shows the distribution of the residuals for all three
models. Fig. 7a is the distribution for fitting each model to the
literature dataset and Fig. 7b is the distribution for predictions.

Table 5 Statistical analysis for fitting and prediction for the new
decision tree model with 924 parameters

Statistic Fit Prediction
Number of data 1032 112
points

Med[s] 0.00 1.08

H 0.230 6.64
Med][|e[] 0.00 4.60
MAPE 1.36 43.5

AIC (Wt%) 2049.4 —

% <5 98.5 52.7

% <10 99.8 80.4

© 2025 The Author(s). Published by the Royal Society of Chemistry
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The decision tree model fits the data the best. It also has the
largest number of parameters, with 924 leaves. The model uses
a set of “decisions” to reach its predictions, and 868 out of the
924 leaves contain a single data point. The component addi-
tivity model, with 150 parameters, has lower error than the
reaction engineering model, which has 56 parameters. The
component additivity model uses additional parameters to
correlate and predict the effects of biomass loading (wt%). For
predictions, the decision tree model had the smallest median
absolute error of 4.6 wt%, but it also gives the widest distribu-
tion of residuals. The component additivity model has the
smallest distribution of residuals and its median absolute error
was 6.33 wt%. The reaction engineering model performed
similarly and has a median absolute residual of 5.53 wt%.

7 Predictions for new biomass
feedstocks

In this section, we use the new models to estimate the highest
biocrude yields available from HTL of different biomass feed-

stocks, along with the corresponding HTL conditions. The
feedstocks and their compositions are listed in Table 6. Three

Table 6 New biomass feedstocks and their composition

feedstocks have a high carbohydrate content. One is high in
cellulose (hemp fiber), one is high in starch (macaroni noodles),
and one is high in other carbohydrates (watermelon rinds). We
selected one feedstock with high lipid content, which also has
the highest protein content (mechanically deboned chicken
meat), and one with high lignin content (apple pomace). In
nature, biomass with high hemicellulose or lignin content
typically also contains a significant amount of cellulose. The
apricot kernel press cake contains all four components in
relatively balanced proportions. Cheese sauce contains nearly
equal amounts of starch and protein, along with lipids. Finally,
we considered the mixture of cheese sauce and macaroni, as
described in Wang et al.**

Table 7 presents the conditions for HTL predicted by each
model to give the highest possible biocrude yield.

Since the machine learning model is made of discrete
choices, we use a grid of 1000 steps for time between 0-3 h,
loading mass between 0-40 (g solids/g water)%, and tempera-
ture between 0-650 °C to find the maximum biocrude yield. The
decision tree model uses discrete “decisions” or “leaves” to fit
the data, which aligns the predictions closely with the corre-
lating data. The large number of “N/A” entries in Table 7 for the
decision tree model however, indicates the model has difficulty

Ref. Feedstock C; Un Ce He St P, F, L, Ash
Jawaid and Abdul Khalil**  Hemp fiber 923 0 744 179 0 0 130  3.70 N/A
Arivuchudar*® Watermelon rinds 62.8 62.8 0 0 0 12.5 274 0 14.7
Selmane et al.*! Mechanically deboned chicken meat 0 0 0 0 0 52.7 425 0 N/A
Vendruscolo et al.*> Apple pomace 59.8 59.8 0 0 0 590 0 382  3.50
Sharma et al.*® Apricot kernel press cake 27.5 27.5 0 0 0 34.3 9.70 10.8 N/A
Wang et al.** Cooked macaroni noodles 839 0 0 0 839 140 135 0 0.800
Cheese sauce 42.9 0 0 0 42.9 41.5 12.6 0 3.03
Macaroni and cheese 70.9 0 0 0 70.9 13.5 14.1 0 1.51

© 2025 The Author(s). Published by the Royal Society of Chemistry
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% *p is the constant for the heating profile in eqn (8). N/A means the model did not move that value from its initial state, Iso means isothermal.
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with feedstocks that do not closely match those used to deter-
mine the parameters. Additionally, predictions for four out of
the eight feedstocks give the same yield and HTL conditions
despite the feedstocks having very different compositions. This
is a disadvantage of using a discrete model such as the decision
tree. When examining predictions for a larger dataset of 39 new
biomass feedstocks, we find only 11 unique optimal conditions
for the decision tree machine learning model.

The three models agree that HTL of the biomasses with large
fractions of carbohydrates have a lower maximum biocrude
yield than the other feedstocks. Additionally, HTL of mechan-
ically deboned chicken meat, high in fat and proteins, gives the
highest biocrude yield for each model. Finally, all the models
predict a higher biocrude yield for HTL of the macaroni and
cheese together rather than separately. The predicted increase
in biocrude yield is 8.75 wt%, 1.56 wt%, and 23.25 wt% for
component additivity model, reaction engineering model, and
decision tree model, respectively.

The models show large disagreement for HTL conditions for
a few feedstocks. For mechanically deboned chicken meat and
cheese sauce, the reaction engineering model predicts milder
conditions than does the component additivity model. The
models also disagree as to the reaction severity needed to
liquefy the cooked macaroni noodles, cheese sauce, and
macaroni and cheese. The decision tree model has the highest
severity, the component additivity model has a medium
severity, and the reaction engineering model gives the mildest
conditions.

The apricot kernel press cake is the only new feedstock
considered here that contains at least 10% each of carbohy-
drates, proteins, lipids, and lignin. Containing all these
components in appreciable amounts makes this material an
interesting biomass feedstock for testing the models. The three
models disagree on the severity of the HTL conditions and the
highest biocrude yield that can be obtained. Fig. 8 examines
HTL of this feedstock in greater detail. The figure shows the
biocrude yields calculated from each model over a wide range of
HTL temperatures and times. The colors correspond to the
biocrude yields. Fig. 8a shows the component additivity model
predicts biocrude yields up to about 35 wt% follow a narrow
band on the plot. Fig. 8b shows the reaction engineering model
predicts biocrude yields of about 50 wt% at short times over
a range of supercritical temperatures. Fig. 8c shows discrete
“decision” boxes and there are no smooth transitions between
the boxes.

8 Closing perspective

This work provides new models for predicting yields of biocrude
from HTL of biomass. These models predicted literature data
better than did previous models. The highest median absolute
residual for predicting the biocrude yields was 6.3 wt%. The
decision tree model fit and predicted the dataset significantly
better than the new component additivity and reaction engi-
neering models. The component additivity model is statistically
better at fitting the dataset than the reaction engineering model
and the reaction engineering model is better at predicting the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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engineering model (c) decision tree model at 13.45 wt% loading.

dataset than the component additivity model. When seeking
the optimal HTL conditions for new feedstocks, the discrete
“leaves” from the decision tree model limits the model
predictions.

The models are general in that they can be applied to nearly
any biomass feedstock and over a very wide range of potential
HTL reaction conditions. As such, the models can be used to
guide experimental work. They can also be employed in tech-
noeconomic analyses and life cycle assessments to investigate
the influence of biomass composition and HTL processing
conditions on the profitability and environmental impacts of
HTL conversion.

The present modeling work accepted all literature data as
being of equal value. We believe even better models could be
developed if there were a carefully curated set of experimental
data for HTL. Ideally, the same biomass feedstocks and same
sets of reaction conditions would be examined in multiple labs
and the resulting data then combined and assessed. Such
a harmonized data set, which would include experimental
uncertainties, would be a tremendous asset in improving the
general models for HTL of biomass.

© 2025 The Author(s). Published by the Royal Society of Chemistry

The three different approaches for modeling used herein
have comparative advantages and disadvantages. Component
additivity models are conceptually simple and provide
a connection to the physical system. They can be expanded as
needed to account for statistically meaningful interactions
between components. Decision tree models can do a great job of
fitting data, but the predictive ability is not as good as the
correlating ability (at least in the present study). Also, the
decision tree has no connection to the physical situation and it
is a discrete model whereas process variables are continuous.
Reaction engineering models can provide predictions for all
components in the reacting system - not just biocrude. That is,
the model can predict (or correlate) the yields of aqueous-phase
products and gaseous products as well. Moreover, a reaction
engineering model can be made even more “molecular” by
adopting reaction pathways that are more closely connected to
the overall chemical conversions taking place (e.g., protein
decomposing to peptides that decompose to amino acids that
decomposes further by deamination or decarboxylation).

Each model has limitations. Using the severity index in the
component additivity model ignores the individual effects of
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time and temperature. As a result, the conditions obtained
when optimizing feedstocks include a set of temperature and
time for the optimal severity index. The reaction engineering
model is the only model that does not include any dependence
of HTL outcomes on the wt% loading in the reactor, though this
is known to have an effect for some biomass components. The
decision tree model predicts biocrude yields based on given
feedstock composition and HTL conditions. Its accuracy
depends on the similarity between the input data and the
training set. When inputs closely match the training data,
predictions are reliable. However, if the training set lacks
similar feedstock compositions and HTL conditions, the model
may produce inaccurate predictions. With a large training
dataset and numerous input parameters, identifying the
specific feedstock compositions and HTL conditions needed to
prevent inaccurate predictions becomes challenging. This
limitation is evident when optimizing HTL conditions for the
feedstocks tested in this study.

Data availability

The three models and the data associated with them are avail-
able on GitHub (https://github.com/pguirguis/
Model_Comparison).

Author contributions

Peter M. Guirguis: conceptualization, data curation, formal
analysis, validation, visualization, writing - original draft,
writing - review & editing, and Phillip E. Savage: conceptuali-
zation, funding acquisition, methodology, project administra-
tion, supervision, writing - review & editing.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported with funds from the Walter L. Robb
Family Chair in Chemical Engineering at Penn State.

Notes and references

1 M. Shahabuddin, N. Kazantzis, A. R. Teixeira and
M. T. Timko, Energy Convers. Manage.:X, 2024, 24, 100756.

2 Y. Jiang, S. B. Jones, Y. Zhu, L. Snowden-Swan, A. J. Schmidt,
J. M. Billing and D. Anderson, Algal Res., 2019, 39, 101450.

3 P. H. Chen and ]. C. Quinn, Appl. Energy, 2021, 289, 116613.

4 M. Pearce, M. Shemfe and C. Sansom, Appl. Energy, 2016,
166, 19-26.

5 L. Ou, R. Thilakaratne, R. C. Brown and M. M. Wright,
Biomass Bioenergy, 2015, 72, 45-54.

6 P. Ranganathan and S. Savithri, Bioresour. Technol., 2019,
284, 256-265.

7 Y. Zhu, M. J. Biddy, S. B. Jones, D. C. Elliott and A. J. Schmidt,
Appl. Energy, 2014, 129, 384-394,

1798 | RSC Sustainability, 2025, 3, 1788-1799

View Article Online

Paper

8 P. M. Guirguis, M. S. Seshasayee, B. Motavaf and P. E. Savage,
RSC Sustainability, 2024, 2, 736-756.

9 G. Teri, L. Luo and P. E. Savage, Energy Fuels, 2014, 28, 7501-
7509.

10 J. Wagner, R. Bransgrove, T. A. Beacham, M. J. Allen,
K. Meixner, B. Drosg, V. P. Ting and C. J. Chuck, Bioresour.
Technol., 2016, 207, 166-174.

11 R. Shakya, S. Adhikari, R. Mahadevan, S. R. Shanmugam,
H. Nam, E. B. Hassan and T. A. Dempster, Bioresour.
Technol., 2017, 243, 1112-1120.

12 S. Mahadevan Subramanya and P. E. Savage, ACS Sustain.
Chem. Eng., 2021, 9, 13874-13882.

13 L. Qian, S. Wang and P. E. Savage, Appl. Energy, 2020, 260,
114312.

14 P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,
T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. ]J. Nelson,
E. Jones, R. Kern, E. Larson, C. ]J. Carey, A. Polat, Y. Feng,
E. W. Moore, ]J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,
A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van
Mulbregt, A. Vijaykumar, A. P. Bardelli, A. Rothberg,
A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem,
C. N. Woods, C. Fulton, C. Masson, C. Héiggstrom,
C. Fitzgerald, D. A. Nicholson, D. R. Hagen,
D. V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva,
F. Lenders, F. Wilhelm, G. Young, G. A. Price, G.-L. Ingold,
G. E. Allen, G. R. Lee, H. Audren, 1. Probst, J. P. Dietrich,
J. Silterra, J. T. Webber, ]. Slavi¢, J. Nothman, J. Buchner,
J. Kulick, J. L. Schonberger, J. V. de Miranda Cardoso,
J. Reimer, J. Harrington, J. L. C. Rodriguez, J. Nunez-
Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville,
M. Kimmerer, M. Bolingbroke, M. Tartre, M. Pak,
N. J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk,
P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer,
S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More,
T. Pudlik, T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura,
T. R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss,
U. Upadhyay, Y. O. Halchenko and Y. Vazquez-Baeza, Nat.
Methods, 2020, 17, 261-272.

15 A. Gollakota and P. E. Savage, Energy Fuels, 2019, 33, 11328~
11338.

16 M. Déniel, G. Haarlemmer, A. Roubaud, E. Weiss-Hortala
and J. Fages, Waste Biomass Valorization, 2017, 8, 2087-2107.

17 J. Yang, Q. S. He, H. Niu, K. Corscadden and T. Astatkie, Appl.
Energy, 2018, 228, 1618-1628.

18 J. Lu, Z. Liu, Y. Zhang and P. E. Savage, ACS Sustain. Chem.
Eng., 2018, 6, 14501-145009.

19 J. Yang, Q. S. He, K. Corscadden, H. Niu, J. Lin and
T. Astatkie, Appl. Energy, 2019, 233-234, 906-915.

20 P. Biller and A. B. Ross, Bioresour. Technol., 2011, 102, 215—
225.

21 S. Leow, ]J. R. Witter, D. R. Vardon, B. K. Sharma, J. S. Guest
and T. J. Strathmann, Green Chem., 2015, 17, 3584-3599.

22 Y. Li, S. Leow, A. C. Fedders, B. K. Sharma, J. S. Guest and
T. J. Strathmann, Green Chem., 2017, 19, 1163-1174.

© 2025 The Author(s). Published by the Royal Society of Chemistry


https://github.com/pguirguis/Model_Comparison
https://github.com/pguirguis/Model_Comparison
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4su00737a

Open Access Article. Published on 21 February 2025. Downloaded on 1/28/2026 3:55:50 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

23 D. C. Hietala, C. K. Koss, A. Narwani, A. R. Lashaway,
C. M. Godwin, B. J. Cardinale and P. E. Savage, Algal Res.,
2017, 26, 203-214.

24 L. Sheng, X. Wang and X. Yang, Bioresour. Technol., 2018,
247, 14-20.

25 A. Aierzhati, M. J. Stablein, N. E. Wu, C.-T. Kuo, B. Si, X. Kang
and Y. Zhang, Bioresour. Technol., 2019, 284, 139-147.

26 R. Obeid, D. M. Lewis, N. Smith, T. Hall and P. van Eyk,
Chem. Eng. J., 2020, 389, 124397.

27 R. Obeid, D. M. Lewis, N. Smith, T. Hall and P. van Eyk,
Energy Fuels, 2020, 34, 419-429.

28 P. ]. Valdez and P. E. Savage, Algal Res., 2013, 2, 416-425.

29 D. C. Hietala, J. L. Faeth and P. E. Savage, Bioresour. Technol.,
2016, 214, 102-111.

30 P.J. Valdez, V. J. Tocco and P. E. Savage, Bioresour. Technol.,
2014, 163, 123-127.

31 J. D. Sheehan and P. E. Savage, Bioresour. Technol., 2017, 239,
144-150.

32 R. Obeid, N. Smith, D. M. Lewis, T. Hall and P. van Eyk,
Chem. Eng. J., 2022, 428, 131228

33 D. C. Hietala and P. E. Savage, Chem. Eng. J., 2021, 407,
127007.

34 ]. S. Saral, D. G. C. V. Reddy and P. Ranganathan, Biomass
Convers. Biorefin., 2022, 1, 1-9.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Sustainability

35 T. K. Vo, O. K. Lee, E. Y. Lee, C. H. Kim, J.-W. Seo, J. Kim and
S.-S. Kim, Chem. Eng. J., 2016, 306, 763-771.

36 T. K. Vo, S.-S. Kim, H. V. Ly, E. Y. Lee, C.-G. Lee and J. Kim,
Bioresour. Technol., 2017, 241, 610-619.

37 A. Palomino, L. C. Montenegro-Ruiz and R. D. Godoy-Silva,
Algal Res., 2019, 44, 101669.

38 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot and E. Duchesnay, J. Mach. Learn.
Res., 2011, 12, 2825-2830.

39 M. Jawaid and H. Abdul Khalil, Carbohydr. Polym., 2011, 86,
1-18.

40 R. Arivuchudar, Biosci., Biotechnol. Res. Asia, 2023, 20, 263-
269.

41 D. Selmane, V. Christophe and D. Gholamreza, Meat Sci.,
2008, 79, 640-647.

42 F. Vendruscolo, P. M. Albuquerque, F. Streit, E. Esposito and
J. L. Ninow, Crit. Rev. Biotechnol., 2008, 28, 1-12.

43 P. C. Sharma, B. M. K. S. Tilakratne and A. Gupta, J. Food Sci.
Technol., 2010, 47, 682-685.

44 Y. Wang, T. D. Wig, J. Tang and L. M. Hallberg, J. Food Eng.,
2003, 57, 257-268.

RSC Sustainability, 2025, 3,1788-1799 | 1799


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4su00737a

	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a
	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a
	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a
	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a
	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a
	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a
	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a
	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a
	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a
	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a
	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a
	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a
	General component additivity, reaction engineering, and machine learning models for hydrothermal liquefactionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4su00737a


