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Coherent collective motion is a widely observed phenomenon in active matter systems. Here, we report
a flocking transition mechanism in a system of chemically interacting active colloidal particles sustained
purely by chemo-repulsive torques at low to medium densities. The basic requirements to maintain the
global polar order are excluded volume repulsions and long-ranged repulsive torques. This mechanism
requires that the time scale for individual colloids to move a unit length be dominant with respect to the
time they deterministically respond to chemical gradients, or equivalently, pair colloids slide together a
minimal unit length before deterministically rotating away from each other. Switching on the
translational repulsive forces renders the flock a crystalline structure. Furthermore, liquid flocks are
observed for a range of chemo-attractive inter-particle forces. Various properties of these two distinct
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flocking phases are contrasted and discussed. We complement these results with stability analysis of a
hydrodynamic model, which reveals the transition corresponding to destabilization of the flocking state
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|. Introduction

The collective swarming behaviour of interacting agents - also
called flocking" - has been a topic of sustained interest in the
field of non-equilibrium statistical physics. Flocking is also a
ubiquitous phenomenon in the natural world, widely reported
in groups of animals, such as birds, fish, and mammals.*™
Paradigmatic models that incorporate local alignment interac-
tions to study flocking have been extensively studied"® and
continue to be investigated.’™'> Most notably, in the Vicsek
model,”> local alignment interactions among the individual
agents can lead to transition from a disordered state to one
with large-scale, coordinated movement. The flocking transi-
tion in these models with short-range alignment interactions
has been widely studied, along with extensive investigation
of the nature of the order-to-disorder transition®*"*'* and
universality of critical exponents."

The possibility of attaining an emergent global polar order
(flocking) arising purely out of dynamical particle-based
models, without any explicit alignment interaction, is a subject
of recent interest and recently reviewed in ref. 15. Systems
where such a phase has been observed are typically over-
damped'®™® and include those with velocity alignment
interactions,'”"*>" distance-dependent interactions,** history
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observed in particle-based simulations.

(trail) dependence®***

forces between the particles without volume exclusion.
A separate class of inertial models have also reported such a
transition,””*° including those with attractive interactions.*’

Though various possible mechanisms deviating from the
Vicsek-like rule have been established, the explicit relevance of
the separate contributions of the long-ranged interparticle
forces and torques between active particles in producing a
global polar order has not been clearly established. For
instance, migrating cells that display a global polarity have
been known to display chemo-tactic attractive interactions in
addition to (among others) either a contact “inhibited” or
“attracted” locomotion - akin to a long-ranged torque of either
repulsive or attractive nature.'®**** Studies on translational
and rotational diffusiophoretic motion of active particles (with
a self-generated chemical field) with attractive torques indicate
collapse of particles into dense clusters.** In addition, extensive
studies on repulsive torques in these systems are rare. Thus,
open questions remain on the minimal ingredients and mecha-
nism at play arising from the forces and torques of inter-
particle phoretic interactions.

In this paper, we report a minimal mechanism for the
formation of liquid flocks, which we herein denote as “chemo-
repulsive liquid flocks” (CLF). The basic ingredients that are
sufficient to produce such a flock are: (i) short-ranged excluded
volume repulsive and (ii) long-ranged (chemo) repulsive tor-
ques. There is no need for any additional (chemo)repulsive
translational forces between the particles, nor is there a requi-
site role for noise in destabilizing the flock. Furthermore, the

and those with repulsive torques and
25,26
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incorporation of long-ranged translational chemo-repulsive
forces between the particles induces instead crystalline flocks
(with regular lattice spacing), which we denote this herein as
“chemorepulsive crystalline flocks”” (CCF). Our work thus adds
insights into investigations on attaining a global polar order via
dynamical mechanisms without any explicit alignment inter-
action, by providing a minimal mechanism, both for flock
formation and destabilization, which, to our best knowledge,
has not been reported elsewhere.

The remainder of the paper is organized as follows. In
Section II, we describe our model to study phoretic (chemical)
interactions of active particles and enumerate various impor-
tant dimensionless parameters of our study. In Section III, we
report various simulation results for the CLF, and likewise for
the CCF in Section IV. A comparison of these two phases is
done in Section V by studying the pair correlation, hexatic
order, order-to-disorder transition, density fluctuations and
finite-size effects. In Section VI, we demonstrate that flocking
persists even for chemo-attractive forces between particles
which turn away from each other. Further, we complement
the results from particle-based simulation with a stability
analysis of a continuum model of coupled density and polar-
ization fields in Section VII. Finally, conclusions and a discus-
sion of our work in relation to other findings are presented in
Section VIIIL.

[l. Model

The model consists of two dynamical parts: (a) the dynamics of
particles and (b) the dynamics of the chemical concentration
field; these are described in the following subsections.

A. Dynamics of the particles

We consider a set of N chemically interacting active colloids of
radius b. We model the ith active particle as a colloid particle
centered at r; = (x;, y;), confined to move in two-dimensions,
which self-propels with a speed v,, along the directions e; =
(cos0;, sinf;). Here i =1, 2, 3, ..., N and 0; is the angle made by
the orientation e; with respect to the positive x-axis. The
orientation e; of the ith particle, given in terms of the angle
0;, changes due to coupling its dynamics to the dynamics of a
phoretic (scalar) field ¢, as we describe below. The position r;
and orientation e; of the ith particle are given as:

B = voe; + 1cJi + uF; + (1a)

¢ = xlle; x J) + 1] x e (1b)

Here, v, is the self-propulsion speed of an isolated active
particle. The terms y; and y} are white noises with zero mean
and no temporal correlation. The variance of noises #} and #j is,
respectively, 2D, and 2D,. These noise terms are included for
the sake of completion and to demonstrate that the results are
robust against weak fluctuations. The term J; is chemical flux
on the location of the ith particle, which gives the inter-particle
interaction (of chemical origin). The phoretic flux is given as:
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Fig. 1 Schematic description of the chemical interactions between the
particles based on eqgn (1). The black dot on the orange circles indicates the
orientation of the particles. Black curved arrows show rotations from
chemical interactions, while solid red arrows show translations from
chemical interactions. The particles turn away from each other if y, > 0O,
while they turn towards each other if y, < 0. Similarly, particles translate
away from each other if 3, > 0O, while they translate towards each other
if ¢ < O.

Ji{t) = —[Ve(t,t)]e=r, where c(r,t) is the concentration of the
chemicals (e.g. filled micelles in an oil-emulsion system>*>3°),

The term proportional to y, in eqn (1) drives orientational
changes (turning particles away from each other if . > 0)
through interparticle chemical interactions. In this paper, we
only consider the case of y, > 0 when particles turn away from
each other due to chemical interactions.?®** Similarly, the term
proportional to y, ensures repulsion in the positional dynamics
if y. > 0.If both %, and y, are positive, then the system is said to
be chemo-repulsive. A schematic representation of the
dynamics due to the model is given in Fig. 1 to describe the
physical meaning of parameters y, (which controls rotation)
and y, (which controls translation) for chemical interactions
between the particles.

In eqn (1), to preclude overlap of the particles, there is a
short-ranged purely repulsive body force F; on the particles. The
expression of the body force on the ith particle is given as:

ouU .
F,' = _61‘[7 U= ZL[ (I',',l‘,'). (2)

i<j

With b as the colloidal radius and r; = |r; — r;|, we choose U° to
be of the form:

2.
K(}’,‘/ — 2b) s if rij < 2177
U = ‘ '
0, otherwise.

Here, k is a constant, which determines the strength of the
excluded volume repulsion.

B. Dynamics of the chemical field

Though the focus of this paper is on chemical interactions, we
note that our analysis is general and maybe applied to other
phoretic fields as well. The chemical concentration field c(r,t)
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around the particles located at r; is obtained by solving:

D V2e(r, 1) + i coo(r—r;) = 0. (3)

i=1

Here, D, is the diffusion coefficient and ¢, is the emission
constant of the chemical. In the above, we have assumed
that the chemical interaction between the particles is instan-
taneous.”****”** In addition, we assume that each particle is a
point source of the chemical field. Finally, the chemical flux J;
on the ith colloid, in the point particle limit, can be written
from the solution of eqn (3) as:

ES

4)

o

N
Co r
J =
" 4nD, Z ri

y
i

~
- —

i

Here, r;; = |1, with r;; = 1; — 1;. It is worthwhile to note that in
our model, the chemical field diffuses in an infinite three-
dimensional half-space, and thus, the chemical field decays as
1/r. Assuming a no-flux boundary condition at the bounding
surface, the 1/r dependence of the chemical field remains valid.
On the other hand, the particles are confined to move in two-
dimensions, such that they move in the plane of the bounding
surface. Consequently, the dimensions of chemical concen-
tration are [c] = [L™®] and chemical flux are [J] = [L™*]. So, the
dimensions of parameters are [y,] = [L* T '] and [xJ] = [L> T""].

C. Important dimensionless parameters

We note that © = b/y, is the propulsion time scale. In addition,
we define 7, = b*/y,, which sets the time scale for deterministic
rotation of the particle due to phoretic interactions. The
phenomenology of the CLF can also be understood by studying
the dynamics as per the dimensionless numbers of the problem
that arise out of the equations of motion (1). They are:

T Ar 1t
Ar:T—r:b3v07 Ay = iy (5)
Here, A, is the ratio of propulsion time scale T and time scale 7,
which controls rotations of the particle orientations from
chemical interactions between particles. On the other hand, A is
the ratio of translation due to chemical interactions between
particles and one-body propulsion. The key parameters of this
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model are the dimensionless numbers A,, A; and ¢. Here, ¢ is
the area fraction. ¢ is related to the number density p, as ¢ =
(Nnb*)/L> = pmb®. The simulation results are henceforth
presented as a function of these three parameters.

We note that in principle, there are other relevant dimen-
bV_DOr’ which would
alter the flocking transition. Our results are presented for effec-
tively noiseless systems; thus, the aforementioned Pe;, — co.
Indeed, the novelty of the mechanism presented here, as we
will show below, is its purely deterministic destabilization of
the polar phase, independent of any noise contributions.

. Vob
sionless numbers; e.g. Pe; = D and Pe, =
t

D. Simulation details

The position and orientations of the particles are updated
using a forward Euler-Maruyama method from the dynamical
equations given in eqn (1). Initially particles are distributed
randomly over the two-dimensional space. The initial orienta-
tions are also randomly distributed over the range of angles
[-=m, +n] (angles are computed with respect to the positive
x-axis). Periodic boundary conditions are applied on both the
x-axis and y-axis. To compute chemical interactions using the
expression of J;, we need to sum over periodic images. We have
used a regular summation convention (using minimum image
convention) for all results reported here, and checked these
with the full Ewald summation convention for selected para-
meter values. In this paper, the fluctuations (noise terms) are
set to be negligibly small to emphasize that flocks can be
formed and destroyed by deterministic causes. Indeed, the
polar order is expected to be destroyed at larger values of
fluctuations.® But we do not explore the role of the noise in
the positional and rotational sectors in this paper. Instead,
we choose their strengths to be sub-dominant compared to
deterministic effects due to chemical interactions and self-
propulsion. We have taken particle radius » = 1, and the total
number of particles varies in the range N = [239, 20 000]. The
steady-state time averages of the observables are taken over
2 x 10° time steps. The time-stepping of the Euler-Maruyama
integrator dt is taken as 0.01. A summary of all of the values of
parameters used for the simulation is given in Table 1 in the
Appendix.

Table1l Parameter values used for respective figures of the paper. Here L is the system size, b is the radius of the particle, N is the number of particles, dt

is the time-stepping of the Euler—Maruyama integrator. The remaining parameters are defined after egn (1). We have kept

Co

= 1 in all the simulations.

4nD,

Note that we consider noise to be less dominant to deterministic effects. Indeed, for the results in this paper, the Péclet number Pe = vo/(bD,) is
around 10°

Figure no. L dt b vy, kK N ¢ Lt A e A D, D,
Fig. 2 100 0.01 1 50 175 (319,2578) (0.1, 0.8) 0 0 (0,7)  (0.0,0.14) 10°°® 107
Fig. 3(a) 100 001 1 50 175 1024 0.32 (0, 5) (0.0, 0.1) (0,10) (0.0,0.2) 107°* 10°®
Fig. 4(a) and (c) 186 001 1 50 175 4000 0.36 0 0 0.75 0.015 10° 108
Fig. 4(b) and (c) 186 001 1 50 175 4000 0.36 3 0.06 6 0.12 0% 10°®
Fig. 5(a) (77,354) 001 1 50 175 1600 (0.04,0.84) 0 0 0,90 (0, 0.18) 10°° 1078
Fig. 5(b) 118 001 1 50 175 1600 0.36 (0,12) (0, 0.6) (0,32) (0, 0.64) 10° 1078
Fig. 6(a) 100 001 1 50 175 (637,1592) (0.2, 0.5) 0 0 (0,8  (0.0,0.16) 10°° 10°°
Fig. 6(c) 100 001 1 50 175 (637,1592) (0.2, 0.5) (0,10) (0.0, 0.2) 27 0.54 10° 108
Fig. 7(a) 100 001 1 50 175 1024 0.32 (-1,0) (-0.02,0.0) (0,10) (0.0,0.2) 10°°* 10°°
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lll. CLF via chemo-repulsive torques

We first consider the case of A, = 0 (or, equivalently, y. = 0).
Thus, repulsions are exclusively short-ranged via eqn (2) which
prevents overlap of particles. First, we vary 4, and ¢ and
determine the polar order of the system. The phase diagram
delimiting the CLF phases (polar flocks, bands, and disordered
states) is shown in Fig. 2(a). The states are delimited via the
mean global polarization of the system at the steady state,
Pss = (|P|)ss, where the polarization P is defined as the average
of sum of the orientation of all the particles:

1 N
P:N;ei, (6)

The different phases shown in the phase diagram are distin-
guished by different values of the magnitude of Pg: flock (Pss >
0.9), bands (0.1 < Py < 0.9) and disordered (Pss < 0.1). The
snapshots of these three phases are presented in Fig. 2(b)-(d)
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respectively. The dynamics of |P| of the respective cases is
shown in Fig. 2(e). On the (¢, 4,) plane (Fig. 2(a)), we see that
low-density flocks are sustained, which are eventually destabi-
lized at sufficiently high repulsion and densities. These flocks
have evidently a liquid-like spatial structure (Fig. 2(b)).>>****
The density field p is thus not homogeneous across the system
(see Fig. 2(b)). Density bands often occur in these systems,
where particles move perpendicular to the length of these
bands and travel, Fig. 2(c)). For larger systems, many of these
dense bands are observed over the space. See Movie I** for
dynamics to obtain CLF starting with a disordered state.

A. Mechanism for the formation of CLF

The CLF flock forming region on Fig. 2(a) can be understood by
consideration of competing effects between various length
(time) scales of the problem. To this end, it is useful to consider
the idealization of pair colloidal collision, where the pair
collides move along a co-moving frame a distance [; within a

(a) Polar liquid or CLF  [J Disordered gas (b) Polar ﬁquid or CLF O) O : Bands
a
O Bands = ----- Ar+=; Ar_
am
o \n‘ o o o [a] o
010 [ \\\ o o o o o
\‘e\ o o o o p
A~ :
< 6 oo m e (d) O Disordered gas (e)
(I RS Ny S T 1
0.05 e
a—" === Band
0.00 === Disordered
i o (I)D o o o o o o
0
h
(f) (I) No flock (g) (II) FLOCK ( ) (IIT) No flock
X
°
o 444 4 B & 4 Jing *e@®
= 4 R ) (e~ < 4 ) @ ) °
' FAVE S WL A=A

Fig. 2 CLF for A, = 0. (a) Phase diagram in the (¢, A,) plane, where ¢ is the area fraction of particles. Here, A, is annotated as a dotted red line, while the
density dependent A,* as a dashed black line. Symbols here and throughout the paper denote a flock (yellow triangle), bands (green circles), and
disordered states (blue squares). Marked (I)-(Ill) scenario and transition lines (black and red) are described in panels (f)—(h). Snapshots of the respective
phases are shown in (b)-(d) respectively (color coding for orientation of each particle is in the middle panel). (€) The evolution of the polarization is
displayed for the corresponding states (similarly colored). Panels (f)—(h) are a series of scenarios depicted corresponding to parameter choices labelled in
panel (a). Scenarios (I) and (Ill) have chemical response that are either too slow or too quick, such that a stable flock cannot be formed. Panel (g) —
scenario () — shows the regime in which the chemical response is in an optimal range such that the pair collision mechanism would produce a flock. See
Section Il A for details of the three distinct cases and mechanism of flocking.
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time 14, whilst rotating away (chemorepulsive). This can be
interpreted as a sliding length and time scales respectively, and
can be written as:

b

L . 7
R ls) = voTgl 1 (7)

Tsl =

Let us denote A, as the smallest value of A, to sustain the
CLF (corresponding to the lowest transition line in Fig. 2a), and
A" as the largest value of A, above which the CLF is not
sustained. A," is density dependent, as will be described below.
The mechanism for the CLF can then be understood as a
competition between A, and A.", A,7; this is illustrated in
Fig. 2(f)-(h) (annotated accordingly in the phase diagram of
Fig. 2(a)). From (7), the mechanism can be understood in terms
of sliding time scale 7, along with 7, and t". There are three
distinct cases (see the corresponding label on the phase
diagram in Fig. 2(a)):

Case I: when A, < A, (corresponding to g4 > 14 ), the
orientational changes of the colloids are too slow compared to
the free movement time and pair colloids slide excessively long;
hence, local polar order cannot be sustained (Fig. 2(f)).

Case II: in the regime of A, < A, < A, (equivalently 7, <
T < Tg ), we have that the chemical response time is fast
enough such that local polar order is sustained, but still
sufficiently slow such that the forward-backward symmetry at
the pair collision level is broken (Fig. 2(g)).

Case III: finally, for A, > A" (equivalently 15 < t4"), the
chemical response is sufficiently quick such that there is no
symmetry breaking at the pair collision level, and hence no
local alignment (see Fig. 2(h)).

B. Flocking by sliding an optimal distance while turning away

Using eqn (7), we may also describe the mechanism for CLF in
terms of sliding length scale I, corresponding to 75" and 74 .
These are:

+ _ + - _ —
lsl = VoTsl lsl = VoTs1 -

Note that in this choice of notations, Iy~ > " as the time scale
Tq > T4 . From simulations at ¢ ~ 0.31, we find these values
tobe ly" ~ 8.3b (A, ~ 0.12) and I~ ~ 100b (4,~ ~ 0.01), and
thus for low densities I of a few times the colloidal radius is
feasible, whereas the upper limit spans the box size, which
prohibits any flock formation. As we will show (and derive)
below, I,;" is directly proportional to density (with Iy~ fixed by
the system size), thus CLF formation can be equivalently
understood by the competing effects of density-dependent
inter-particle (pair) collisions and sliding. We see that the
phase boundary in Fig. 2(a) takes the functional form A," =

o/p. Here, a is a constant that we will later quantify and derive.

2/3
For densities above a critical density p, = (%) ~0.05, Iy

always exceeds the mean free path % so that flock formation

can happen uninhibited. Indeed for very dilute systems (p <
0.05, smaller than the densities displayed in Fig. 2), there is no
flock formation as there is a large free path movement and thus

9062 | Soft Matter, 2025, 21, 9058-9069
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pair sliding is infrequent (not shown here). For high densities,
though pair collisions are more frequent, Iy > Iy cannot be
satisfied. Indeed, at these densities, I;" and [~ converge and
flock formation is prohibited. Thus, for a finite range of
densities the CLF can form and stably persist. Equivalently,
there is no CLF if the pair colloid slide is too short (I;; < ") or
too long (Isy > Iy ).

We clarify at this juncture that such a pair collision mecha-
nism is constructed as an idealization; in actual simulation,
pair colloids may not slide an entire [y before leaving a given
collision radius. However, such an abstraction helps us under-
stand the polar alignment mechanism at the pair colloidal
level, and in addition agrees fully with simulation results at the
collective level. A key feature of this mechanism to be empha-
sized is the requirement of short-ranged repulsion (provided here
via excluded volume interactions), without which CLF formation
at y. = 0 would not occur; this instead would have to be
supplemented with . > 0.%° Thus, (i) short-ranged translational
repulsion and (ii) long-range orientational torques are the mini-
mal requisite ingredients required for the formation of CLF.

IV. CCF via chemo-repulsive forces
and torques

We now switch on y; and ask how the properties of the flock
differ. On the (A,, 4,) plane, we find that there is a clear region
of flocking for non-zero y; (see Fig. 3(a)). We further find that
the flocks have crystalline order (see Fig. 3(b)). Such crystalline
flocks in repulsive systems have been recently reported.”®
Similarly to the CLF, the CCF is destabilized by sufficiently
high rotational torques. In addition, A," now is linear in A, A,
is larger for a positive A, thus rendering a shorter sliding
length for pair colloids during the CCF formation. The net
result of a shorter sliding length compared to the CLF is hence
attributable to the difference between the crystalline and liquid
structures. See Movie II** for dynamics to obtain CCF starting
with a disordered state. We note that if this repulsion is too
strong, the CCF is destabilized to a disordered gas (not shown
in Fig. 3).

The phase diagrams for the collective dynamics of the
system are presented in Fig. 2(a) and 3(a) in terms of the three
key dimensionless parameters: A, 4, and ¢. The most generic
form of the transition lines from the phase diagrams can be
written as:

A< AT, AT = % + A, 8)

We obtain f and o by first fitting the boundary line in Fig. 3(a).
The slope gives ff ~ 0.167, whilst the x-intercept gives o =
0.013/b>. This fit is obtained by first applying determining
points of greatest variance of the order parameter (suscepti-
bility) on the phase plane and then applying least-squares
regression on those points. The fitted o thus independently
fixes the boundary on Fig. 2(a). The term «/p inhibits sliding
at high densities. The second term due to the presence of

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 (a) Phase diagram in the (A,, A;) plane for the case of y; > 0. The
dashed line refers to lower bound on y,, the solid line for lower bound on y,
from eqgn (8). (b) A snapshot of the CCF phase (the same color scheme to
indicate the orientation of the particles as in Fig. 2).

long-ranged translational repulsion suppresses the sliding
length and contributes to the crystalline structure. The delimit-
ing lines of A,” on the left (vertical) of Fig. 3(a) and bottom
(horizontal) of Fig. 2(a) are equal. Thus, the CCF mechanism
may be summarized by being an extension of the CLF mecha-
nism, with the additional long-ranged repulsive forces between
the particles rendering the crystalline structure.

V. Differences between CCF and CLF

A. Pair correlation function

The difference in spatial structure between the CLF and CCF is
readily distinguished by the pair correlation function, which is
given by:

&) =5 > (3(m — | - 1) ©)

This is plotted in Fig. 4(c), distinguishing the solid and liquid
signatures.”® A closely related quantity is the polar pair correla-
tion g(r,¢), which explicitly depends on the orientations of the
colloids. Here, cos(¢;) = e;f;, where £ = (r; — r)/|r; — 1;].*° For
the CLF, we see that there are quadrants where neighbours are
more likely to be found (Fig. 4(a)), as opposed to the hexatic

This journal is © The Royal Society of Chemistry 2025
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(b) CCF

0 5 rlb 15 20

Fig. 4 Panels (a) and (b) compare g(r,¢) for the case of the CLF and the
CCF. In (c), a comparison of the flocking phase, for CLF (red) and CCF
(blue), is shown for the pair correlation g(r).

order of the CCF (Fig. 4(b)). In the case of CCF, the intensity
(proportional to the probability of finding the particle from the
reference — see Appendix A) in the well-localized hexagonal
positions of the crystal is substantially higher than that in the
CLF, which are instead less intense with a greater relative
spread. The four-lobe distribution is indicative of a highly
anisotropic liquid phase where there is a decreased probability
of finding a neighboring particle either at the front or back of
the reference particle due to mutual repulsion.

B. Hexatic order and density variance

We define a measure of local hexatic order ; for the ith particle
to quantify the hexatic order globally in terms of is. They are
given as:*’

1 & 1 3
Ve = NZ Vi W= mzeléeif- (10)
i i

Here, 0; is the angle between particle i and particle j and N} is
the number of neighbors for particle i (N* ~ 6 for all data
points). The observable 4 is then averaged over 1000 different
particle configurations at the steady-state. We plot ¢ for the
two cases (y; = 0 and y. > 0) in the left panel of Fig. 5. The
transition lines from the phase diagrams in Fig. 2(a) and 3(a)
are also shown as dotted lines for guiding the eye. In the case of
7e = 0 (Fig. 5(a) left), the hexatic order exists in the flocking
phase, only for a very high density (area fraction ¢ = pnb® >
0.6). On the other hand, in the case of 3, > 0 (Fig. 5(b) left), with
¢ = pnb® = 0.36, the system becomes highly hexatic in the
flocking phase. However, near the transition line, where density
bands are prone to occur, we find that the hexatic order
gradually decreases.
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Fig. 5 Phase diagrams in terms of (left) global hexatic order (¢) and
(right) density variance. The top panel (a) shows these for the CLF, whereas
the bottom panel (b) for the CCF. Dashed curves in each plot indicate the
order—disorder (polarization) transition line as in Fig. 2(a) and 3(a).

Next, density variance for the two cases (. = 0 and . > 0) is
shown in the right panel of Fig. 5. The density variance is
calculated from the density distribution for a specific parameter
set shown in the phase diagram. For local density measurements,
the Voronoi tessellation method has been implemented for a
spatial configuration of particles. We calculate local density p, =
nh*/A,, where A, is the local area assigned to each particle. Then we
compute the density variance as ((Ap)®) = (p) — {(p))> (spatial
average) and finally averaged over 1000 configurations. In both
cases, the density variance is much lower in the flocking state.
However, it shows an increase near the transition region. The
density variance is high for the high area fraction (¢ = pnb?) and in
the disordered phase, for the case y. = 0 (Fig. 5(a) right panel). For
the y > 0 case, with low y; values, the variance is more prominent,
as shown in Fig. 5(b) (right panel).

C. Phase transition and finite size effects

We now present how polar order parameter |P| changes with
variation of the control parameter A, and A, shown in Fig. 6.
First, for CLF (A, = 0), phase transitions are shown for different
area fractions ¢ = [0.2, 0.5] with the system of size L = 100
(Fig. 6(a)). With zero A,, |P| &~ 0 and there is no flocking (lower
bound of Fig. 2(a)). As we increase A,, particles flock into a
polar ordered state. On the other hand, with a further increase
in A,, disordered phases are observed (see Fig. 2(a)). Transition
points shift towards lower A, values with increase of density.
Further, we present the finite size effects with different systems
of sizes L = [50, 400] (N = [239, 15279]) with a constant area
fraction ¢ = 0.3 (Fig. 6(b)). The effects of a finite size on the
flocking transition can be clearly seen for systems of smaller
size, whereas the effect is minor for a larger system size. Then,
for the CCF (with fixed A, = 0.55), the polar order parameter |P|
versus A is plotted for different area fractions (for reference,
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Fig. 6 Finite-size effects of phase transition. Top panel: (a) shows the
magnitude of the polar order parameter |P| versus A, for the CLF (4, = 0)
for different area fractions ¢, whilst (b) displays these for different systems
of size L. Bottom panel: similarly plotted for the CCF, with the variation
with respect to A, instead for different ¢ (c) and L (d) respectively. Here, we
have fixed A, = 0.55. The total number of particles N corresponding to the
Laregivenas: (L =50, N = 239), (L =100, N = 955), (L = 200, N = 3820) and
(L =400, N = 15279).

see Fig. 5(b), where the area fraction is fixed at ¢ = 0.36). In
Fig. 6(d), we studied finite-size effects for this case and found
that the effect on the phase transition is negligible for larger
system sizes. It needs to be noted that our model includes long-
range interactions, and it is thus computationally expensive to
probe sizes beyond those reported here.

VI. Effect of long-ranged translational
chemo-attraction

To further support the robustness of the mechanism, we report
flocks arising from repulsive torques with the addition of long-
ranged attractive inter-particle forces, thus y, < 0. We find
collective motion as flocks are maintained for A, € [0, —0.01],
before transitioning to a disordered state for larger attractive
translational interactions; this is shown in Fig. 7(a). In this
regime, the clumping tendency is balanced by the excluded
volume repulsions. This sets the y-intercept of the theoretical
prediction in Fig. 7(a) to be of the same order of magnitude to
the lower horizontal line in Fig. 2. These are hence liquid flocks
(CLF, see Fig. 7(b)). The band formation is also similar to that
of the CLF. During density band formation, often less denser
waves form in the system, and they move perpendicular to the
direction of the density bands. Similar cross-sea phases are also
observed in Vicsek-like models.*®

VIIl. Continuum description

To explain the above mechanism, we write top-down hydro-
dynamic equations for the density p(r,t) and polarization p(r,t)

This journal is © The Royal Society of Chemistry 2025
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Fig. 7 (a) Phase diagram in the (A4,, Ay plane for the case of 3 < 0. The
transition line is extrapolated from Fig. 3(a). (b) Liquid flock, (c) density band
representing the phases of the phase diagram (the same color scheme as
in Fig. 2). Total number of particles N = 1024.

fields by appealing to the symmetries and conservation laws of
the system.*” The continuum equations for our system can be
written as:

0 = =V-(vulplp — Duelp]Vp) (11a)

ow = gL+ 2w v )

Here, we have defined:

Valp] = vo — x€op, Delp] = épites

A[p] = (érXr + £0Xt)p - Vtr[p].

The term v, (a coarse-grained velocity) appears in both the
cross-coupling terms between density and polarization fields,
stabilizing the density field at larger y.. This effect is in turn
countered by Dy, (coarse-grained diffusivity), which randomizes
the fields at large y.. The y, and y. contributions via the A term
act to destabilize the polarization field with respect to density
gradients. Given that the transition lines observed are depen-
dent on the area fraction simulated, each of these terms have
an explicit density dependence via the constants &y, &, and &,
which are obtained by fitting the transition line predicted by
the particle-based simulation in Fig. 3(a). A route to these
equations via a systematic coarse-grained procedure is well
established,'””*® though it is not pursued in this work. We note
that there are no stochastic contributions appearing in the
dynamics of the fields p and p in eqn (11). We have assumed
noise to be negligibly small as explained in the previous
section. In effect, the presence of these stochastic terms in
the particle-based model is merely necessitated for the formal
coarse-graining procedure, but does not play any further role in
explaining the instability of the flocking state.

A. Caseof 3y, =0

First, we may consider the case of only rotational torques.
See Fig. 2(a) for phenomenology of this case with y. = 0 from
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the particle-based model. From (11) - on setting y, = 0 — we
obtain an enslaved dynamics of p with respect to the density
gradients:

ow="Ll(ntew — ) (12)

From the above, we see that for the temporal evolution
of p to change the nature of stability with respect to the
density gradients (feedback response), we require that p* is
less than:

B pas

*

o

(13)

We see that the fluctuations in both p and p are strongly
coupled and that any fluctuations are stabilized in the long-
time limit.

B. General case with 3, # 0

For the generic case of both 7, # 0 and y; # 0, we may note that
solving for p = 0 in (11), whilst ignoring fluctuations, we obtain:
— VO

C &t + 280x,

*

P

thus generalizing (13) for y; # 0. In the following, we study
the stability of the system about these steady-state values
for the density field p* and a steady-state value of polar
order p*.

C. Stability of the flocking state

To study the stability of the flocking state, we linearize eqn (11)
for the steady-state density and polarizations (p*, p*), defining
(Bp, 8p) = (p — p*, p — p*)- We use the following choice of
Fourier basis expansion

3p(q, ) = ‘e“‘"e“‘”ﬁp(r, Hd’r (14a)

30(q, w) = Jeiq"ei("’(v -8p)d’r (14Db)

For a phase with uniform global polarization, the following
conditions will hold: Vp* — 0 and V-p* — 0.

Eqn (11) can then be linearized on the basis of (14) to obtain
the stability condition for the flocking state and subsequently
derive the boundary line of eqn (8), for a generic y.. The full
linearization in Fourier space yields the following:

4/ —éap” —vulpl /3P
| -] = . (15)
dz\ 50 —PAp]/2 0 80
Here A[p*] = (2&oy: + &rr)p* — vo. The dispersion relation for
(q) then reads

. 2 * 2
P /T FO L o

Bt el 16
2 Gy lp? (16)

with the condition for linear instability given by:

2802 p*% 1 — Eop*(2v0 — Extup®)1e — Vo(Exxep* — Vo) < O

Soft Matter, 2025, 21, 9058-9069 | 9065


https://doi.org/10.1039/d5sm01005e

Published on 03 November 2025. Downloaded on 2/19/2026 12:30:08 AM.

Soft Matter

Using the above, we can solve for y.. For the value:

Eaep” 2(5%9* 3 1)

=1 |1

2Cfop* (1 _ ér;{rp*>2

2V0

(17)

we can consider the solution y, > y. . Let us further study the
limit %° < 1, which corresponds to parameter ranges used in
Yo
our simulations (see Table 1).
Using the definitions for A, and A, - see eqn (5) - the

condition for instability of the modes w(g) is given by
2 L67b% |

AT =
T3 pr &

*

(18)

We can identify this to have the same functional form as eqn (8)
defining the transition line. Equating with eqn (8), we have that

2 1676

“weg T g

o (19)
We can thus infer the values of & ~ 2/(3b%) ~ 51.3 and & ~
—5.13/b. The hydrodynamic instability of the flocking phase
thus captures the transition lines between ordered and disor-
dered phases in Fig. 2(a) and 3(a). Though eqn (18) captures the
transition for a generic crystalline flock (generic y), we note
that there is no explicit spatial-structure instability encoded in
the hydrodynamic model,** and thus if one simulates eqn (11)
one obtains effectively fluidic flocks at a continuum level.
Nevertheless, we conclude that the noiseless limit of a minimal
hydrodynamic model captures the destabilization transition of
the flock, with exact details of the spatial structure of the
system likely requiring to go beyond the conventional molecu-
lar chaos hypothesis.*®*”

VIII. Summary and discussion

To conclude, we present a minimal mechanism for formation
of fluid flocks that only requires long-ranged (net) repulsive
torques and short-ranged repulsive forces from steric interactions.
Although the roles of excluded volume interactions,'®*****! repul-
sive torques - either short®® or long?® ranged - and long-ranged
repulsive forces***! have been studied separately, we have speci-
fied here the individual contributions of each of those components
and argued that the former two are the minimal requisite
components. The mechanism can summarized as follows: the
pair colloids slide together for at least a unit length before
deterministically rotating away from each other. This is
required to break the forward-backward symmetry at the
pair-collision level. Destabilization of the flock arises due to
symmetric collisions at the pair colloidal level, wherein they
slide exceedingly short before rotating away upon collision.
We show that these results are consistent with the noiseless
limit of a minimal hydrodynamic theory. One may ask whether
such a sliding mechanism alone added to cognitive based
(agent based) models'*'* could reproduce the flocking transi-
tion; indeed we will leave this to future work.
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It is important to note that the CLF and CCF phases are both
generated by, and further destabilized by, the deterministic
torques themselves, independent of the contribution of noise.
Though we have explicit noise terms in the updates in eqn (1)
for the sake of completion, they are set to be negligibly small
(see Table 1 in the Appendix). We note that we have repeated all
the simulations presented in Fig. 2 with D, = D, = 0 and have
found the results to be identical. Thus, our results on flocking
of phoretically interacting active particles and their destabiliza-
tion are distinct from conventional picture of noise-induced
inhibition of flock formation.>"*?**" We note that in the
absence of short-ranged excluded volume repulsions, our
results on the formation of CLF would converge to that recently
studied in ref. 26 where the need for (long-ranged) repulsive
forces is more imminent. Translational repulsion merely ren-
ders the flock to acquire a crystalline structure. We also find
flocks for (a narrow range of) long-ranged attractive forces, if of
the order of less than the short-ranged repulsion. We have not
studied here the role of particle shape anisotropy,'”*° which
would add additional competing length scales to our analysis.
We have also not studied the role of hydrodynamic interactions
between the particles.>”®>" We expect our results here to be
directly relevant to a variety of experimental systems. For
example, migrating cell collections have been widely reported
to exhibit spatial organization resembling a polar fluid,'®*
while their interaction mechanism has been known to include
(among others) long-ranged chemotaxis and avoidance
torques.’® The presented mechanism being very generic, we
expect it to also be relevant for interacting colloids with non-
diffusiophoretic fields,>*"***® where the underlying mechanism
should also hold.
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Appendices
1. Table of parameters

A table of all the parameters used for the generated figures is
presented in Table 1.

A Pair correlation functions

The pair distribution function g(r,¢,0) implies correlations and
provides the probability density of finding a pair of particles at
a distance r with self-propulsion angle 0. Here, ¢ is the angle
between the relative position r and the self-propulsion direction
of the tagged particle, &;f; = cos ¢ and 0 is the angle between
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Fig. 8 Pair correlation function g(r.¢.0) for the isotropic phase for four
different 6 ranges in panel (a). In panel (b), we show pair correlation
function g(r,¢) in the band phase for y; = 0 and y > 0.

the propulsion directions of the particle pair. To obtain this
pair distribution function, histograms are created with the
number of particles Ny(r,¢,0) at distance r, positional angle ¢
and angle 0. The bins are chosen as 0.1» for r, 1/150 for ¢ and
n/2 for 0. Then we need to normalize Ny(r,¢,0), to obtain the
pair distribution function g(r,¢,0). The number of configura-
tions is ¢, (10 000 snapshots), over which histograms are made.
The area of the annular segment of radial width dr and angular
width dg is given by 4, = rdrde. The number density is p = N/L*
and the size of the relative orientation bin is df. Then the

A:pNt.do

normalization factor is N, = and the pair distribution

function is given by g(r,p,0) = Ny(r,¢,0)/N;.

An example of this for the isotropic phase is given in
Fig. 8(a). The pair distribution functions are determined for
the four different 6 ranges as: 6: [0, n/2], : [n/2, n], 0: [—7, —n/2]
and 0: [—m/2, 0]. We see that in the isotropic phase, the
probability of finding a neighboring particle is different in
the front relative to the back of the direction of motion
(orientation), indicative of the symmetry breaking in an active
disordered gas.'”*®*® In the main text, we show that g(r,p)
also distinguishes CLFs from CCFs, the former having a
four-lobe structure compared to the latter’s hexatic structure.
In addition, we compare the structure of g(r,¢) for the band
phases in Fig. 8(b), for the CLF and CCF density bands. We see
that the CLF and CCF bands are distinguished strongly via
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this measure: in the former there is a strong likelihood
of finding neighbouring colloids in either the front or back
of the propulsion direction, whilst in the latter the aggregate
structure resembles that of a (non-polar) liquid due to the
presence of cross bands. Note that the band structure is more
dense in the case of y. = 0, resulting in a more intense
correlation in g(r,p). A related quantity that we compute is
the radial g(r). This is plotted in Fig. 4, distinguishing the CLF
and CCF.

B Description of the supplementary movies

The time evolution of the CCF and CLF structures for a larger
system with the total number of particles N = 20 000, is attached
as supplementary movies.*> We note that our results are robust
as we change the number of particles in the simulations. For
both cases, we started with random initial conditions (positions
and orientations) and updated the equation of motion follow-
ing eqn (1). In both movies, the particles are colored by their
orientations (given in terms of the angle 0 their orientation
vector makes with the positive x-axis). The color bar is the same
as the one used in Fig. 2. Two particles are intentionally colored
black throughout the simulation to simply trace them during
the dynamics. Polar order or the flocking state collectively
emerges in this model with both the cases. Parameters used
for the two movies are below.

e Movie I: in the case of y, = 0 (CLF), the liquid flock
gradually forms throughout the system and moves in a parti-
cular direction. The fixed parameter values are: L = 418, b = 1,
dt =0.01,D, =103, D =107, x =175, vy = 50, ¥ = 0, }; = 0.75.

e Movie II: in the case of y, > 0 (CCF), the particles first start
to form local polar flocks (colored patch), then merge and pick
a particular direction of motion entirely. The fixed parameter
values are: L =418, b =1, dt=0.01, D, =10 >, D, =103, & = 175,
Vo = 50, x¢ =3, yr = 6.

e Movie III: in the case of y. = 0 (CLF), particles form several
density bands throughout the space. Additionally, less dense
waves (which move perpendicular to the direction of density
bands) are also seen to form with these density bands. The
fixed parameter values are: L = 418, b = 1, dt = 0.01, D, = 103,
D =103,k =175, vy = 50, ¢ = 0, y; = 2.0.
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