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Microgels made of poly(N-isopropylacrylamide) are the prototype of soft, thermoresponsive particles

widely used to study fundamental problems in condensed matter physics. However, their internal

structure is far from homogeneous, and existing mean-field approaches, such as Flory—Rehner theory,
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provide only qualitative descriptions of their thermoresponsive behavior. Here, we combine machine
learning and numerical simulations to accurately predict the concentration and spatial distribution of
crosslinkers, the latter hitherto unknown experimentally, as well as the full swelling behavior of micro-

gels, using only polymer density profiles. Our approach provides unprecedented insight into the struc-

rsc.li/soft-matter-journal

1 Introduction

Microgels are colloidal particles produced by the simple yet
versatile process of precipitation polymerization, and are nowa-
days used as a favourite model system of soft, deformable
particles.”? Since they are entirely made of polymers, arranged
in a disordered network via chemical crosslinking, they are able
to respond to external stimuli. For example, they can easily
change their volume in response to a temperature variation
when the constituent polymer is thermoresponsive, such as
poly(N-isopropylacrylamide) (pNIPAM).>”> Therefore, at a char-
acteristic temperature, the polymer network undergoes a so-
called volume phase transition (VPT), from a swollen to a
collapsed state. This can be exploited to study fundamental
physics problems via an in situ tuning of the suspension packing
fraction.>” One important parameter that can be easily varied
experimentally is the molar concentration of crosslinking molecules,
hereafter abbreviated as crosslinker concentration ¢, which
controls the overall softness of a microgel.” It is well-known
that, in the standard synthesis protocol—precipitation poly-
merization—crosslinkers react faster than monomers, thereby
accumulating within a central region of the microgel, the so-
called core, which can be distinguished from the outer corona,
where crosslinkers are almost absent. Despite several attempts
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tural and thermodynamic properties of any standard microgel.

made using chemical kinetic modeling, to our knowledge, there
is no available work capable of predicting the crosslinker dis-
tribution within pNIPAM microgels. Instead, to describe the
VPT, there exists the celebrated theory of Flory and Rehner,?
which combines mean-field-like theoretical assumptions with
more phenomenological approaches, to describe the available
experimental swelling curves. However, it is well-known that the
theory suffers some important drawbacks, such as the presence
of many fit parameters, whose physical meaning is often
obscure.’ Therefore, it would be important to have an alternative
way to predict the swelling behavior of a microgel.

In this article, we take advantage of a recently put forward
monomer-resolved microgel model, which has been shown to
accurately describe the internal structure of the experimental
systems, both in bulk suspensions'® and at liquid-liquid
interfaces," to fill this gap. To this aim, we perform extensive
computer simulations of individual microgels with different
crosslinker concentrations to create a comprehensive numerical
database of microgel structures at many different temperatures
across the VPT. Using a subset of these structures as the training
set, we apply machine learning (ML) techniques to predict
crosslinker properties. Building on the concept that density
profiles can encode thermal observables'>™ and all relevant
structural information, we demonstrate that the total polymer
density profiles of microgels in the swollen state are enough to
accurately predict the crosslinker concentration, ¢, via unsuper-
vised ML. This approach is subsequently validated against
simulations of microgels with different sizes and ¢ outside the
training set, as well as for available experimental data. Following
a similar approach, we then train a supervised neural network
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(NN) to predict the distribution of the crosslinkers, which is
found to follow the fuzzy sphere model,"" in analogy to the
overall microgel. Our approach thus enables, for the first time,
the prediction of the crosslinker distribution in experimental
systems. Finally, we use our database to build a phenomenolo-
gical framework to predict the complete swelling behavior of the
microgels for a given c, similar in spirit to the Flory-Rehner
theory. Therefore, from the sole knowledge of the microgel total
density profile at low temperature, which can be extracted from
the fit of the form factor, routinely measured nowadays by small-
angle scattering techniques'* or directly obtained by super-
resolution microscopy,"” our ML approach is able to reliably
predict the concentration of crosslinkers and their radial dis-
tribution, as well as the full swelling behavior of any standard
PNIPAM microgel.

2 Models and methods

2.1 Molecular simulations

The in silico synthesis of microgels follows the approach estab-
lished in ref. 4, 10 and 16, which was shown to accurately describe
the structure of experimental systems.'®"” The protocol involves
two steps. First, we perform NVT molecular dynamics (MD)
simulations of a binary mixture of N = N, + N, patchy particles
confined within a sphere of radius Z. The mixture contains N,
particles with two patches representing monomers and N, parti-
cles with four patches acting as crosslinkers. These simulations
are performed using the OXDNA package."® To reproduce the
core-corona nature of microgels, a radial force is exerted on the
crosslinking particles, as described in ref. 10. In the second step,
once the microgel is assembled, we replace the patchy interac-
tions with bead-spring bonds, thereby fixing the structure.

We simulate the assembled polymer networks with different
crosslinker molar fractions ¢ € [0.5, 1.25, 2.0, 2.5, 3.0, 4.0, 5.0,
6.0, 7.0, 10.0, 12.5, 15.0], covering the full range of experimen-
tally synthesized pNIPAM microgels. The total number of
particles in the microgel is set to either N ~ 42000 or N ~
336 000. The number of crosslinkers is given by N. = ¢N/100,
with the rest being monomers. All particles interact with the
Weeks-Chandler-Andersen (WCA) potential,

(0] e reane

0 r>2l/%g,

1)

Uwca(r) =

where r is the distance between two beads, ¢ is the diameter of
each bead, setting the unit of length, and ¢ controls the energy
scale and sets the unit of energy. For bonded beads, there is an
additional interaction modeled by the finite-extensible-
nonlinear-elastic (FENE) potential:*®

if r<Roo, (2)

2
r
UFENE(") = —SkFR()2 log |:1 — (m)

with R, = 1.5 and ky = 15 being the maximum bond extension
and stiffness, respectively. To simulate the effect of tempera-
ture, we include a solvophobic attraction,'®*° which implicitly
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captures the change in the affinity of the monomers with
respect to the solvent. This potential reads as

—eot r <2V
1 2
U,(r) = %6 [cos (y<£> +/)’> - 1} 2/ < r < Ry, (3)
o
0 r> Ry

where y = (n(2.25 — 2'%)) !, f =21 — 2.257, and « is the strength
of the attractive interaction, thus amounting to an effective
temperature. The network is in good solvent conditions for
o =0, undergoes the volume phase transition (VPT) for o ~ 0.63
and reaches the collapsed state observed in experiments for
o ~ 0.8-1.0. Previous studies have shown that o varies approxi-
mately linearly with temperature across the VPT range'®'” (see
the SI, Section S4).

We perform NVT MD simulations of individual microgels
using the LAMMPS package®' with a time step of ¢ = 0.002t,
where © = y/moa? /¢ corresponds to the time unit. The tempera-
ture is fixed to kgT/e = 1.0, where kg is the Boltzmann constant,
while we vary the solvophobic parameter o to mimic the effect
of the real temperature, as described above. The center of mass
of the microgel is fixed to the center of the simulation box. We
equilibrate the system for at least 3 x 10° timesteps, followed
by a production simulation of 1 x 10” timesteps. To account for
the role of disorder in the assembled polymer networks, the
results are averaged over at least three independent topologies.

2.2 Structural analysis

The main structural information used as input for the neural
networks is obtained from the radial density profile of the
monomers p(r), with respect to the microgel center of mass.
This is averaged over different time intervals and it is defined as

plr) = <Za<|r,-—rcm|—r>> : (@

At

where r.;, corresponds to the position of the center of mass of
the microgel, r; that of particle 7, and () represents a time
average over the window of time At. In order to generate a large
pool of density profiles, we generate such profiles every 1 x 10"
timesteps, averaging every At = 1 x 10> timesteps inside the
previous time window. This choice ensures that each sampled
configuration represents an independent snapshot of the sys-
tem’s structure. In addition, we calculate the radial density
profiles of the crosslinker monomers only, p(r), by substituting
N in eqn (4) with N..

We fit p(r) using the well-established fuzzy sphere model,"*
which combines the profile of a solid sphere of radius R. with a
Gaussian function representing the corona of the particle.'* In
an approximated version®” that holds for standard core-corona
microgels, this reduces to

plr) ~ Aerte( "), 5)
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where A is a fit parameter, R. denotes the radius of the core, and
o, is the half-width of the corona shell.

We also compute the hydrodynamic radius, Ry, of the
microgel, following the method established in ref. 4. First, we
construct the convex-hull that encloses all of the microgel
monomers. This convex hull is tessellated into triangular facets
by construction, and their vertex coordinates are used to build
the gyration tensor. The Ry is finally computed as

-1

& 1
R =2 Uo V@ + 0)(az + 0)(a + Y ©

with a4, a,, and a; being the principal semiaxes of the gyration
tensor, obtained from its eigenvalues, 4; as @; = v/34;. This
definition approximates the microgel to an effective ellipsoid
with the same gyration tensor, providing a meaningful measure
of its overall size in solution. Further details and validations of
this approximation can be found in ref. 4 and 23. The swelling
behavior is characterized by the a-dependent swelling ratio S,,
defined as

S, = Ru()/Rus(o* = 0.86), 7)

where Ry;(o* = 0.86) roughly corresponds to the hydrodynamic
radius of the collapsed microgel at the effective temperature of
o* = 0.86. The latter is estimated from the experimental data of
ref. 17.

2.3 Machine learning methods

To analyze and predict different structural features of the micro-
gels, we employ both unsupervised and supervised machine
learning (ML) approaches. We use autoencoders (AE)***° to deter-
mine the crosslinker concentration and neural networks (NN)*® to
predict crosslinker distributions. Both models are implemented
and trained using PyTorch.>”

2.4 Autoencoders

An autoencoder is a nonlinear dimensionality reduction
method based on a neural network (NN) trained to reproduce
its input at the output. It consists of an encoder that maps high-
dimensional input data to a low-dimensional latent space and a
decoder that reconstructs the input from this latent representa-
tion. The AE is trained by minimizing a loss function that
quantifies the difference between the input and the recon-
structed output. Once trained, we discard the decoder and
retain only the encoder using the latent space representation
to predict the crosslinker concentration of a microgel.

As input, we use a collection of discretized radial density
profiles from MD simulations of microgels with different
¢ values, represented by a set of vectors P(i) € RY, where P(i) = p;
denotes the discretized density profile of sample i and d denotes
the dimensionality of the vector. The choice of d allows us to
control the resolution of the density profile. Here, we choose d =
115. In addition, the entries P;(i) of the input vector correspond
to the value of the density profile evaluated at r;, and thus, we
ensure that for all considered data sets, regardless of the cross-
linker concentration, the entry j always corresponds to the same
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distance 7;. In order to guarantee this condition and to be able to
compare microgels of different sizes, we preprocess the data
obtained from the radial density profiles as follows. First, we use
a scaled radial coordinate r* that preserves the characteristic
decay of each state point. This is done using the value of the
integral of the density profile, which in simulations corresponds
to the total number of particles in the microgel N = [pdV/, and
by rescaling r* = /N, The latter normalizes the integral of p(r*)
to one. Second, to ensure that entry j corresponds to the same r*
across the dataset, we interpolate p(r*) using splines and con-
struct P(i) by evaluating the splines in intervals of r* = 0.025
starting from r* = 0.125. In the output layer, the density profiles,
represented by a vector P'(i) € RY, are recovered.

Inside the encoder, we perform a nonlinear projection onto
a low-dimensional space L(i) € R*, where d’ < d. We choose d’
in such a way that more than 99% of the variance of the input data
set is recovered, in this case, corresponding to d’ = 1, as shown
later. We use a hyperbolic tangent activation function,”® varying
the number of neurons in the hidden layer from 32 up to 160 and
adjusting the batch size to optimize the parameters that better
minimize the error function. In particular, we fix the number of
neurons in the hidden layer to 80, as we do not find relevant
changes in the results obtained with different architectures.

To train the AE, we minimize a loss function using the mini-
batch stochastic gradient descent with momentum.?*' In
particular, we use the mean squared error function with the
addition of a weight decay regularization term”® defined as

1 & 2 -
E=3 IPG) = PO +2)wf, )
i=1 J=1

where W is the total number of weights w, M is the total number
of samples in the training data set, and 1 = 10> is a regulariza-
tion parameter that penalizes large weight values. In addition,
we use a learning rate of 0.01. We measure the performance of
the AE by calculating the fraction of variance explained (FVE) by
the NN, defined as

SSPG) — PGP
FVE=1— Vl;/lj}li) =1-= )
> [P() — (P

where the MSE corresponds to the mean-squared-error and var
denotes the variance of P.

2.5 Neural networks

To predict the distribution of the crosslinkers within the
microgel, we use a simple NN with a single hidden layer and
a rectified linear unit (ReLU) activation function.>® The same
normalized discretized radial density profiles P(i) € RY with d =
115 from the AE are used as input to the NN. In this case, the
feature to learn corresponds to the crosslinker distribution p.
represented by the vector P’. As for the AE, the radial coordinate
is normalized with the total number of particles 1/N*. Due to
the small values of p., the y-axis is also normalized by the
corresponding value of c. The number of neurons in the hidden
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layer is varied from 32 to 736. We minimize the error function
defined in eqn (8) between the predicted crosslinker density
profiles P’ and the original ones from the training set, using
mini-batch stochastic gradient descent with momentum?®3!
and a learning rate of 0.1. The NN is trained until the number
of epochs reaches 5 x 10° or the MSE difference between the
last 500 epochs is less than 1 x 10~”. We finally fix the number
of neurons to 96 reaching a RMSE of 1.3 x 10™°,

3 Results and discussion

3.1 Effect of the crosslinker concentration on the microgel
structure

In order to generate a database of microgel particles, we perform
molecular dynamics (MD) simulations of monomer-resolved
microgels interacting with the bead-spring potential,">* as
described in the Models and methods section. Each microgel
contains a total of either N ~ 42000 or N ~ 336 000 beads, with
the molar crosslinker concentration ¢ ranging from ¢ = 0.5% to
¢ = 15%. This parameter plays a key role in determining the
microgel topology, resulting in significant structural and elastic
differences.>"” We start by reporting the dependence of the
microgel structure on the crosslinker concentration in the swollen
state, i.e. o = 0.0. Fig. 1(a) shows the radial density profiles p(r) of
the microgels with N ~ 336000 beads. The change in ¢ has a
direct effect on the shape of the microgel, as reflected in the
profiles, which become progressively sharper with increasing c.
In particular, the behavior of p(r) displays an almost constant
regime, representing the core, followed by a decay at large  in the
corona region. The latter becomes progressively more extended
and less distinct from the core with decreasing ¢. Microgels with
N ~ 42000 beads exhibit similar behavior, as shown in the SI
(Fig. S1). Typical snapshots of the microgels are shown in
Fig. 1(b), changing from a rather compact structure for ¢ = 10%
to a much more heterogeneous one for ¢ = 0.5%, denoting the
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presence of so-called dangling ends in the exterior of the microgel.
All density profiles are well-described by the fuzzy sphere model,**
as shown in Fig. 1(a), with the corresponding fit parameters
reported in Table S1 of the SI.

In Fig. 1(c), we show the corresponding crosslinker radial
density profiles, p., of the microgels with N ~ 336 000 beads.
Similar to the total density profiles, the crosslinkers alone
exhibit a similar profile. In the core region, they are roughly
constant, although with larger statistical noise due to the small
amount of crosslinkers. However, they decay to zero at much
shorter distances in r with respect to p(r), signaling the accu-
mulation of the crosslinkers within the core. In addition, this
decay distance does not strongly depend on ¢ in contrast to
what is observed for p(r). It is worth noting that crosslinker
profiles are also found to be quite well-described by the fuzzy
sphere model. This description smoothens out local fluctua-
tions, particularly at small r, where structural inhomogeneities
are more pronounced. In this sense, the fuzzy-sphere model
provides a useful representation that captures the overall shape
of the distribution, while averaging out microscopic details.
The corresponding fuzzy-sphere fits are also shown in Fig. 1(c),
with continuous lines with the fit parameters reported in Table
S1 of the SI

Finally, variations in c¢ also affect the microgel size. For
instance, the hydrodynamic radius Ry displays a power-law
dependence Ry ~ ¢ **'*%9 in good agreement with the
predictions of the Flory-Rehner theory for polymer
networks.®*? This behavior, also shared by the calculated gyra-
tion radius, was also previously reported in experimental
works."”** This is shown in Fig. 1(d), where the results from
simulations of microgels with both N ~ 42000 and N ~ 336 000
beads as a function of ¢ are shown. Instead, at the local scale, for
individual polymer chains belonging to the network, the average
end-to-end distance varies as Re. ~c¢ %% as shown in
Fig. 1(e). This behavior is relatively close to the Flory scaling
for polymer chains in good solvent,'” with a minor deviation
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Fig. 1 Crosslinker concentration and structural effects. (a) Averaged radial density profiles of microgels with N ~ 336 000 beads for various crosslinker
molar fractions ¢, obtained from simulations (symbols) and fuzzy sphere fits (lines); (b) snapshots of high (i), medium (ii) and low (iii) crosslinked microgels;
(c) corresponding crosslinker radial density profiles, pc(r), from simulations (symbols) for different c values. Lines correspond to fuzzy sphere fits (Table
S1); (d) crosslinker concentration ¢ dependence of characteristic microgel lengths (R,): hydrodynamic radius Ry (circles), gyration radius Ry (triangles) and
(e) end-to-end distance R (squares) for microgels with N ~ 42000 (fill symbols) and N ~ 336000 (open symbols) beads. Dashed lines are the

corresponding power-law fits.
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likely attributed to the effect of the crosslinkers. Both scaling
behaviors and related exponents are essentially independent of
the microgel size, as expected.

3.2 Crosslinker concentration prediction

The previous results suggest that the knowledge of the crosslinker
concentration is encoded in some of the microgel features, in
particular, in the total density profile of the microgels. Although ¢
can be estimated by fitting the fuzzy-sphere parameters as a
function of ¢, as described in detail in the SI (see Section S2), the
resulting fit parameters do not follow the expected scaling behavior
for microgels, namely, the Flory or Flory-Rehner relations. More-
over, this approach is limited to systems that can be adequately
described by the fuzzy-sphere model, making the use of this
approach specific to the model itself. To overcome this problem
and to establish a more general and transferable method, we thus
propose to use unsupervised ML by means of autoencoders (AE) to
directly extract ¢ from p(7). This nonlinear dimensionality-reduction
method consists of a neural network that encodes a high-
dimensional input and projects it into a low-dimensional latent
space, from which it then reconstructs the original input. The key
information that distinguishes the initial input data is presumably
conserved in the latent space, and hence, we expect this to
correspond to the crosslinker concentration.

To train the AE, we employ discretized density profiles
obtained from simulations of microgels with varying c values.
The input of the AE is a vector P of dimension d = 115, where
each entry corresponds to the density profile value at a given
radial distance. To make the method scalable and transferable
to microgels of different sizes, we preprocess the input data by
rescaling the radial coordinate as described in the Model and
methods section. This allows the method to be applied to any
microgel, whose density profile is known, including experi-
mental ones. Furthermore, to provide sufficient data and
variability to the AE, we employ averaged radial density profiles
in small windows of time. We use ¢ = 1.25, 2.5, 5.0, and 12.5%
as a training set, while the simulations for additional ¢ values
are later used as test data sets. The encoder consists of 80
neurons, followed by the bottleneck that projects the data onto
a d’-dimensional space.

We first determine the minimum number of dimensions to
be used in the bottleneck d’. To this aim, we train the AE for at
least 3 x 10° epochs, with varying d’ and then we compute the
final mean squared error (MSE) and the fraction of variance
explained (FVE) as defined in the Methods section. The result-
ing FVE is reported in Fig. 2(a) as a function of d’, showing that,
even for d’ = 1, the AE is already able to capture more than 99%
of the variance of the input data by projecting it onto a single
number. At higher dimensions, d’ > 2, this improves, reaching
a plateau of FVE =~ 0.993. However, since the crosslinker
concentration c is a scalar quantity, we choose to work with a
bottleneck dimension of d’ = 1 for its prediction. This choice
simplifies the model and already yields very accurate results.

After training the entire AE, we discard the decoder and use
the encoder to project the data into the latent space. We report
in Fig. 2(b) the probability distributions P(L) of the latent space

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Crosslinker concentration prediction. (a) Fraction of variance
explained (FVE) for the autoencoder with varying dimensions d’ of the
latent space L. The horizontal line indicates FVE = 99%; (b) probability
distributions of L for microgels with N ~ 336 000 beads with different ¢
values for the training data; (c) L as a function of ¢ for all simulated
microgels, including training (circles) and test (triangles) data sets and
experiments from ref. 17, corresponding to microgels with ¢ = 1.25, 2.5,
and 5.0% (stars). The dashed line is a power-law fit. Inset: P(L) for two
different microgel sizes with ¢ = 10.0%.

values L for different ¢ values of the training data set with
microgels consisting of N ~ 336000 beads. These results
confirm that d’ = 1 is already able to distinguish between
microgels with different ¢ values, since the distributions in
the latent space are well separated, each following a normal
distribution with a maximum standard deviation of 0.01. We
also observe that the mean values of the distributions, L, shown
in Fig. 2(c), as a function of ¢, are unevenly distributed in the
latent space, following a power law relation with ¢, given by
L(c) ~ Aoc”, where A, ~ 0.514 and v ~ 0.59 are fit parameters.
The latter is remarkably close to the Flory exponent for polymer
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chains in good solvent. A similar value of v is recovered when
varying the number of neurons in the AE hidden layer.
Although L does not correspond to any physical observable,
this scaling behavior suggests that the encoder does not simply
differentiate the samples, but rather captures the key structural
changes associated with variations in ¢, consistent with theore-
tical expectations for polymer networks.

Overall, these results demonstrate that the AE effectively
captures the underlying physics of the system, with information
taken solely from the density profile. Finally, the crosslinker
concentration ¢ can be easily predicted for any microgel by
inverting L(c) ~ Ao¢” and using the projection on the latent
space of a given density profile.

We report in Fig. 2(c) the latent values as a function of the
predicted ¢ of all simulated microgels, including the ones
outside the training. The AE predictions show remarkable
agreement with the expected c-values of training and test data
sets, with a confidence value ranging from £1% to +10%. We
further validate the method by applying it to microgels of
different sizes. Apart from a small shift, the latent space values
for the two microgel sizes are found to be very similar, as shown
in the inset of Fig. 2(c). In addition, the AE can also be directly
applied to experimental data to estimate c. We show in Fig. 2(c)
the predicted ¢ values for the experimental data from ref. 17.
Despite using a single density profile obtained from the fit of the
form factor fuzzy sphere,'” the predictions fall within an error
margin of £0.3. Finally, when applying the AE trained with « = 0
to larger values of « (see the SI, Fig. S4), the latent-space values
follow trends similar to those of the swelling behavior, discussed
in following sections. All these results further demonstrate the
robustness and transferability of the approach.

3.3 Crosslinker distribution prediction

Once c is obtained, we focus on the prediction of the cross-
linker density profiles p.(r), calculated directly from simula-
tions and shown in Fig. 1(c). Although the overall shapes of
pc(r) and the total monomer density profile p(r) are similar,
their relationship is non-linear, particularly in the decaying
region corresponding to the corona, as shown in Fig. S2.
Therefore, to perform this task, we employ a NN to learn p.(r)
from the overall density profile. The same training and test data
sets of the AE are used. As before, our input data set is obtained
from the discretized total density profile with the r-axis normal-
ized. The output now corresponds to the p.. However, since this
quantity is subject to large statistical noise due to the small
number of involved crosslinkers, we use the fuzzy sphere fits of
pe, averaged over different microgel configurations, for each ¢. We
normalize the radial axis and the y-axis by the same factor of the
total density profile and by the crosslinker concentration c,
respectively. The chosen NN has 1 hidden layer with 96 neurons.
To train the NN, we minimize the error function between the
target p. and the NN output defined in eqn (8). The input dataset
includes data from microgels assembled with crosslinker concen-
trations ¢ = 1.25, 2.5, 5.0, and 10.0%, with the additional simu-
lated values of ¢ used as test data sets. In the same spirit of the
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Fig. 3 Crosslinker distribution prediction: (a) parity plot of target and
predicted pc(r) values for the training set corresponding to ¢ = 1.25, 2.5,
5.0, and 10.0% (circles) and the test set (triangles); (b) predicted p.(r) values
outside the training set for simulations with ¢ = 7.0% (circles) and experi-
mental data with ¢ = 5.0% (triangles) from ref. 17; lines are fuzzy sphere fits.

previous section, we add variability to the input dataset by using
short-time-average density profiles as input.

The parity plot between the ground truth and the predicted
pc(r) is shown in Fig. 3(a), where we observe remarkably good
predictions for the training and also test data sets. This is
confirmed by directly comparing the ML-predicted p.(r) fora c =
7.0% microgel outside the training set with the one obtained
from the simulations in Fig. 3(b).

We further test our method by applying it to the ¢ = 5.0%
experimental data taken from ref. 17, whose ML-predicted p.(r)
is also reported in Fig. 3(b). In both cases, the predicted profiles
are in excellent agreement with those obtained by simulations,
confirming the predictive capability of our approach.

3.4 Swelling behavior prediction

Our final goal is to predict the swelling behavior of a microgel,
given the ML-predicted crosslinker concentration. To do so, we
first simulate the various microgels with different ¢ values at
many different temperatures, by employing the solvophobic
potential U, in eqn (3)'® (see the Model and methods section).
We then calculate the swelling ratio S from eqn (7) and report it
in Fig. 4(a) as a function of ¢ for different values of o for
microgels with N ~ 42000 beads. We then fit the dependence
of S on ¢ with a generalized power law as

S(a,c) = Rg

= h(a)d' ™, (10)

where Ry, corresponds to the hydrodynamic radius of the

This journal is © The Royal Society of Chemistry 2025
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Fig. 4 Swelling behavior: (a) swelling ratio S as a function of crosslinker molar concentration c¢ for various « values, ranging from o = 0, the swollen state,

to o = 0.724. Dashed lines are power-law fits with eqn (10), determining h(x)

and f (), reported in (b) and (c) as a function of «. (d) S as a function for o for

various values of ¢ from simulations (circles), experimental data from ref. 17 (triangles) and predictions from egn (10) and (11) (dashed lines).

collapsed microgel. The functions %(x) and f(«) solely depend
on « and are reported in Fig. 4(b) and (c), respectively. The
a-dependence of both functions can be written as

Fo) ~ Ag + A{{((0 + 43)/43),

(11)

where {(x) = 1/(1 + €) is a logistic function, X refers to either for
h and A are fit parameters associated with each function,
reported in Table S3 of the SI. We find that the physics of the
VPT is directly encoded in these parameters for f(x),with 4] ~
0.19 being the expected Flory-Rehner exponent at o = 0.0 and
Ab ~ —0.63 coinciding with the « value at which the VPT
occurs. A similar value is also obtained for A%

Once we know the dependence of # and f on temperature and
¢, we can finally reconstruct the full swelling behavior of any
standard pNIPAM microgel. To test this hypothesis, we show the
predictions of eqn (10) and (11) in Fig. 4(d) for different c values in
comparison to simulation results and to the experimental data of
ref. 17. In particular, to enable a proper comparison, the relation-
ship between temperature and o reported in ref. 10 and 17 is used,
as shown in Section S4 of the SI. Overall, we find very good
agreement at all temperatures, with minor deviations close to the
VPT, where experimental error bars are largest. Interestingly, once
S(e) is known, for example, from dynamic light scattering (DLS)
measurements, it can be used backwards to estimate ¢ using
eqn (10) and then obtain an approximate density profile, if not
available experimentally, by using our database, following the
mapping described in the SI (Section S6).

4 Conclusions

In this work, we established a novel ML approach that, through
the sole knowledge of the total density profile of any standard
microgel, is able to predict its crosslinker concentration and
crosslinker distribution and the full swelling curve.

While the monomer density profile of a microgel can be
directly or indirectly obtained from experiments, crosslinker
profiles remain experimentally challenging. Techniques such as

This journal is © The Royal Society of Chemistry 2025

contrast-variation SANS with deuterated monomers**® could, in

principle, allow their determination. However, to our knowledge,
such measurements have not yet been reported, and careful
experimental design is required to be able to detect the weak
crosslinker signal arising from their low concentration. Alter-
native super-resolution microscopy measurements, where cross-
linkers are attached to fluorophores, could be employed, though
they would present comparable experimental challenges. The
present study exploits neural networks to predict them for the
first time also for experimental systems. While we have validated
the approach against the corresponding numerical profiles, it
remains a challenge to detect them also experimentally to verify
whether they also satisfy a fuzzy sphere decay, as shown in the
present simulations.

Our work further highlights the power of machine learning
techniques, trained on carefully selected data obtained from
simulations, to uncover hidden relations. Specifically, by using
autoencoders (AEs), we extract the information regarding the
crosslinker concentration encoded in the density profiles. The
associated latent space is found to follow a power-law dependence
on ¢ with an exponent of ~0.59, remarkably close to the Flory
prediction for polymers in a good solvent, thereby demonstrating
the ability of the AE to correctly recover the underlying physics of
the system. Since the overall structure of the microgels was shown
to be conserved across different length scales,'® the proposed
methodology is robust against size variations. This structural
invariance, combined with the use of radially normalized profiles,
ensures that the predicted features remain robust and transfer-
able, allowing the method to be applied to experimental microgels
of different sizes, including smaller ones with a size of <100 nm.

In addition, our approach can be readily extended to differ-
ent microgels, either of different topologies, e.g., hollow ones,*®
or obtained through a different synthetic protocol, amounting
to networks with a different internal structure. We will pursue
such generalization of the method in the future.

Finally, we can also foresee to use the method to calculate
other microgel properties, such as elasticity or charge
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distribution, providing sufficient training data. Similarly, it
could be applied to assess microgel deformation at interfaces
as a function of crosslinker concentration."*

Overall, our results show that machine learning models
trained on monomer-resolved simulations can successfully
predict key structural features of microgels across a wide range
of synthesis conditions. The quality of the approach will be
established by its employment against different sets of experi-
mental systems, in order to establish the accuracy of the
predictions. We hope that experimental groups will take advan-
tage of our model and assess its predictive capability. In
parallel, future work will be devoted to leveraging similar ML
approaches for the inverse design of microgel architectures
with tailored swelling ratios and density profiles, optimized for
specific applications.
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