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Machine learning of the anomalous diffusion of
branched polymers in crosslinked networks

Utku Gurel, "2 Ties Leenstra®® and Andrea Giuntoli (= *

Diffusion processes in complex environments, such as the extracellular matrix, are crucial in drug
delivery. Common analytical theories developed for diffusion in such environments assume spherical,
rigid particles. However, polymeric nanoparticles can often be aspherical and highly deformable, which
introduces complexity beyond the spherical and rigid body assumptions. Moreover, it is challenging to
measure classical diffusion coefficients under strong confinement or pronounced sub-diffusive
conditions. We theoretically investigate the diffusion of branched polymers (bottlebrushes and stars) in
polymeric mesh networks using coarse-grained molecular dynamics simulations. We introduce the
Debye—Waller factor, a metric of confined mobility that we prove predicts long-time diffusion. We show
that in relevant confinement regimes, elongated bottlebrushes have higher mobility than spherical stars.
We can reliably predict the Debye—Waller factor from particle and network descriptors using Gaussian
process regression. These results characterise the diffusion of arbitrary branched polymer nanoparticles
and provide new, easily obtained metrics and protocols to design more efficient drug delivery carriers
based on simple physical principles.

Introduction

Understanding the diffusion mechanism in confined environ-
ments is essential not only for fundamental transport theory' ™
but also for designing effective drug delivery systems (DDS)*™°
that operate within dense biological tissues. Nanomedicine
offers powerful new ways to deliver therapeutic molecules,
but its success ultimately depends on how well drug-loaded
nanoparticles can navigate the body’s crowded and complex
interior.” After entering the bloodstream, these tiny carriers
must evade rapid clearance, reach the target tissue, and then
thread their way through the narrow pores of the surrounding
extracellular matrix (ECM).'*™*> The composition and pore size
of ECM vary considerably among tissues, with approximately
85% of pores within the brain interstitial matrix being smaller
than 125 nm."® Therefore, how nanoparticles diffuse through
ECM-like networks is a central question for modern drug-
delivery research. Although the diffusion of rigid nanoparticles
with well-defined shapes (spheres or rods) is now relatively well
understood,"*™'® the transport mechanisms governing aniso-
tropic and deformable polymeric nanoparticles remain largely
unexplored. Understanding these mechanisms is especially
important because particles used in practical DDS are rarely
perfectly rigid and spherical.”” Beyond shape and deformabil-
ity, the degree of branching directly tunes hydrodynamic size,
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segmental mobility, and steric interactions, making architec-
ture a key design parameter for controlling nanoparticle diffu-
sion. Most notably, experiments by Rabanel et al. showed that
soft, anisotropic bottlebrush polymers cross the blood-brain
barrier and penetrate the ECM-like gels far more efficiently
than equal-size nanospheres, highlighting the practical impor-
tance of deformability and anisotropy in real DDS.'® Recent
studies have also shown that soft nanoparticles can shrink in
confined environments, boosting their diffusion compared to
hard, non-deformable ones.*®

The theoretical framework for understanding rigid spherical
nanoparticle diffusion in polymer networks was substantially
advanced by Cai et al, who developed a hopping diffusion
model for large nanoparticles confined within network
meshes.” According to this model, particles larger than the
mesh size of unentangled polymer networks become trapped in
confinement cells.*>?° At longer time scales, these particles can
diffuse by overcoming the free energy barrier between neigh-
bouring cells through a hopping process, so that the terminal
diffusion coefficient depends on the particle-to-mesh size ratio.
Subsequent simulation studies have refined and broadened
this picture. Sorichetti et al. showed that spherical nano-
particles in polydisperse networks evolve from free diffusion
to activated hopping and finally to trapping as confinement
increases.*! Xu et al. introduced semiflexible network strands
and found that matching the persistence length to the mesh
size lowers the hopping barrier and intensifies subdiffusive
behaviour.”> Recent work has further demonstrated that
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nanoparticle-network interactions can induce non-monotonic
diffusivity through intermittent hopping,> and that increasing
network stiffness raises the corresponding hopping barriers.**
Shape effects add an additional layer of complexity: rigid rod-
like systems exhibit direction-dependent diffusion scaling"®
and can even outpace Stokes-Einstein predictions.>” Lin et al.
recently mapped the sphere-to-rod crossover, demonstrating
that subtle changes in aspect ratio strongly tune confinement
coupling,”® thereby underscoring the profound role of mor-
phology in confined transport. Yet, systematic work on non-
spherical, deformable particles is still missing in this body of
literature. Additionally, lower-resolution models of spherical or
cylindrical nanoparticles lack information about the structure-
property relation of polymeric micelles (such as the link
between polymer/micelle architecture and diffusion) that is
crucial to quantitatively inform experimental synthesis of
new DDS.

In this work, we combine extensive coarse-grained molecu-
lar dynamics (CGMD) simulations with a Gaussian-process
regression (GPR) framework to analyse the diffusion of deform-
able, anisotropic polymeric nanoparticles, bottlebrushes and
stars, through flexible polymer networks of varying mesh size.
We first introduce the Debye-Waller (DW) factor, which is
extensively used in glass physics to quantify cage-scale
vibrations®’ ' and is later shown to predict long-time
diffusion®” in polymer melts. It is a practical predictor when
direct diffusion coefficient measurements are prohibitively
expensive, and we show here that it correlates well with the
diffusion coefficients of our nanoparticles. Its value spans two
orders of magnitude across our parameter space, showing the
diverse dynamics within different systems. A GPR surrogate
model, trained using the simulation input parameters, accu-
rately predicts the DW factor with tight confidence intervals,
transforming this observable into a powerful design metric. In
the diffusive regime, bottlebrush carriers outperform their star-
shaped counterparts with the same molecular weight across all
mesh sizes. They remain diffusive even at the highest molecular
weights examined. Stars, by contrast, become subdiffusive
except under the weakest confinement and at the lowest
molecular weight. This confirms the usefulness of anisotropic
micelles as drug delivery carriers. In every system, the diffusion
coefficient decreases monotonically with the confinement
ratio, confirming geometric confinement as the primary control
parameter,” but with important secondary effects coming
from polymer architecture. Collectively, our results go beyond
existing hopping theories and incorporate fine-resolution mole-
cular details into the diffusion of polymer nanoparticles, high-
lighting a new, simple metric of mobility of great use for the
design of new drug nanocarriers and other transport
applications.

Methods
Model

The translational diffusion of neutral polymeric nanoparticles
within a neutral polymer network is investigated using CGMD

This journal is © The Royal Society of Chemistry 2025
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simulations in implicit solvent. Both the diffusing nanoparticle
and the network are modelled by the bead-spring model, each
bead corresponding to a single Kuhn segment.** Non-bonded
interactions between two beads are described by a truncated,
purely repulsive Lennard-Jones (L]) potential,

=4O r<n

r r

where ¢ is the interaction strength, ¢ the monomer diameter, r
the distance between two beads, and r. = 2Y°¢ ~ 1.12¢ the
interaction cutoff. All fundamental units, energy (¢), mass (m),
and length (¢) are set to unity, leading to a unity simulation

time (7) defined as t = y/mag?/¢. For convenience, the Boltz-
mann constant is likewise set to unity (kg = 1). Beads constitut-
ing the nanoparticle and the network are assigned identical
diameter ¢ and mass m. Bonded interactions are modelled with
a harmonic potential

Un(r) = k(r — r0)*, 2)

with spring constant k = 1000¢/6%, and equilibrium length r, =
0.97¢ for all bonds. The polymer network is constructed as a
cubic lattice of beads. Each bond crosses the periodic bound-
aries, causing the lattice to repeat indefinitely and form an
infinite three-dimensional mesh.

Simulation protocol

A nanoparticle and the polymer network are generated inde-
pendently before coupling. The simulation cell coincides with
the cubic mesh, and periodic boundary conditions are imposed
along each Cartesian axis. The nanoparticle is inserted into a
vacant lattice cell, after which stochastic velocities are assigned
to all beads, sampled from a Maxwell-Boltzmann distribution
at temperature 7 = 1.0. An energy minimisation stage precedes
a soft relaxation executed in the canonical (NVT) ensemble for
5 x 10°t, ensuring no bead overlaps. Subsequent equilibration
employs a Langevin thermostat in the microcanonical (NVE)
ensemble for an additional 5 x 10°z. Finally, the data collection
is done during a production run for 2.5 x 10°. Collective
properties are measured at the last frame of this run. To
elucidate the influence of nanoparticle architecture, we con-
sider four different molecular weights, defined as the total
number of beads in a nanoparticle. For each of them, we
change the architecture, maintaining the molecular weight
constant. Four different mesh sizes are considered to probe
the confinement effects. This parametrisation yields 1024 state
points. To improve the quality of dynamical properties, we run
ten statistically independent replicas with different initial
particle velocities for each state point, culminating in 10240
simulations. The measured quantities are averaged over these
runs, and their means are reported. Simulations are carried out
with the LAMMPS (large-scale atomic/molecular massively par-
allel simulator) software with periodic boundary conditions in
all three dimensions (https://www.lammps.org/).** Snapshots
are rendered with OVITO.*

Soft Matter, 2025, 21, 7984-7995 | 7985
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Dynamical analyses

Mean squared displacement. The MSD>® of the nanoparti-
cle’s centre of mass is

1 Ni—1t/8t

<"2(l)>:M_—,/5, ST (@ +o) —x(m)] ®3)

=1

where 6t is the MD time step and N; the number of stored
frames. The average, therefore, exploits all overlapping time
origins and is evaluated by averaging over multiple, overlapping
time origins®”° which reduces statistical noise by roughly N/t
compared with a single-origin estimate. We save trajectory
frames in a hybrid linear-log scheme: dense, uniform sampling
at short times and brief linear bursts around decade bound-
aries, followed by progressively coarser sampling within each
decade. This yields many identical lag times, and we average
MSD over overlapping time origins that are randomly sampled.
For every state point, the resulting MSD trajectory is ensemble-
averaged across ten statistically independent replicas that differ
solely in their Maxwell-Boltzmann velocity realisations at T =
1.0. To classify dynamical regimes, we also evaluate the instan-
taneous logarithmic derivative (sometimes called the local
exponent)*® of the MSD

 dlog(r*(1))

e T (@)

whose minima define the caging interval of the nanoparticle.
To determine the diffusive and subdiffusive regimes, we fit
each MSD to the power law

(r*()) = Dot” (5)

for t/r > 10> where D, is the generalised diffusion coefficient,
and « is the diffusion exponent. Trajectories with o« = 1 £ 0.05
are classified as diffusive, for which D, becomes the standard
diffusion coefficient, whereas those with « < 0.95 are classified
as subdiffusive.

Debye-Waller factor. The instantaneous logarithmic
derivative of the MSD, f(¢), is the orthodox indicator of cage
formation. Yet, it is notoriously susceptible to statistical
volatility as it requires a numerical differentiation of the
MSD. This operation magnifies high-frequency noise, thereby
obscuring the true location of the global minimum. In several
high confinement cases explored in our work, f(¢) decays to its
first minimum and fluctuates around that value for the
remainder of the trajectory. Automated algorithms frequently
misidentify a later, noise-corrupted lag time as the global
minimum. To avoid this artefact, we locate the minimum by
selecting a single global short-time caging window that we
apply uniformly to all systems. In every data set, the
minimum falls between lag times #/t = 2 x 10> F 10, so we
pick the DW time (¢pw) within this range. We then calculate the
corresponding Debye-Waller factor

(u?) = (r*(tow)) (6)

fixing ¢tpw for all systems for consistency across the full data set.
Five candidate windows are selected from the set
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tow/t € {100, 150, 200, 250, 300}

each situated within the ballistic-to-caged (or diffusive) cross-
over. The DW factor reported for a given state point is the
arithmetic mean of (1) evaluated at these windows. Since (u?)
is obtained directly from the MSD, it offers a more reliable
measure of the nanoparticle’s vibrational amplitude inside the
cage. The DW factor has been previously established as an
effective predictor of long-time cage relaxation dynamics in
glass-forming systems and complex liquids.*"*> Thus, it pro-
vides an unambiguous operational marker of caging dynamics
even when the derivative criterion fails owing to persistent
noise or extended plateaux in f(¢). Averaging suppresses resi-
dual noise yet preserves the underlying plateau value. Since
diffusive trajectories show an increasing MSD over the mea-
sured DW time window, their five samples spread further,
giving a larger standard error of the mean (SEM). The SEM is
stored for every state point and passed to the machine-learning
model as an observation-noise estimate. This procedure
replaces automated minima detection, which proved unreliable
for trajectories that remain caged and led to noise-induced late
time minima.

Predicting the dynamics by machine learning. GPR has
emerged as a powerful tool for creating surrogate models of
complex systems, with proven efficacy in MD applications.*?
Preliminary experiments showed that the raw DW factors span
more than two orders of magnitude and exhibit heteroscedastic
noise (the SEM grows as (u”) increases). Transforming the
target to y = log(x*) renders the noise nearly homoscedastic
and linearises the dependence on the features, which improves
both the fit quality and the calibration of predictive uncer-
tainty. All statistics reported for the GPR (MSE, MAE, LML, and
R?) therefore refer to log(u?). It is then straightforward to do a
back-transform of the quantities.

Gaussian-process model. We employ a zero-mean Gaussian
process with an isotropic squared-exponential covariance func-
tion
2

R
k(x7 X/) = o'fz exp |:—§ Z ([72) + O'nzéx‘x” (7)
i=1 !

where the length-scale hyper-parameters {/;}, the signal var-
iance o¢* and the noise variance ¢,,> are optimised by maximis-
ing the log-marginal likelihood (LML) over the training set. The
entire GPR framework is implemented through the scikit-learn
library.**

Feature representation. The GPR model operates on a six-
dimensional, normalised input vector,

x = (X0, L, f, M, N, 2)7, (8)

whose components are defined as follows:

All predictors are linearly scaled to the closed interval [0, 1].
Parameters that are not physically meaningful for a given
topology are set to the neutral midpoint 0.5 of the range [0,
1]. Choosing this central value minimises unintended trends
and avoids boundary bias, so that the missing features do not

This journal is © The Royal Society of Chemistry 2025
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create false patterns in the similarity measure. The model
compares the architectures in equal terms, with predictions
driven by the genuinely informative descriptors.

Training and validation. The dataset comprises the Debye-
Waller amplitudes log(u*) corresponding to the 1024 unique
state points defined in the simulation settings. The model is
trained on a randomly selected 80% subset of the data, which
spans the full range of Debye-Waller factors, and evaluated on
the remaining 20%. Predictive accuracy is quantified by the
coefficient of determination R*> and the mean squared error
(MSE). Posterior standard deviations supplied by the GPR give
an intrinsic estimate of predictive uncertainty for every state
point. This protocol enables us to map the high-dimensional
design space x onto a continuous estimate of the Debye-Waller
factor, thereby providing rapid, uncertainty-aware predictions
of nanoparticle caging dynamics without recourse to further
molecular dynamics simulations.

Results and discussion
Studied system

We embed a neutral, cubic polymer network of mesh size L into
the simulation box and introduce a single soft nanoparticle in
one of the cells (Fig. 1a). Here, L denotes the distance between
two crosslinking points in bonds and defines the mesh size, so
that the number of beads between two crosslinks is L — 1. Six
arms are connected to each crosslinking point. We explore four
levels of confinement, L/g = 7, 9, 11, 13, that span tight to loose
meshes. We investigate two nanoparticle topologies (Fig. 1b
and c):

o Bottlebrush polymers.

We model a linear backbone of N beads and graft flexible
side chains of length M at every mth bead, so the grafting
density reads z = 1/m. We impose N > 3, M > 3, m < 4, and

(a) (b)
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keep the total molecular weight
MBB =N (1 + %>
m

at one of four values, M52 = 120, 240, 360, 480.

e Star polymers.

We attach f arms of length M to a central core bead, with
3 < f < 16. The molecular weight becomes

MY =fM + 1

which we choose as My*" = 121, 241, 361, 481 to align closely
with the bottlebrush values; the extra ‘1’ accounts for the core
bead. All beads, including the central core, have the same
diameter.

Combining the four mesh sizes with all admissible nano-
particle architectures yields 1024 distinct state points. Since the
nanoparticle beads share the same diameter ¢ and the inter-
action parameters as the network, any change in the dynamics
originates solely from topology, confinement, or their interplay,
not from chemical differences.

Architecture-dependent anomalous diffusion

Fig. 2 shows the MSD for all 1024 state-points, each coloured by
its DW factor. At very short times, every nanoparticle follows the
ballistic regime ((r*) oc ¢*), indicated by the black ¢* guide-line.
Beyond t/t ~ 10%, the trajectories depart from ballistic motion;
depending on the specific architecture and level of confine-
ment, they either pause in a subdiffusive regime (caged), where
the MSD forms a plateau even at longer times, or progress
towards a diffusive regime (black ¢ guide-line). There are 180
diffusive and 844 subdiffusive state points in our dataset,
meaning that 180 systems reach the diffusive regime within
the simulated time window. The plateau height is the value of
the DW factor, so the colour scale by DW factor value reflects
how strongly each nanoparticle is confined by the surrounding

(c)
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Fig. 1 Schematic representation of the studied system. (a) A polymeric particle, either star-shaped or bottlebrush-like, diffusing within a polymeric
network of mesh size L. We consider four different mesh sizes L/o = {7, 9, 11, 13} (b) bottlebrush polymer characterised by backbone length N, side chain
length M, and grafting interval m, i.e., the spacing between consecutive grafting points. The grafting density is defined as z = 1/m. We explore all
topologies satisfying the constraints N > 3, M > 3, and m < 4, at fixed molecular weight M,, = N(1 + M/m). Four distinct molecular weights are examined
MBB = {120, 240, 360, 480} (c) star polymer with f arms of length M. The arm length is restricted by the condition 3 < f < 16, with fixed total molecular
weight given by M,, = fM + 1, where the constant offset accounts for the central core bead. Four star molecular weights are studied: M5" = {121, 241, 361,
481}, this ensures approximate cross-compatibility between star and bottlebrush polymers at fixed size, with a minor offset reflecting their structural
distinction.
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Fig. 2 Ensemble-averaged mean-squared displacement (MSD) across all systems. Each curve is colour-coded by the corresponding carrier's Debye—
Waller (DW) factor, ((u?)). The black lines denote the ballistic (cct?) and symptotic diffusive regime (oct). The red-shaded band (100 < t/z < 300)
highlights the beginning of the intermediate “caging” point, wherein carriers experience transient confinement imposed by the surrounding network. A
diverse spectrum of dynamic behaviour is observed, ranging from normal diffusion to pronounced subdiffusion, with diffusion exponents spanning a
broad interval (0.14 < o < 1.04). The inset illustrates the MSD (top) and its logarithmic derivative (bottom) for a representative system. The selection of the
caging interval is informed by visual inspection across all datasets and fixed for all systems with appropriate error bars, see the Methods section for details.

mesh. The inset illustrates the determination of the DW factor
for an example system: bottlebrush-like polymer with backbone
length N =120, side chain length M = 6 and grafting density z =
0.33 in a network of mesh size L = 13¢. Black symbols show the
MSD, and red symbols its logarithmic derivative. Since
measurement noise makes it difficult to locate the true mini-
mum of the numerical derivative automatically (see Methods
for details), we fix a set of short-time windows tpw/7 = 100, 150,
200, 250, 300. We compute the DW factor at each of these
windows and report their average, propagating the associated
standard error so that the upcoming Gaussian-process regres-
sion can make use of this uncertainty.

The whole ensemble displays a broad spectrum of dynami-
cal responses, with some nanoparticles diffusing rapidly while
others remain strongly caged. Most trajectories never attain a
linear slope within the accessible simulation time window,
confirming sustained subdiffusive behaviour. Curves with
small plateau values (shaded towards orange) linger longer in
the caged region before any power-law growth resumes; those
with larger plateaux (shaded towards purple) never enter a
caging regime (or escape it earlier) and approach a diffusive
(or nearly diffusive) regime.

7988 | Soft Matter, 2025, 21, 7984-7995

Fig. 3 reports all DW factor amplitudes as a function of the
level of confinement of the polymers, as well as the correlation
between DW factor and diffusion coefficient for diffusive sys-
tems. We define the confinement ratio CR = 2Ry, /L where Ry, is
the hydrodynamic radius given by

L
Ry \[Fi = 7j]

where 7; and 7, are all possible positions of chain monomers
with i # j.*> In hopping theory, CR is the ratio of the diffusing
particle’s diameter to the network mesh size.'” Here, we adopt a
similar approach by choosing 2R} as the nanoparticle’s dia-
meter. The Ry range is split into thirty equal-width bins for
every state point, and the DW factors are averaged inside each
bin. Black symbols are these bin-wise means. The pink envel-
ope shows the standard error of the mean for each bin.

The uncertainty band in Fig. 3a widens markedly at small
confinement ratios since, in that regime, nanoparticles leave
the ballistic regime and enter a diffusive one without becoming
caged. When we evaluate the DW factor at five, short, fixed time
windows, the particle has already travelled a noticeable

)
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Fig. 3 Dependence of the Debye—Waller factor on the confinement ratio (all systems) and on the diffusion coefficient (diffusive systems only). (a) Binned
Debye—Waller factor as a function of confinement ratio. The Debye—Waller (DW) factor is computed for all systems and represented as a function of the
confinement ratio 2Ry/L. Each data point corresponds to the mean DW factor within one of 30 equally spaced bins along the horizontal axis. The shaded
red envelope denotes the propagated error associated with each measurement. At low confinement ratios, particles exhibit higher mobility. (b) Scatter
plot of DW factor versus the diffusion coefficient D, for systems classified as diffusive (¢ ~ 1). Each point denotes a state point; the strong positive
correlation (Spearman r = 0.98) indicates that larger (u?) coincides with larger D,, substantiating the DW factor as a robust early-time predictor of

diffusion.

distance between successive windows; the resulting spread
increases the standard error on the mean. As the confinement
ratio increases, the network increasingly restrains the particle,
the MSD plateau stabilises across all five windows, and the
standard error decreases. Hence, the measurement grows more
precise for strongly confined systems and less precise for

weakly confined, diffusive ones. Using the DW factor in the
weak confinement regime is crucial: it supplies a single, uni-
versally defined dynamical descriptor that we can evaluate for
every trajectory, even those that never reach the long-time
diffusive limit. A conventional diffusion coefficient would be
undefined in these subdiffusive cases, leaving gaps in the data
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Fig. 4 Statistical distribution of the Debye—Waller factor as a function of volumetric confinement ratio. A violin plot depicts the full distribution of the
DW factor (uz) obtained from all simulated systems at fixed molecular weight and mesh size. The width of the violin plot gives a kernel-density estimation
of the frequency of (u?). The black rectangle corresponds to the inter-quantile range (25th and 75th percentiles). The white horizontal line is the sample
median. The black line around the coloured violin is the 95% empirical range, truncated at the extreme observed values. The colour map (legend at right)
encodes the logarithmic scale value of (u2>. The snapshots correspond to architectures at the lowest confinement ratio. The top snapshot is a
bottlebrush with N = 20, M = 5, m = 1 (the fastest within its set), whereas the bottom snapshot is a star with N = 4, M = 30 (the slowest within its set). In
both cases, the molecular weight and the mesh size are fixed.
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or requiring much longer simulations. The DW factor gives us a
continuous metric across the entire spectrum from freely
diffusing to strongly caged nanoparticles, enabling coherent
trend analysis and machine-learning prediction for the whole
dataset.

To fully isolate the effect of architecture at fixed mole-
cular weight, we show DW factor as a function of a different
confinement metric, which we define as the volumetric
confinement ratio

4
My=710.5°

CRyot = —35—

3 (10)

where the numerator defines the excluded volume of the
nanoparticle. Note that M, corresponds to the number of
beads, and that CR,, is uniquely defined for each different
[My,L] set of parameters studied. The denominator is the
volume of one network cell. With this definition, we show the
distribution of (1*) as a function of confinement and highlight
the variations between different architectures in Fig. 4.

The DW factor decays steeply with increasing confinement.
At weak confinement (leftmost violins), the distributions are
broad, suggesting the possibility of achieving faster carriers by
changing the architecture at fixed M,,. In the strongest confine-
ment regime (rightmost violins), the distributions collapse to
nearly point-like shapes, indicating that particle motion is
highly restricted and insensitive to further architectural
changes. Therefore, the progressive narrowing of the violins
highlights a confinement-dominated transition from heteroge-
neous mobile systems to uniformly caged ones. For weak
confinement, we generally observe that elongated bottle-
brushes have higher DW factors than stars with the same M,,.
A representative example is shown with the two snapshots in
Fig. 4. The same conclusion can be drawn from the
architecture-resolved D,.

Fig. 5 shows the effective diffusion coefficient D, for every
diffusive system as a function of confinement ratio. Symbol
colours encode the nanoparticle molecular weight M,, (runs
from pale to dark progressively), while the shape distinguishes
its topology (circles: bottlebrush, stars: star). To compare the
star and bottlebrush topologies, we exclude the bottlebrush-like
systems with grafting density z < 1 and only consider those
with z = 1 here.

The primary control is the confinement effect. Regardless of
topology or molecular weight, D, rapidly decays as the confine-
ment ratio increases. Confinement remains the dominant
control parameter even when particles differ by shape or mass.
At a given confinement ratio, the data spread by up to half an
order of magnitude, showing the secondary effect of architec-
ture. Most of this spread appears at the weak confinement
range where CR < 0.9.%° This is particularly significant because
in molecular transport, the confinement typically does not
exceed unity.*® Our results, therefore, highlight the weak con-
finement regime as the relevant window where architecture-
dependent differences emerge. We note the absence of star
topology at high confinement. Since star polymers radiate from
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Fig. 5 The effect of architecture on the diffusivity in the diffusive regime.
The diffusion coefficient D, obtained from the power-law fits of the MSD is
plotted against the confinement ratio. Each point represents a bottlebrush
(circles) or a star (stars) polymer, colour-coded by molecular weight M,,. A
clear inverse relationship is observed: the effective diffusivity decreases
systematically as the confinement ratio increases. At low confinement,
systems with lower molecular weights exhibit higher diffusivities, reflecting
reduced size-induced constraints. Notably, a broader spread in diffusivity is
observed at low M,, where architectural features more strongly influence
the dynamics, beyond the simple predictions of the hopping model.

a central core, their size grows rapidly with molecular weight,
causing them to become caged at lower confinement ratios
than bottlebrushes. In our dataset, all star topologies with
M,, > 120 fall into the subdiffusive class, whereas we can
identify at least one bottlebrush architecture that remains in
the diffusive regime across the full M,, range examined. This
contrast suggests that, once other factors are equalised, bottle-
brush topology favours faster long-time transport than its star-
shaped counterpart. This trend aligns with a recent experiment
showing bottlebrushes as faster diffusing drug carriers than
stars.'®

To pinpoint the contribution of nanoparticle architecture,
we compute the Spearman correlation coefficient over all
simulated data points between (1”) and some of the nanopar-
ticle structural descriptors in Fig. 6.

Here, R,; = /77 and Ry; = /A7 + /7 where .7 is the
gyration tensor eigenvalues of the nanoparticle. The compo-
nents are sorted in value Ry3 > Ry, > Ry . The trace of the

3
gyration tensor gives the radius of gyration R = 3~ 7.
=1

Particle-level confinement emerges as the dominant deter-
minant of anomalous diffusion because it couples directly to
the particle’s hydrodynamic size and thus to the free volume
available for motion. Nevertheless, architecture-induced effects
are evident in the full distribution of (1*) (Fig. 4) where systems

This journal is © The Royal Society of Chemistry 2025
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component of the gyration tensor (Ry,). The strongest anti-correlation is observed for CR, confirming it as the primary mobility limiter. Overall, the

ranking highlights confinement geometry as dominant, with nanoparticle size/shape parameters having secondary yet inhibitory effects on diffusion.

Correlations are calculated over the full dataset.

of identical confinement ratio but different topologies display
markedly different mobilities. Note also that the correlation
between the Debye-Waller factor and most structural features
is never very high (lower than 0.5 in absolute value for all
molecular descriptors). This disparity signals that the correla-
tions are too coarse to capture the complex interplay between
size and shape, motivating the adoption of a more predictive
and general framework.

Statistical learning of nanoparticle mobility

GPR is particularly suitable in our case for multiple reasons.
First, it gives state-of-the-art predictive accuracy by learning
arbitrary nonlinear relations.””*® Second, its kernel hyperpara-
meters and automatic-relevance-determination length scales
provide quantitative, physically meaningful measures of each

(a)

Kernel Sensitivity

T T T

0.4

0.3

1/¢

0.2

0.1

0.0
x0 L f M N z

Feature

(b)

feature’s influence.*® Finally, the posterior variance supplies
uncertainty estimates.’® To evaluate the performance of our
feature selection in GPR, we apply the leave-one-feature-out
(LOFO) protocol and plot the inverse of the fitted kernel length
scale in Fig. 7.

The LOFO implies how much a given feature improves the
model accuracy globally. It shows whether the model can still
predict well without the omitted feature. Thanks to the feature
encoding we employ in Table 1, we can omit the categorical
variable x,. However, it still increases the log marginal like-
lihood, so we keep it in our feature vector.

Having established the relative importance of the input
features, we next examine the overall predictive power of the
model. Fig. 8 shows how well GPR performs on our simulation
data. We trained the model on 80% of the whole data set, and

Drop in R? (LOFO)

T

0.6
0.5
0.4
o
z]: 0.3
0.2

0.1

0.0
x0 L f M N z

Feature

Fig. 7 Relative importance of input features in the Gaussian-process model for the Debye—Waller factor. (a) Inverse length-scale 1// extracted from the
fitted kernel; larger values denote stronger local sensitivity of prediction to that feature. The values are normalised within the feature vector so that the
sum of all bars adds up to 1. (b) Decrease in the coefficient of determination, AR?, obtained by the leave-one-feature-out protocol. Each bar shows the
loss in predictive power when the indicated variable is omitted from model training.
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Table 1 Normalised input features for the GPR model

Encoding for

Symbol  Description absent parameter

Xo Topology identifier (star = 1; —

bottlebrush = 0)

Network mesh size —

Number of arms (stars) f=0.5 for bottlebrushes
Arm length (stars) or side-chain ~ —

length (bottlebrushes)
Bottlebrush backbone length
Bottlebrush grafting density

N = 0.5 for stars
z = 0.5 for stars

Nz 2T

present the predictions on the remaining test set here. Each
circle represents one of those unseen test data points. The
horizontal axis is the actual measured DW factor with horizon-
tal error bars showing the measurement error. The vertical axis
shows the GPR predictions with the model’s 95% confidence
interval for each prediction. The red dashed line is the identity
line y = x.

We emphasise the overall agreement between the measured
values and the GPR predictions. The test points cluster tightly
around the identity line, indicating that the GPR recovers DW
factor of previously unseen state points without noticeable bias.
Optimisation yields the kernel

6
k(x,x') = 8.98% exp {—%Z (x;i — x;-)z/(,»z]

i=1
+ 0.00640 x/, (11)

with length scales / = (4.32,1.72,2.44,0.251,0.232, 3.60) in the
order (xo, L, f; M, N, z). The corresponding signal variance is
o¢ = 8.98% and the white-noise variance is ¢,,> = 0.0064. On the
20% test set the model attains a mean-squared error MSE =
5.5 x 10~ *, mean absolute error MAE = 1.72 x 102, coefficient
of determination R* = 0.989, and a log-marginal likelihood
L = 431.5. These scores refer to the target y = log(u*). These
metrics confirm that six normalised input features in eqn (8)
encode the essential variables governing the cage amplitude.
The 95% confidence intervals widen at small (¢*) (weak con-
finement, larger measurement noise) and tighten strongly for
caged systems with more precise measurements. 99.5% of the
test points fall inside their predicted 95% intervals, demon-
strating that the model’s uncertainty estimates are well cali-
brated. This accuracy and reliable error estimation allow GPR
to replace time-consuming MD simulation. It delivers predic-
tions and confidence bounds in milliseconds, making rapid
screening of new particle designs possible, whereas a single MD
run can require several days to weeks of computation. We note
that, as with all Gaussian process models, predictive accuracy is
limited to interpolation within the training range; extrapolation
beyond it reverts to the prior with broad confidence intervals.*’

Limitations of the hopping model

Fig. 9 compares the diffusion coefficient predicted by the
hopping model Dy, with the effective coefficient D, obtained
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Fig. 8 Comparison between predicted and actual values of the Debye—
Waller (DW) factor for the test dataset. This figure demonstrates the
predictive capability of Gaussian process regression (GPR) in estimating
the DW factor based solely on the input parameters of the simulation. The
horizontal axis denotes the ground-truth DW factor as computed from the
simulation trajectories, while the vertical axis corresponds to the GPR-
predicted values. All values have been normalised to the interval [0, 1] for
the purposes of model training and evaluation. The red dashed line
represents the identity relation y = x, corresponding to perfect predictive
performance. Each black data point corresponds to one test instance, with
vertical and horizontal grey error bars indicating the 95% confidence
interval (Cl) of the GPR prediction and the propagated uncertainty of the
actual DW factor, respectively. The close alignment of the data with the
identity line and the relatively narrow confidence intervals indicate that the
GPR model can accurately infer the DW factor from simulation inputs
without requiring access to the particle trajectories.

from our MSD analysis for the subset of systems that are
diffusive (x ~ 1). We compute the hopping coefficient
according to

B1

~ —CR?
Dhop = .CR
X

(12)

where b is the Kuhn length of a polymer network strand, 7, the
Rouse relaxation time of a network strand, and CR the con-
finement ratio."” Based on the phantom network model,>" b is
defined as

b="-
L

where R is the distance between two cross-linking points in the
network, and L is the network strand length. Based on the same
model, the Rouse relaxation 7, is proportional to the number of
monomers on the strand 7, ~ N,’. Since we have a regularly
spaced monodisperse network R ~ L and N, ~ L, hence, we

This journal is © The Royal Society of Chemistry 2025
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continuous motion at low confinement lead to larger discrepancies between the two diffusion estimates.

approximate Dy, for our systems by

11
L’CR

—CR?
D hop —

Each point in Fig. 9a shows one state point in the diffusive
set. The x-axis gives MSD based D, and the y-axis shows the
hopping estimate Dy,,,. The data points cluster close to the red
identity line, but sit slightly above it, indicating that the
hopping model overestimates the diffusion coefficient. To
make this clearer, we plot the difference Dy, — D, as a function
of confinement ratio 2Ry,/L in Fig. 9b. The residuals converge to
zero as CR increases. In the weak confinement regime
(CR < 0.9), the residual becomes nonzero and scattered, show-
ing that the simple hopping dynamics cannot capture the
effect. Deviations from the hopping model emerge as the
diffusing particle is not trapped within the network cells. By
contrast, in the strongly confined regime (CR > 1.0), the trans-
port mechanism is well captured by the hopping model, since
the nanoparticle relies on pores opening with the thermal
fluctuations. In this case, most of our diffusion coefficients
overlap with the predictions of Dy,p, consistent with the
model’s validity under strong confinement. The hopping
model, therefore, provides an accurate description only in the
strongly confined regime where the network forces the particle
to move by well-defined jumps. A key premise of the hopping
model is that the diffusing entity is a rigid, spherical particle
whose geometry remains fixed between cage escapes. Our
nanoparticles violate this premise: they are anisotropic, possess
internal flexibility, and can deform in response to the local
network environment. Under strong confinement, the mesh
constrains both translation and shape, so motion still

This journal is © The Royal Society of Chemistry 2025

resembles discrete hops, and the model performs well. In
looser meshes, however, the particle has room to elongate,
contract, or reorient while drifting between network strands.
These shape fluctuations add a continuous component to the
overall displacement that the rigid-sphere hopping picture
cannot capture.

Conclusions

Our combined MD and GPR study clarifies how deformability,
anisotropy, and branching hierarchy determine polymer nano-
particle motion through polymer-like ECM. We first validate
the Debye-Waller factor, a measure of mobility during caging,
as an efficient and powerful predictor of long-time diffusion. Its
wide variation across state points captures the full spectrum
from trapped to freely diffusing nanoparticles, and shows large
variations in mobility for systems at fixed size and confinement
degree based on their shape. A Gaussian process surrogate then
predicts DW factor directly from molecular parameters, thereby
predicting both caging strength and long-time diffusion. This
turns a noisy observable into a reliable design metric. Most
architectures studied here exhibit anomalous diffusion. When
normal diffusion emerges, the measured diffusion coefficients
follow the hopping model at high confinement ratios, but
diverge at weak confinement, highlighting the model’s limita-
tions for soft, anisotropic particles. Bottlebrush carriers remain
diffusive at higher molecular weight and tighter meshes than
stars, confirming that branching can mitigate confinement
penalties. Based on similar previous work®> where crosslink
connectivity is systematically varied, we do not expect qualita-
tive changes to our results if the network topology is changed by
varying the number of connecting strands to a crosslink point.
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More interesting would be to introduce pore size dispersity, a
realistic and important feature of biological networks for which
we cannot easily predict the results based on our current data.
Overall, these results bridge theoretical models with the prac-
tical design of branched nanocarriers with tailored transport
properties. Our findings provide practical metrics for engineer-
ing polymeric nanoparticles with enhanced transport capabil-
ities in confined environments such as tumour ECM, mucus
membranes, and other complex biological gels by elucidating
the relationship between molecular architecture and diffusion
behaviour.
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