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Branching dynamics in electrohydrodynamic
instabilities of viscoelastic soft gels

Gyandeep Balram and Bhagavatula Dinesh *

An electric field imposed on a bilayer of fluids that are stably stratified in the presence of gravity leads to

an instability manifested by interfacial deflections. The layer of perfect conductor is simulated using a linear

viscoelastic model and the perfect dielectric is considered to be a layer of air. Under neutral conditions, the

key dimensionless groups are the dimensionless electric potential, Bond number and the Weissenberg

number. The branching behavior upon instability to sinusoidal disturbances is determined by weak

nonlinear analysis with the dimensionless potential advanced from its critical value at neutral stability. An

analytical expression obtained from weak nonlinear analysis leads to the unintuitive result that sinusoidal

deflections can either lead to supercritical saturated waves or lead to subcritical breakup depending on the

elasticity of the perfect conductor. The analytical expression also indicates that there is a transition wave

number below which supercritical saturation ought to occur, it can be shown that such wave numbers can

be geometrically accessed, thus permitting any supercritical saturation to steady waves. In contrast, our

results demonstrate that when the perfect conductor is modeled as an Oldroyd-B fluid, the branching

remains subcritical in nature, ultimately leading to interface rupture—mirroring the behavior observed in the

Newtonian fluid case (as demonstrated by B. Dinesh and R. Narayanan, Phys. Rev. Fluids, 2021, 6, 054001).

1 Introduction and physics

Electrohydrodynamics concerns the interaction between fluids
and electric fields. The foundational studies by Taylor and
Melcher2,3 established the theoretical basis for analyzing such
phenomena. Subsequent research has examined how electric
fields influence the morphology and stability of interfaces in
systems such as liquid bridges, drops, jets, and thin films.
When an electric field is applied perpendicular to an initially
flat interface, it typically induces destabilization.

Vertical electric fields have been applied in quiescent multilayer
flows for the controlled self-assembly of microscale hierarchical
structures in polymer melts and processes like soft lithography.4–8

Other applications include inkjet printing,9 enhancement of
mixing and heat transfer, as well as the development of soft
devices with adjustable shapes.10,11 For an overview of electro-
hydrodynamic instability in thin fluid films, see the review by
Papageorgiou.12

In this work, we investigate the branching behavior of electro-
hydrodynamic instability in a system comprising a perfect con-
ductor–dielectric fluid pair. The perfect conductor is modeled in
two ways: first, using a linear viscoelastic model, and second, using
the Oldroyd-B fluid model. The dielectric fluid is assumed to be a
hydrodynamically passive air layer. As shown in Fig. 1, the fluids

are confined between two rigid plates, with the bottom plate held
at a constant voltage D, while the top plate is grounded. The
applied voltage counteracts gravity and drives an instability that
leads to the formation of an array of pillars in the conducting
fluid.1,12–15 However, when the elastic stresses in the conducting
fluid overcome the destabilizing effect of the constant voltage, the
interface undergoes saturated deformation without branching.

The instability arises due to competition between the applied
potential and stabilizing factors such as gravity, elastic stresses, and
surface tension. These competing effects can produce a minimum
in the voltage–wave number curve at the onset of instability.1,16

At neutral stability, if the perfect conductor is modeled as a
Newtonian fluid, the velocity perturbations vanish. For a viscoe-
lastic perfect conductor, at low wave numbers, the destabilizing

Fig. 1 Schematic of electrostatic instability. The bottom viscoelastic fluid
is a perfect conductor and the top fluid is a perfect dielectric. The bottom
plate is maintained a constant voltage D and the top plate is grounded.
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voltage is balanced by gravity and elastic stresses, while at high
wave numbers, surface tension opposes the destabilizing
effect.1,16,17 The high-wave number behavior is similar to that seen
in the Rayleigh–Taylor instability, which is typically subcritical in
nature. In contrast, the low-wave number balance resembles that
of thermocapillary-driven problems, such as the Bénard–Maran-
goni instability, which generally exhibits supercritical behavior.18

The objective of this study is to determine whether a transi-
tion occurs between supercritical and subcritical behavior at a
critical wave number, or if the instability consistently exhibits
one of these two behaviors across all wave numbers.

We review previous studies relevant to this work. Wu and
Chou19 showed that, for Maxwell fluids subjected to DC electric
fields, elasticity increases the growth rate of pillar formation.
They identified a critical Deborah number above which the
growth rate for certain wavenumbers diverges.

Tomar et al.20 examined the surface instability of a confined
viscoelastic liquid film under an applied electric field, considering
both Maxwell and Jeffreys models. Their analysis showed that
incorporating fluid inertia removes the singularity, resulting in
large but finite growth rates for all Deborah numbers and
identifying the dominant instability wavelength. They also
observed that the small inertia limit does not coincide with the
zero-inertia limit when describing the instability dynamics and
wavelength in polymer melts.

Espı́n et al.7 studied the effects of viscoelasticity on instabil-
ities under AC and DC electric fields using the Jeffreys model
for both perfect and leaky dielectrics. In the DC case, asympto-
tic methods were applied to resolve a singularity occurring
when solvent viscosity is neglected, corresponding to the Max-
well limit. Their results show that elasticity increases both the
maximum growth rate and the wavenumber of the instability.

Dinesh et al.1 investigated the electrohydrodynamic instability
between a perfect conductor and a dielectric, modeling both as
Newtonian fluids. Their study found that the branching behavior
is always subcritical, resulting in rupture of the interface. In
contrast, the present study demonstrates that both subcritical
and supercritical branching behavior can occur when the perfect
conductor is described using a viscoelastic model.

Observations from previous studies indicate that pillar for-
mation due to instability spans the gap between the plates,
which is characteristic of subcritical interface behavior. How-
ever, elasticity in the viscoelastic fluid can also result in super-
critical saturation of the interface. The objective of this work is
to demonstrate this behavior through mathematical analysis
and to identify the physical conditions that lead to either
subcritical or supercritical instability.

The analysis presented here follows the methodology out-
lined in the works of Dinesh and Narayanan.1,21 We consider a
system comprising a perfect conductor–dielectric fluid pair and
derive an analytical expression to characterize the branching
behavior. The perfect conductor is modeled using a linear
viscoelastic framework. Additionally, we examine a case where
the perfect conductor is represented by an Oldroyd-B fluid.

A perturbation expansion is carried out around the neutral
stability state, with the applied voltage slightly exceeding its

critical threshold. This approach allows us to investigate the
nonlinear evolution of the interface and distinguish between
subcritical and supercritical regimes.

2 Mathematical model

The model assumes a hydrodynamically active viscoelastic fluid
with constant properties whose free surface is exposed to a
passive gas in a stabilizing gravitational field, as depicted in
Fig. 1. The gas layer is considered to be air and hydrodynamically
inactive. The viscoelastic fluid and the air layers are between two
rigid electrically conducting plates located at �h* and h, across
which a constant voltage difference, D, is applied (cf. Fig. 1). The
potential field in the top fluid is given by

r2c = 0 (1)

The bottom viscoelastic fluid, represented by an asterisk, is
assumed to be a perfect conductor while the top fluid is taken to
be a perfect dielectric. The bottom fluid is taken to be linearly
viscoelastic for algebraic simplicity whilst retaining essential
physics in this study. Now, the stress tensor in a viscoelastic
fluid may be expressed in terms of the displacement field. The
displacement vector, R, is the displacement of the position
vector, x, in the current configuration from the position vector,
z, in the reference configuration. In other words,

x = z + R(x) (2)

For a linear viscoelastic fluid (cf., ref. 22–24) the stress
tensor, T, is given by

T = �pI + G(rR + rRT) + mg(rv + rvT) (3)

Here G and mg are the shear modulus and viscosity of the fluid
material and v is the velocity field. Now the velocity field in the
fluid is itself expressed in terms of the displacement field (cf.,
ref. 25 for a detailed explanation). This expression is given by

v ¼ I�rRT
� ��1�@R

@t
(4)

In a linear viscoelastic soft-gel layer, the elastic field is described
by the displacement field vector (cf. eqn (2)), which represents the
deformation of material points, while the velocity field vector in
eqn (4), describes the rate of change of these displacements over
time. The relaxation mechanism occurs as the internal elastic
stresses, generated by deformation, gradually dissipate through
viscous dissipation in the soft-gel. This means the displacement
field changes slowly, and the velocity field captures how the material
returns toward its undeformed state by relaxing the elastic stresses.
Over time, energy stored in elastic deformation is released or
converted to viscous dissipation, resulting in a decrease of internal
stresses and a gradual return to equilibrium. This relaxation process
is characterized by time-dependent decay of stresses and strains
governed by the viscoelastic properties of the gel.21,23,24,26–29 The
equations of motion in the viscoelastic medium are thus

r
@v

@t
þ v � rv

� �
¼ r � Tþ griz (5)
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where T and v are given by eqn (3) and (4), where in eqn (4) the
superscript T on rR is the transpose of the tensor rR and I is the
identity tensor and where iz is the base vector in the positive z-
direction in eqn (5). The horizontal and vertical components of the
displacement vector, R, are denoted by X and Z.

The viscoelastic fluid is taken to be incompressible and the
mass conservation demands (ref. 25 and 30)

det(F) = 1 (6)

where F is the deformation tensor given by F ¼ @zi
@xj

. Here zi

represent the components of the position vector in the reference
configuration. Upon expansion of eqn (6) and using eqn (2) we get

@X

@x
þ @Z
@z
� @X
@x

@Z

@z
þ @Z
@x

@X

@z
¼ 0 (7)

eqn (5) and (7) along with the representations for T and v
constitute the domain equations. Other models, such as the neo-
Hookean25,29,31 and Oldroyd-B models,32 can also describe the
soft-gel layer. In this work, we use the linear viscoelastic model to
obtain a mathematically tractable solution and focus on the core
physics of the electrohydrodynamic instability. A stability analysis
using the Oldroyd-B model is included in the Appendix D. The
governing equations are complemented by boundary conditions
at the rigid wall and at the soft-gel air interface.

At the wall, the displacement fields are taken to be zero. At
the interface, z = h(x, t), the normal and the tangential compo-
nents of the momentum balance hold. They are

n�T�t = 0 and n�T�n � D(TM�n) = �gr�n (8)

where the unit normal vector (n) and the unit tangent vector (t)
are given by

n ¼
�@h
@x

ix þ iz

1þ @h

@x

� �2
" #1=2 and t ¼

ix þ
@h

@x
iz

1þ @h

@x

� �2
" #1=2: (9)

In addition we have an impermeable interface along with its
kinematic relation

v � n ¼
@h

@t

1þ @h

@x

� �2
" #1=2 (10)

In eqn (8), the dimensional form of the Maxwell stress tensor,

i.e., TM, (cf. ref. 33), is given by TM ¼ ee0EE�
1

2
ee0E � EI; where

E = �rc is the electric field, e is the relative permittivity of the
fluid and e0 is the permittivity of free space.

The governing equations are made dimensionless by using
the following scales denoted by the subscript ‘c’:

xc ¼ h�; zc ¼ h�; Xc ¼ h�; Zc ¼ h�; tc ¼
h�

U
;

pc ¼
mU
h�

(11)

Here U is a characteristic velocity scale. The scaled potential
field in the top fluid is given by

r2c = 0 (12)

The potential field is subject to a constant value of unity at the
bottom plate, i.e., at z = �1, while the top plate at z = H is
assumed to be grounded, where H = h/h*.

The dimensionless governing equations for the bottom fluid
are given by

Re
@v

@t
þ v � rv

� �
¼ �rpþ 1

Wi
r2Rþ 1

Wi
r r � Rð Þ

þ r2vþ Bo

Ca
iz

(13)

where Wi ¼ mU
Gh�

, Re ¼ rh�U
m

and Bo ¼ rg h�ð Þ2

g
and Ca ¼ mU

g
.

The mass conservation eqn (7) remains unchanged and does
not induce any dimensionless groups. The interfacial force
balance conditions at z = h(x, t) become

n � T � t ¼ 0 and n � T � n� TM � n
� �

� n ¼ � 1

Ca
r � n (14)

The normal component of the Maxwell stress in dimensionless
form can be written as

TM � n
� �

� n ¼ D

2
rc � nð Þ2� rc � tð Þ2

h i
(15)

Here, D = ee0D2/h*m*U. For the perfect conductor–dielectric
model, the tangential components of the Maxwell stress tensor
vanish (cf. ref. 33). From the scaling of the equations and
boundary conditions, five key dimensionless groups emerge:
Re, Ca, Bo, D, and Wi, which are evaluated using representative
physical parameters (see Tables 1 and 2). The base state R = v =
T = 0 is subject to a stability analysis to explore the onset and
nature of the bifurcation. We seek the neutral stability condition
and characterize steady-state branching, governed primarily by
Wi, Ca, Bo, and D. Notably, under steady-state conditions, Ca
appears only as Ca/Wi, allowing U to be chosen such that Ca = 1.

Table 1 Physical properties of polyacrylamide viscoelastic fluid34,35

Physical property Range

Density (r) 1000 kg m�3

Viscosity (m) 1.5 kg m�1 s�1

Shear modulus (G) 10–45 Pa
Surface tension (g) 73 � 10�3 N m�1

Thickness (h*) 1 � 10�3–20 � 10�3 m

Table 2 Range of key dimensionless quantities for polyacrylamide vis-
coelastic fluid. The velocity scale U is based on the capillary number such

that U ¼ g
m

Dimensionless parameter Definition Range

Re rh*U/m 1.5
Wi mU/Gh* 0.1–10
Bo rgh*2/g 0.1–50
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3 Linear stability analysis

A linear stability analysis is carried out by introducing small
perturbations c1, R1, p1, and z1 about the quiescent base state.
These are expressed using the expansion

c(x, z, t) = c0(z) + c1(z)cos(kx)est,

with similar forms assumed for R, p, and z. Here, k denotes the
wavenumber of the perturbation and the subscript ‘‘0’’ refers to
the base-state quantities. Neutral stability corresponds to s = 0
in the above expansion.

Assuming constant fluid volume imposes the constraintðl
0

z dx ¼ constant; where l ¼ 2p
k

is the disturbance wavelength.
Since the base-state displacement R0 = 0, the base-state

pressure gradient is balanced by the gravitational body force:

dp
j
0

dz
¼ �djG:

here G = rgh*2/mU and d j = r j/r, takes values rdieltric/rconductor

and 1. The base-state potential field is given by c0 = 1 � z/H.
The perturbation fields, being non-zero, are determined by
solving the linearized governing equations for the soft gel.
Substituting the assumed forms of the disturbances into the
governing equations yields:

ikX1 þ
dZ1

dz
¼ 0 (16)

�ikp1 þ
1

Wi

d2X1

dz2
� k2X1

� �
¼ 0 (17)

�dp1
dz
þ 1

Wi

d2Z1

dz2
� k2Z1

� �
¼ 0 (18)

Linearizing the boundary conditions at the reference inter-
face, z = 0

Z1 = z1 (19)

1

Wi

dX1

dz
þ ikZ1

� �
¼ 0 (20)

The no displacement fields X1 = 0 and Z1 = 0, boundary
conditions, at the wall i.e., z = �1 are imposed. Upon eliminat-
ing p1 and X1 from the governing equations and using the
boundary conditions we get an expression for Z1, i.e.,

Z1 ¼
2k2 � 2kþ e2k þ 1
� �

z1ekzþ2k

�4e2kkþ e4k � 1

�
2e2kk2 þ 2e2kkþ e2k þ 1
� �

z1e�kz

�4e2kkþ e4k � 1

�
�2kþ e2k þ 1
� �

kzz1ekzþ2k

�4e2kkþ e4k � 1

�
k 2e2kkþ e2k þ 1
� �

zz1e�kz

�4e2kkþ e4k � 1

(21)

The linearized equation for the potential field in the top fluid
are given by

d2

dz2
� k2

� �
c1 ¼ 0 (22)

where at z = 0 and z = H, we have

c1 þ
dc0

dz
z1 ¼ 0 and c1 ¼ 0. Upon solving eqn (22), we get

c1 ¼
z1
H
� coth kHð Þ sinh kzð Þ þ cosh kzð Þ½ � (23)

To determine the neutral stability criteria, we turn toward the
perturbed normal component of the momentum balance along
the interface, z = 0. First, we take the derivative of this equation
with respect to x to eliminate pressure, p1 using the x-
momentum equation. Second, using the continuity equation,
we eliminate X1 in terms of Z1, i.e.,

1

Wi

d3Z1

dz3
� 3k2

Wi

dZ1

dz
þ k2

dp0

dz
z1 þ k2D

dc0

dz

dc1

dz
¼ k4

Ca
z1 (24)

Upon substituting the solution for c1 and Z1, in eqn (24), we get

1� dð ÞGCaþ
Cak 2k2 þ coshð2kÞ þ 1

� �
WiðsinhðkÞ coshðkÞ � kÞ þ k2

¼ DCak cothðHkÞ
H2

� � (25)

1� dð ÞGCa|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�Bo

þ
Cak 2k2 þ coshð2kÞ þ 1

� �
WiðsinhðkÞ coshðkÞ � kÞ þ k2

¼ DCa
k

H2
coth kHð Þ

(26)

Here, GCa (also known as the Bond number, Bo), Wi/Ca and
DCa, hereafter termed D0Ca at the neutral point, can be
grouped as pairs and are observed to be independent of the
characteristic velocity scale, U, and the viscosities. In addition,
here d is the ratio of the density of the perfect dielectric to the
density of the perfect conductor.

Boþ Ca

Wi

k 2k2 þ coshð2kÞ þ 1
� �
ðsinhðkÞ coshðkÞ � kÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

þk2 ¼ DCa
k

H2
coth kHð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

Boþ Ca

Wi

3

k2
þ k2 ¼ DCa

1

H3

Bok2 þ 3Ca

Wi
þ k4 ¼ DCa

k2

H3

(27)

Observe that for low wavenumbers and shallow film thick-

nesses, term I is of O
1

k2

� �
and term II is of O(1). This is

obtained by expanding cosh(2k), sinh(k), and cosh(k) in term I
in series of the wavenumber k and neglecting higher order
terms of wavenumbers. For example, coth(kH) when expressed
in a series of wavenumbers can be written as 1/kH. Upon
multiplying eqn (27) by k2, the Bo term is of O(k2), the term

consisting of
Ca

Wi
is of O(1), the curvature term is of O(k4), and
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the term containing DCa is of O(k2). This indicates that for low
wavenumber, the stabilizing effect of elastic stresses is domi-
nant over the stabilizing effects of gravity, surface tension, and
the destabilizing effect of the potential.

It is noteworthy that the term associated with the elasticity
(Wi) of the perfect conductor has an opposite sign compared to
the term associated with the critical potential (D). This
indicates that the elastic stresses, like gravity, cause a stabiliz-
ing effect, whereas the potential leads to a destabilizing effect
on the interfacial deformations. It is noteworthy that when a
similar linear stability analysis is performed by employing the
Oldroyd-B model to capture the behavior of the soft-gel layer,
the following expression relating Bo and DCa is obtained (cf.
Appendix D for the derivation), i.e.,

Boþ k2 ¼ DCa
k

H2
coth kHð Þ (28)

This expression matches the critical potential for a Newtonian
fluid (perfect conductor) and a hydrodynamically passive
gas (perfect dielectric).1 The elasticity of the Oldroyd-B fluid
does not change the critical potential for the onset of
instability. As a result, the Oldroyd-B model does not affect
the outcome of the linear stability analysis under neutral
conditions. This result contrasts with our current findings,
where decreasing the Weissenberg number, Wi, raises the
critical potential required for instability. This is the main
reason for using the linear viscoelastic model to represent the
soft-gel layer in both the linear stability and weakly nonlinear
analyses.

Typical neutral stability curves obtained from eqn (27) are
shown in Fig. 2 drawn for the example of air on top of poly-
acrylamide gel. Observe that on the falling branch of the neutral
stability curve, i.e., for low wave numbers the electrostatic
potential driving the instability is balanced by gravity and elastic
stresses, while on the rising branch, i.e., for high wave numbers
the voltage applied across the horizontal conducting walls is
stabilized by interfacial tension. Interfacial tension is a force
acting tangentially along the interface but creates a net restoring
force normal (perpendicular) to the interface through curvature
effects. The force pulls the interface inward to minimize its
surface area and restore stability. Interfacial tension stabilizes
the interface by acting as a restoring force that resists deforma-
tion, minimizing the surface area between two phases and
suppressing disturbances that would increase irregularities. This
helps maintain a smooth and stable boundary. Interfacial tension
enters the mathematical formulation through the normal stress
balance equation in eqn (8) (dimensional form) and via the
Capillary number Ca in eqn (14). This stabilizing effect of
interfacial tension for high wave numbers is analogous to Ray-
leigh–Taylor instability of a fluid, wherein the instability is always
subcritical in nature. The balance between potential, elastic
stresses and gravity for low wave numbers is reminiscent
of the Bénard instability which is supercritical in nature. Note
that for high Weissenberg numbers i.e., Wi = 1 and Wi = 10, t
he neutral curve tends towards the critical curve corresponding to
that of a Newtonian perfect conductor, i.e., the curve with the

solid dots (cf. Fig. 2(a) of Dinesh et al.1). For low Weissenberg
numbers, i.e., Wi = 0.1, the critical potential D0Ca for the
onset of an instability increases. This increment in the critical
potential is attributed to the stabilizing elastic stresses in the soft-
gel layer.

Not all wave numbers in Fig. 2a are accessible. When a
minimum appears in the curves, the accessible wave numbers,
k are related to the horizontal modal index, n, as shown in

Fig. 2b for a one-dimensional system of width, w, where k ¼ np
w

.

where n takes integer values 1, 2, 3,. . ., with n = 1 representing
one wave at the interface, n = 2 representing two waves, and so
on. Here, w is the width of the container confining the perfect
conductor and perfect dielectric between flat plates. To obtain
the curve of the critical dimensionless potential versus the
wavenumber, the waveform (i.e., the value of n) is fixed while
the width ‘‘w’’ of the container is varied. This variation results
in a continuous and smooth curve for the dimensionless
potential as a function of the wavenumber. There are specific
values of ‘‘w’’ where two consecutive modes can coexist, and
around these points, the curves are non-monotonic. These

Fig. 2 D0Ca vs. k2 obtained from eqn (26). The case of air on top of water is
assumed. Figure (a) is drawn for H = 1, Bo = 5 and Wi = 0.1, 1 and 10. Note
that the solid dots in the figure correspond to the case where the perfect
conductor is a Newtonian fluid. Figure (b) is drawn for H = 1, Bo = 5, and

Wi = 0.1 taking k ¼ np
w

, with n being the horizontal mode index.
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points and the wave numbers between them are crucial to our
study’s conclusions. Our aim is to determine whether the
instability is supercritical or subcritical for each accessible
wave number by performing a weak nonlinear analysis around
the critical state.

4 Weak nonlinear analysis and
discussion: linear viscoelastic
model

A weak nonlinear analysis is used to study how an interface
behaves just beyond the onset of an instability, whether it
stabilizes at a finite amplitude (supercritical saturation) or
grows toward rupture (subcritical rupture). For the case of the
perfect conductor behaving like a linear viscoelastic fluid, the
ensuing analysis follows the procedure outlined in the work of
Dinesh and Narayanan.1,21 We start with a linear stability
analysis to find the critical conditions, the governing equations
are then expanded in a small parameter (e, given below in
eqn (29)) that measures deviation from this threshold. Next, we
solve the equations order by order, i.e., O(e2) and O(e3). This
leads to an equation in terms of the amplitude of the interfacial
deformation (which we refer as z1 or A). To determine the
nature of the bifurcation, the dimensionless potential, D, is
advanced from its critical value, D0 by an amount e, such that e
is defined by

D ¼ D0 þ
e2

2
(29)

The response of the potential to an increase of the control
variable D is given by

c ¼ c0 þ ec1 þ
e2

2
c2 þ

e3

6
c3 þ � � � (30)

The displacement fields, pressure field and the interface deflec-
tion change from their base state by

X x; zð Þ ¼ X0 þ eX1 x; zð Þ þ e2

2
X2 x; zð Þ þ e3

6
X3 x; zð Þ þ � � � (31)

Z x; zð Þ ¼ Z0 þ eZ1 x; zð Þ þ e2

2
Z2 x; zð Þ þ e3

6
Z3 x; zð Þ þ � � � (32)

p x; zð Þ ¼ p0 þ ep1 x; zð Þ þ e2

2
p2 x; zð Þ þ e3

6
p3 x; zð Þ þ � � � (33)

and

z xð Þ ¼ z0 þ ez1 xð Þ þ e2

2
z2 xð Þ þ e3

6
z3 xð Þ þ � � � (34)

At the interface, the interior displacement field, X, is expressed

as ref. 36

X x; zð Þ ¼ X0 þ e X1 þ z1
@X0

@z

� �

þ e2

2
X2 þ z2

@X0

@z
þ 2z1

@X1

@z
þ z1

2@
2X0

@z2

� �

þ e3

6
X3 þ z3

@X0

@z
þ 3z2

@X1

@z
þ 3z1

@X2

@z

�

þ 3z1z2
@2X0

@z2
þ 3z1

2@
2X1

@z2
þ z1

3@
3X0

@z3

�
þ � � �

(35)

and likewise for Z(x, z) and p(x, z). The equations at various
orders can thus be obtained. The equations at O(e) are given by

@X1

@x
þ @Z1

@z
¼ 0 (36)

�@p1
@x
þ 1

Wi

@2X1

@x2
þ @

2X1

@z2

� �
¼ 0 (37)

�@p1
@z
þ 1

Wi

@2Z1

@x2
þ @

2Z1

@z2

� �
¼ 0 (38)

The boundary conditions at O(e) at the rigid wall, i.e., z = �1 are

Z1 = 0 and X1 = 0 (39)

The interfacial conditions, i.e., at z = 0 at O(e) become

Z1 � z1 = 0 (40)

1

Wi

@X1

@z
þ @Z1

@x

� �
¼ 0 (41)

and

�p1 �
Bo

Ca
z1 þ

2

Wi

@Z1

@z
� 1

Ca

@2z1
@x2
�D

dc0

dz

dc1

dz
¼ 0 (42)

Observe that the O(e) equations are precisely the neutral stability
equations. Hence z1(x) becomes z1(x) = A cos(kx). Our job now is
to determine the sign of A2, noting that a positive value of A2

implies a supercritical bifurcation and a negative value implies a
subcritical bifurcation. When the system consisting of the perfect
conductor and perfect dielectric becomes unstable, interfacial
deformations start to grow. If the square of the amplitude, i.e.,
A2, is positive, the interfacial deformations grow gently and the
amplitude of these deformations increases smoothly as we go
past the critical potential—this is a supercritical bifurcation. This
finally leads to the formation of saturated interfacial deforma-
tion. If the square of the amplitude, i.e., A2, is negative, the
interface resists disturbances but then suddenly jumps to a large
amplitude deformation once pushed away from the critical
potential, often showing hysteresis—this is a subcritical bifurca-
tion. In short, supercritical bifurcation means a smooth transi-
tion to a saturated interfacial deformation, while subcritical
bifurcation means an abrupt jump leading to the rupture of
the interface, which ultimately leads to pillars of the perfect
conductor spanning the gap between the plates.12 To determine
A2, we proceed to the next order.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

0/
8/

20
25

 4
:1

5:
44

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sm00727e


This journal is © The Royal Society of Chemistry 2025 Soft Matter

The governing equations at O
e2

2

� �
are given by

@X2

@x
þ @Z2

@z
¼ 2

@X1

@x

@Z1

@z
� 2

@X1

@z

@Z1

@x
(43)

� @p2
@x
þ 1

Wi

@2X2

@x2
þ @

2X2

@z2

� �

¼ �1
Wi

@

@x
2
@X1

@x

@Z1

@z
� 2

@X1

@z

@Z1

@x

� � (44)

and

� @p2
@z
þ 1

Wi

@2Z2

@x2
þ @

2Z2

@z2

� �

¼ � 1

Wi

@

@z
2
@X1

@x

@Z1

@z
� 2

@X1

@z

@Z1

@x

� � (45)

The boundary conditions at z = �1 are

Z2 = 0 and X2 = 0 (46)

and the interfacial conditions, i.e., at z = 0, are now

Z2 � z2 ¼ �2z1
@Z1

@z
(47)

1

Wi

@X2

@z
þ @Z2

@x

� �
¼ �4

Wi

@z1
@x

@Z1

@z
þ 4

Wi

@z1
@x

@X1

@x

� 2z1
Wi

@2X1

@z2
� 2z1

Wi

@2Z1

@z@x

(48)

and

� p2 �
Bo

Ca
z2 þ

2

Wi

@Z2

@z
� 1

Ca

@2z2
@x2
�D0

dc0

dz

@c2

@z

¼ d0T
Maxwell
2f þ 2z1

@p1
@z
� 4z1

Ca

@2Z1

@z2
þ 4

Wi

@z1
@x

@X1

@z

þ 4

Wi

@z1
@x

@Z1

@x

(49)

The potential field at O
e2

2

� �
is given by

r2c2 = 0 (50)

subject to the following conditions

c2 þ z2
dc0

dz
¼ �2z1

@c1

@z
þ1 at z ¼ 0 and c2 ¼ 0 at z ¼H

(51)

Observe the pattern of eqn in (36)–(42) and compare them with
eqn (43)–(51). The right-hand sides are comprised of forcing
terms that are quadratic combinations of O(e) terms and
directly proportional to A2. We call these quadratic combina-
tions (1, 1) terms due to their bi-linear combinations of first
order variables. The solution to the second order problem must
therefore be the sum of several A2 dependent terms.
In addition, the boxed term in eqn (51) evolves due to the

expansion D ¼ D0 þ
e2

2
at O

e2

2

� �
. This term leads to the

determination of A2 at O
e3

6

� �
. Upon observing that eqn (36)–

(42) are homogeneous and employing solvability conditions on
eqn (36)–(42), we see that solvability of eqn (43)–(51) is auto-
matically satisfied. Thus we cannot determine A2 at this order
and must advance to the next order. In weak nonlinear analysis,
the solvability condition ensures that the perturbation expan-
sions remain bounded by preventing unphysical growth of
perturbations. Applied to the normal stress balance equation
at the interface, this condition requires that higher-order non-
linear terms satisfy a compatibility criterion, correlating factors
like disturbance amplitude, surface tension, elasticity, and
electrostatic potential. This balance leads to an amplitude
equation that governs the evolution and saturation of interfacial
deformations beyond the linear stability threshold, ensuring a
physically consistent description of the interface evolution.

The governing equations at O
e3

6

� �
are given by

@X3

@x
þ @Z3

@z
¼ 3

@X1

@x

@Z2

@z
þ 3

@X2

@x

@Z1

@z

� 3
@X2

@z

@Z1

@x
� 3

@X1

@z

@Z2

@x

(52)

� @p3
@x
þ 1

Wi

@2X3

@x2
þ @

2X3

@z2

� �
¼ �3

Wi

@

@x

� @X1

@x

@Z2

@z
þ @X2

@x

@Z1

@z
� @X2

@z

@Z1

@x
� @X1

@z

@Z2

@x

� � (53)

and

� @p3
@z
þ 1

Wi

@2Z3

@x2
þ @

2Z3

@z2

� �
¼ �3

Wi

@

@z

� @X1

@x

@Z2

@z
þ @X2

@x

@Z1

@z
� @X2

@z

@Z1

@x
� @X1

@z

@Z2

@x

� � (54)

The boundary conditions at z = �1 are

Z3 = 0 and X3 = 0 (55)

The interfacial conditions at z = 0 are

Z3 � z3 ¼ �3z2
@Z1

@z
� 3z1

@Z2

@z
� 3z21

@2Z1

@z2
(56)

1

Wi

@X3

@z
þ @Z3

@x

� �
¼ �6

Wi

@z2
@x

@Z1

@z
� @X1

@x

� �

� 6

Wi

@z1
@x

@Z2

@z
� @X2

@x

� �

þ 12

Wi

@z1
@x

� �2 @X1

@z
þ @Z1

@x

� �
� 3z2

Wi

@2X1

@z2
þ @

2Z1

@z@x

� �

� 3z1
Wi

@2X2

@z2
þ @

2Z2

@z@x

� �
� 3z12

Wi

@3X1

@z3
þ @3Z1

@z2@x

� �

� 12h1

Wi

@z1
@x

@2Z1

@z2
� @

2X1

@z@x

� �

(57)
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and

� p3 �
Bo

Ca
z3 þ

2

Wi

@Z3

@z
� 1

Ca

@2z3
@x2
�D0

dc0

dz

@c3

@z

¼ 3z2
@p1
@z
þ 3z1

@p2
@z
þ 3z1

2@
2p1

@z2
� 6z2

Wi

@2Z1

@z2

� 6z1
Wi

@2Z2

@z2
þ 6

Wi

@z2
@x

@X1

@z
þ @Z1

@x

� �

� 12

Wi

@z1
@x

� �2 @X1

@x
� @Z1

@z

� �

þ 6

Wi

@z1
@x

@Z2

@x
þ @X2

@z

� �

þ 12z1
Wi

@z1
@x

@2X1

@z2
þ @

2Z1

@z@x

� �

� 6z12

Wi

@3Z1

@z3
� 9

Ca

@z1
@x

� �2@2z1
@x2

þD0T
Maxwell
3f

(58)

At the third order the potential field is governed by

r2c3 = 0 (59)

subject to c3 = 0 at z = H and the following condition at z = 0

c3 þ z3
dc0

dz
¼ � 3z1

2@
2c1

@z2
� 3z1

@c2

@z
� 3z2

@c1

@z

� 3z2z1
d2c0

dz2
� 3z1

3d
3c0

dz3

(60)

In the absence of electrostatic potential and upon reversing the
direction of gravity, the governing equations for the weakly
nonlinear regime reduce to the classical Rayleigh–Taylor
instability problem. In this limiting case, the Bond number
advances beyond its critical value, i.e., Bo = Bo0 + e2/2. In
Rayleigh–Taylor instability, gravity destabilizes the system
when a denser fluid overlies a lighter fluid (cf. ref. 21 for weak
nonlinear analysis of Rayleigh–Taylor instability of a soft-gel
layer). In our current study, the destabilization arises from
Maxwell stresses at the soft-gel fluid interface, which causes
interfacial deformations. However, the stabilization of the
interfacial deformations arises from elastic stresses, gravity
and surface tension. It is noteworthy that from eqn (27) term
II arises from the Maxwell stresses in the normal force balance
equation. This term is solely responsible for driving an instabil-
ity when a critical potential is applied across the perfect
conductor and perfect dielectric fluid layers. However, this
term is balanced by the Bond number term, term I, and surface
tension. The Bond number term indicates that gravity opposes
the potential, term I shows that elastic stresses act against the
potential, and the surface tension term also acts in opposition
to the potential.

If A2 is positive, the branch is supercritical, but if it is
negative, D would not be advanced as indicated by eqn (29) but
reduced instead and the branch would become a subcritical

pitchfork. The calculations that involve solvability require the use
of symbolic manipulation, which was carried out in Mathe-
maticas. The algebraic complications can be reduced if the non-
linear terms of eqn (7) are dropped.21 It has been observed by the
present authors that the results do not change qualitatively.

4.1 Solution of the nonlinear equations and tracing the cause
of the transition from super to subcritical branching

The solution to the first order governing equations is obtained
from the linear stability analysis discussed in the Section 3. We
now proceed to seek the solution for the governing equation at

O
e2

2

� �
. At this second order, the displacement fields, pressure

field and interface deformation must be expressed as

X2 ¼ ^̂
X2ðzÞ sinð2kxÞ þ X20ðzÞ

Z2 ¼ ^̂
Z2ðzÞ cosð2kxÞ þ Z20ðzÞ

p2 ¼ ^̂p2ðzÞ cosð2kxÞ þ p20ðzÞ

z2 ¼
^̂z2 cosð2kxÞ

(61)

Here the displacement fields and the pressure field consist of
an x-dependent part and an x-independent part. The domain
equations for the x-dependent part of the problem are

d
^̂
Z2

dz
þ 2k

^̂
X2 ¼ 0 (62)

2k^̂p2 þ
1

Wi

d2
^̂
X2

dz2
� 4k2

^̂
X2

 !
¼ 0 (63)

and

�d
^̂p2
dz
þ 1

Wi

d2
^̂
Z2

dz2
� 4k2

^̂
Z2

 !
¼ 0 (64)

As before, upon eliminating ^̂
X2 from the governing eqn (63)

and (64), by using the continuity eqn (62), we get

d2

dz2
� 4k2

� �2
^̂
Z2 ¼ 0 (65)

At z = 0, we have the tangential stress and kinematic conditions.

Eliminating ^̂
X2 from the x-dependent part of the tangential

stress condition, eqn (48), by taking the horizontal derivative
and using the continuity equation, (62), we get

d2
^̂
Z2

dz2
þ 4k2

^̂
Z2 ¼ �2Ak 2k2X̂1 � 3k

dẐ1

dz
þ d2X̂1

dz2

 !
(66)

while the x-dependent part of kinematic condition, (47), at z =
0 gives

^̂
Z2 � ^̂z2 ¼ �A

dẐ1

dz
(67)
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Solving eqn (65) and applying the tangential stress condition,
(66), along with the kinematic condition, (67), we get

^̂
Z2 ¼ e2kz A2k2zþ ^̂z2ð1� 2kzÞ

� �
(68)

Employing eqn (68) in the continuity eqn (62), and the x-
momentum eqn (63), yields

^̂
X2 ¼ �

1

2
ke2kz A2ð2kzþ 1Þ � 4

^̂z2z
� �

(69)

and

^̂p2 ¼
2k

Wi
A2k� 2

^̂z2
� �

e2kz (70)

At the second order we are left with obtaining the solutions for
the x-independent parts of X2, Z2 and p2. To do this, we eliminate
pressure from the momentum eqn (44) and (45), and further
eliminate X2 by using the continuity eqn (43), resulting in an
equation for Z2. The x-independent part of this equation gives

d4Z20

dz4
¼ 0 (71)

At z = 0, we have the tangential stress condition and the kinematic
conditions. The tangential stress condition for Z20 is obtained by
eliminating X2 from the eqn (48) by taking the horizontal deriva-
tive and using the continuity equation, (43). The x-independent
part of the resulting equation gives

d2Z20

dz2
¼ 0 (72)

and at z = 0 the x-independent part of the kinematic condition,
(47), yields

Z20 ¼ �A
dẐ1

dz
(73)

The solution to eqn (71) using the conditions (72) and (73) along
with the no displacements conditions at z = �1, gives

Z20 = 0 (74)

Applying this solution to the z-momentum eqn (45), yields

dp20

dz
¼ 0 (75)

Noting this, we turn toward the remaining equations at O
e2

2

� �
.

The potential field is given by

r2c2 = 0 (76)

subject to the following conditions

c2þ z2
dc0

dz
¼�2z1

@c1

@z
þ1 at z¼ 0 and c2¼ 0 at z¼H (77)

The normal component of the momentum balance at the
interface, z = 0, is

�p2�
Bo0

Ca
z2þ

2

Wi

@Z2

@z
� 1

Ca

@2z2
@x2
�D0

dc0

dz

@c2

@z

¼D0T
Maxwell
2f þ2z1

@p1
@z
�4z1
Ca

@2Z1

@z2

þ 4

Wi

@z1
@x

@X1

@z
þ 4

Wi

@z1
@x

@Z1

@x

(78)

where TMaxwell
2f consists of the forcing terms which are bilinear,

also called (1, 1) terms, because they are products of terms with
subscript 1 (cf. Appendix A for the expression of TMaxwell

2f ). The
terms associated with D0 arrive from the expansion of the
Maxwell stresses at the second order. We note that all of
the forcing terms at this order are bilinear combinations of
first order terms, i.e., (1,1) terms with the exception of the
boxed term in eqn (77). This implies that the forcing terms are
superposition of second harmonics, i.e., cos(2kx) terms and x-
independent terms. Their projection on to the eigenspace, i.e.,
cos(kx) is zero and thus solvability at second order is automa-
tically satisfied. The boxed term in eqn (77) is so identified as it
is the sole reason for us to determine A2 at the third order. At
the second order, c2 is expressed as,

c2¼
ccc2ðzÞcosð2kxÞþc20ðzÞ (79)

where
ccc2ðzÞ is given by

ccc2ðzÞ ¼
bbh2þ ẑ1

� �2
kcoth Hkð Þ
H

coshð2kzÞ

�
coth 2Hkð Þ bbh2þ ẑ1

� �2
kcoth Hkð Þ

� �
H

sinhð2kzÞ

(80)

and

and where c20(z) in eqn (79) is given by

c20ðzÞ ¼ �
ẑ1
� �

2kcoth Hkð Þ
H2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
yA20

� 1

H|{z}
y
f
20

0BBBB@
1CCCCAz

þ 1þ
ẑ1
� �2

kcoth Hkð Þ
H

0B@
1CA

(82)

bbz2 ¼ �bz1
2k2

Dþ 3Dcsch2 Hkð Þ
H2

þ
16k2 4k2 þ 2 coshð2kÞ þ coshð4kÞ þ 3

� �
Wiðsinhð2kÞ � 2kÞðsinhð4kÞ � 4kÞ

� �
4

2k2

Ca
�Dk coth 2Hkð Þ

H2
þ
2k 8k2 þ coshð4kÞ þ 1
� �
Wiðsinhð4kÞ � 4kÞ � 1

2
p00ð0Þ

� � (81)
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The reason for us to be able to calculate A2 at the third order is
due to the term cf

20. This term arises from the correction of the
base state potential at the second order.

Having obtained the solutions to the first and second order
equations in terms of A, we now turn to the equations at the

third order, i.e. O
e3

6

� �
to determine A2. As noted earlier, the

forcing terms in eqn (52)–(60) are bi-linear combinations of
second order and first order terms i.e., (2, 1) terms and trilinear
combinations of first order terms i.e., (1, 1, 1) terms. From
these combinations we can infer that the displacement fields,
pressure field and the interface deformation at this order can
be expressed as

X3 ¼
^̂
X̂3ðzÞ sinð3kxÞ þ X̂3ðzÞ sinðkxÞ

Z3 ¼
^̂
Ẑ3ðzÞ cosð3kxÞ þ Ẑ3ðzÞ cosðkxÞ

p3 ¼ ^̂
p̂3ðzÞ cosð3kxÞ þ p̂3ðzÞ cosðkxÞ

(83)

and

z3 ¼
^̂
ẑ3 cosð3kxÞ þ ẑ3ðzÞ cosðkxÞ (84)

At this order only the cos(kx) part of the displacement, pressure
and the interface deformation fields (the terms underlined in
eqn (83) and (84)) play a role in determining the amplitude, A.
Therefore, we see that the domain equations for the cos(kx) part
of the variables are

kX̂3 þ
dẐ3

dz
¼ 0 (85)

kp̂3 þ
1

Wi

d2X̂3

dz2
� k2X̂3

 !
¼ 0 (86)

and

�dp̂3
dz
þ 1

Wi

d2Ẑ3

dz2
� k2Ẑ3

 !
¼ 0 (87)

Again as before, eliminating X̂3 from (86) and (87) and using the
continuity equation, (85), we get

d2

dz2
� k2

� �2

Ẑ3 ¼ 0 (88)

At z = 0 we have the tangential stress and the kinematic
conditions. The tangential stress is modified by eliminating
X̂3 from the cos(kx) part of the eqn (57). This is done by taking
the horizontal derivative of the cos(kx) part of the eqn (57) and

by using the continuity equation, (52). This gives

1

Wi

d2Ẑ3

dz2
þ k2Ẑ3

 !
¼ 3Ak

2Wi

d2
^̂
X2

dz2
þ 3Ak2

Wi

d
^̂
Z2

dz

þ 9A2k4Ẑ1

Wi
� 15A2k2

4Wi

d2X̂1

dz2
þ 3A2k

4Wi

d3X̂1

dz3

� 6A2k3

Wi

dX̂1

dz

(89)

and at z = 0, the cos(kx) part of the kinematic condition,
(56), yields

Ẑ3 � ẑ3 ¼ �
3A

2

d
^̂
Z2

dz
� 9A2

4

d2Ẑ1

dz2
(90)

Solving eqn (85)–(90) gives

Ẑ3 ¼
1

4
ekz 3A3k2ðkzþ 1Þ � 4ĥ3ðkz� 1Þ
� �

(91)

We split cZ3 into two parts, one that is free of ĥ3 and the other
that is homogeneous in ĥ3. Thus,

Ẑ3 ¼ Ẑ
A

3 þ Ẑ
h

3 (92)

where Ẑ
A

3 ¼
1

4
ekz 3A3k2ðkzþ 1Þ
� �

and

Ẑ
h

3 ¼
1

4
ekz �4ĥ3ðkz� 1Þ
� �

.

At the third order the potential field is governed by

r2c3 = 0 (93)

subject to c3 = 0 at z = H and the following condition at z = 0

c3 þ z3
dc0

dz
¼ � 3z1

2@
2c1

@z2
� 3z1

@c2

@z
� 3z2

@c1

@z

� 3z2z1
d2c0

dz2
� 3z1

3d
3c0

dz3

(94)

The normal component of the momentum balance along the
interface at z = 0 gives

� p3 �
Bo

Ca
z3 þ

2

Wi

@Z3

@z
� 1

Ca

@2z3
@x2
�D0

dc0

dz

@c3

@z

¼ 3z2
@p1
@z
þ 3z1

@p2
@z

þ 3z21
@2p1
@z2
� 6z2

Wi

@2Z1

@z2
� 6z1

Wi

@2Z2

@z2

þ 6

Wi

@z2
@x

@X1

@z
þ @Z1

@x

� �

� 12

Wi

@z1
@x

� �2 @X1

@x
� @Z1

@z

� �
þ 6

Wi

@z1
@x

@Z2

@x
þ @X2

@z

� �

þ 12z1
Wi

@z1
@x

@2X1

@z2
þ @

2Z1

@z@x

� �
� 6z12

Wi

@3Z1

@z3

� � 9

Ca

@z1
@x

� �2@2z1
@x2
þD0T

Maxwell
3f

(95)
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where TMaxwell
3f consists of the (1, 2) and (1, 1, 1) forcing terms

(cf. Appendix A for the expression of TMaxwell
3f ). The boxed term

in eqn (95) gives rise to a term in the expression for A which is
always negative indicating the subcritical nature of the bifurca-
tion and plays a key role in the high wave number regime,
leading to subcritical branching upon instability. It is analo-
gous to a similar term in the Rayleigh–Taylor problem.

At this order, c3 is expressed as

c3 ¼
cccc3ðzÞ cosð3kxÞ þcc3ðzÞ cosðkxÞ (96)

Here, the cos(kx) part of the third order problem alone plays a
role in the determination of A2 due to the requirement of the
solvability condition at the third order (cf. Appendix B for the

solution of cc3ðzÞ). At the third order, solvability requires that
the inhomogeneous terms reside in the null space of the
homogeneous problem. This yields an expression for A2, the
details of which may be found in the Appendix C. In the limit of
Wi - N, A2 is given by

1

A2
¼ k tanhðkHÞ

8 sinh 3ðkHÞ 3b sinhðkHÞ þ b sinhð3kHÞ � 5k coshðkHÞð

þk coshð3kHÞÞ � k cothðkHÞ
H

� 3k3H2 tanhðkHÞ
8D0Ca

(97)

with b = [k(cosh(2kH) + 2)csch2(kH)]/[(2 tanh(kH)(Bo + k2) �
6k2coth(kH))/(Bo + k2)]. The above expression for 1/A2 is
exactly the same that was reported in Dinesh et al.1 Note that
in the limit of Wi - N, the bottom fluid mimics the behavior
of a Newtonian perfect conductor. We now focus in the expres-
sion for 1/A2 when the bottom fluid is considered to be a
viscoelastic perfect conductor, i.e.,

A2 ¼WiD0k
2

9H3
þ O k4

� �
(99)

It is noteworthy that the above expression in eqn (98) for 1/A2

helps us glean the physics of electrostatic potential acting on a
viscoelastic perfect conductor-dielectric fluid pair. A positive
sign for 1/A2 indicates that the branching behavior for the
interface deformation will lead to a supercritical saturation and
a negative sign signifies that the branching behavior leads to a
subcritical rupture of the interface. Also note that this expres-
sion consists of terms containing Wi, these terms play a key role
in stabilization of interfacial deformations driven by the elec-
trostatic potential. This stabilization is primarily attributed to
the elastic stresses in the perfect conductor that counteract the
destabilizing potential. This can be seen from the expression for
A2 in eqn (99), which is obtained by expanding A2 from
eqn (98) as a series in the wavenumber k. At low wavenumbers,
the O(k2) term is dominant. This term is positive and includes
the Weissenberg number (Wi), indicating that the interface
undergoes supercritical saturation. The presence of Wi shows
that elastic stresses contribute to the saturation of interfacial
deformations. This term arises from the tangential and normal
elastic stresses in eqn (41), (42), (48), (49), (57) and (58).

To further glean the physics of electrostatic instability, we
calculate the sign of 1/A2 from eqn (98), along the neutral
stability curve for Wi = 0.1. In addition, we also calculate the
wavenumber beyond which the sign of 1/A2 transits from a
positive to negative sign. This transition wavenumber is
obtained from the expression for 1/A2 by equating A 2 = 0.
The neutral curve and the curve for the transition wavenumber
(straight line) are shown in Fig. 3. Note that the region on the
neutral stability curve above the straight line which is the
transition wavenumber always leads to supercritical saturation
of the interface deformation and the region below the straight
line leads to subcritical rupture of the interface. The intersec-
tion of the neutral curve and the straight line corresponding to

the transition wavenumber is a co-dimension 2 point. Observe
that in the region for the supercritical behavior, the elastic
stresses along with gravity counter act the Maxwell stresses due

1

A2
¼ � 9k3

Ca
�
2D0k cosh 6Hk2

� �
� 3

� �
coth Hkð Þcsch2 Hkð Þ

H2
� 24kD0 coth

2 Hkð Þ
H3

�

Wi 2k� sinhð2kÞð Þ sinhð2kÞ � 2kð Þ2 sinhð4kÞ � 4kð Þ H2ðWi sinhð4kÞðBoþ 4k2Þ
�

þ4kð�BoWiþ 8Ca k2 þ Ca coshð4kÞ þ Ca� 4k2WiÞÞ þ 2CaD0kWið4k� sinhð4kÞÞ cothð2HkÞ
�

Wið2k� sinhð2kÞÞðsinhð2kÞ � 2kÞ2ðsinhð4kÞ � 4kÞ 2CaD0kWið4k� sinhð4kÞð Þ cothð2HkÞ

þH2 Wi sinhð4kÞBoþ 4k2
� �

þ 4k �BoWiþ 8Cak2 þ Ca coshð4kÞ þ Ca� 4k2Wi
� �� ��

þ

3CaD0k
3 3csch2ðHkÞ þ 2
� �

D0Wið2k� sinhð2kÞð Þð4k� sinhð4kÞÞ 3csch2ðHkÞ þ 1
� �

þ16H2k2 4k2 þ 2 coshð2kÞ þ coshð4kÞ þ 3Þ
� �

H2ð2k� sinhð2kÞÞ 2CaD0kWið4k� sinhð4kÞÞ cothð2HkÞþð

H2ðWi sinhð4kÞ Boþ 4k2
� �

þ 4k �BoWiþ 8Cak2 þ Ca coshð4kÞ þ Ca� 4k2Wi
� �� ��

�

�7þ 16k2 8k4 þ 5k2 þ 9
� �

þ 8 14k2 � 1
� �

coshð2kÞ þ 4 coshð4kÞ þ 8 coshð6kÞ þ 3 coshð8kÞþ
�
4k 8 sinhðkÞ � 5 sinhð3kÞð Þ cosh 3ðkÞ � 4k ðk2 þ 3Þ coshð4kÞ þ 3k sinhð4kÞ þ coshð6kÞ

� �� ��
Wiðsinhð2kÞ � 2kÞ2ðsinhð4kÞ � 4kÞ

(98)
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to the electrostatic potential. These stresses balance out leading
to a saturated interface deformation. However, if the fluid were
to be Newtonian the Maxwell stresses dominate over gravity
and always lead to a subcritical behavior. The region on the
neutral curve below the straight line depicts the subcritical
branching behavior of the interface. This behavior is attributed
to both the Maxwell stresses and the surface tension which
ultimately lead to the rupture of the interface. The surface
tension term arises from the diminished curvature, i.e., the
boxed term in eqn (95) which is of O(k3). In short, if the
wavenumber k, is chosen such a way that the critical potential
lies to the left of the intersection point of the neutral curve and
the transition wavenumber, this will lead to a supercritical
saturation of the interface. On the contrary, if the critical
potential lies to the right of the intersection point, the inter-
facial deformations lead to a subcritical rupture.

4.2 Comments on the use of the Oldroyd-B fluid model for the
perfect conductor: linear stability and weakly nonlinear
analysis

A similar stability analysis is performed for the case where the
perfect conductor is simulated using the Oldroyd-B fluid model
(the details of the linear stability analysis are relegated to
Appendix D). For an Oldroyd-B fluid modeled as a perfect
conductor, the neutral stability relationship involving the cri-
tical dimensionless potential, Bond number, and curvature
terms remains identical to the relationship observed when
the perfect conductor is modeled as a Newtonian fluid. In
addition, the expression for A2 in the case of an Oldroyd-B
fluid is identical to that obtained when the perfect conductor
behaves as a Newtonian fluid (the derivation of the weak
nonlinear analysis is provided in Appendix D). This equivalence
arises because, in both cases, the perturbed velocities and

pressure vanish at orders O(e), O
e2

2

� �
, and O

e3

6

� �
. As a result,

the governing equations remain the same for both Newtonian

and Oldroyd-B fluids. Consequently, the bifurcation behavior is
also identical, with both fluids exhibiting subcritical rupture of
the interface.1

5 Conclusions

Using weakly nonlinear analysis, it is shown that an electric field
imposed on a linear viscoelastic fluid, modeled as a perfect
conductor, adjacent to a dielectric air layer in the presence of
gravity can lead to either supercritical or subcritical instability of
the interface. The analysis is based on a regular perturbation
expansion, where the perturbation parameter is defined in terms
of the deviation of the applied potential from its critical value.

The results indicate that for low wavenumbers (i.e., wide
containers), the interface deforms smoothly and exhibits super-
critical saturation. In contrast, at high wavenumbers (i.e., narrow
containers), subcritical branching occurs. An analytical expression
shows that supercritical behavior arises due to the stabilizing
influence of elastic stresses and gravity, which dominate over the
destabilizing Maxwell stresses. On the other hand, the subcritical
nature of the instability at high wavenumbers is primarily driven
by electrostatic forcing and the reduced influence of curvature,
which scales as O(k3). These effects are sufficient to overcome the
stabilizing contributions from gravity and elasticity.

Additionally, when the perfect conductor is modeled as an
Oldroyd-B fluid, the analysis reveals that the branching
remains subcritical, resulting in interface rupture. This beha-
vior is consistent with that observed in Newtonian fluids.
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Appendices
A Maxwell stresses at O

e2

2

� �
and at O

e3

6

� �
TMaxwell

2f is given by the following expression

TMaxwell
2f ¼ dc0

dz
2z1

@2c1

@z2
� 2

@z1
@x

� �2
dc0

dz

 !"

�4@z1
@x

dc0

dz

@c1

@x
þ @c1

@z

� �2

� @c1

@x

� �2
# (A1)

Fig. 3 The critical potential versus wavenumber given by the neutral
stability curve and the transition wavenumber is represented by the straight
line. The critical potential versus wavenumber to the left of the intersection
point lead to a supercritical saturation of the interface and the region to
the right of the intersection point represents the subcritical rupture of the
interface. The results are presented for Wi = 0.1.
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TMaxwell
3f is given by the following expression

TMaxwell
3f ¼ �12 @z1

@x

� �2
dc0

dz

@c1

@z
� 6

@z1
@x

dc0

dz
2z1

@2c1

@x@z

��"

þ@c2

@x
þ @z2
@x

dc0

dz

�
þ 2

@c1

@z

@c1

@x

�
þ dc0

dz
3z2

@2c1

@z2

� �

þ 3 z1ð Þ2
dc0

dz

@3c1

@z3
þ z1

dc0

dz

@2c2

@z2
� 2

@c1

@x

@2c1

@x@z

� ��

�@c1

@x

@c2

@x
þ 2

@z2
@x

dc0

dz

� �
þ @c1

@z
2z1

@2c1

@z2
þ @c2

@z

� ��	
(A2)

B Solution to cc3 at O
e3

6

� �
We only need to determine the solution of the cos(kx) part of
the third order problem, because this part alone plays a role in
the determination of A2 at this order. The governing equation

for cc3 is given by

d2

dz2
� k2

� �cc3 ¼ 0 (B1)

The corresponding boundary conditions for cc3 at z = 0 and at
z = H, are

cc3 þ bz3dc0

dz
¼ �3

2
bz1dccc2

dz
� 3bz1dc20

dz
� 3

2

bbz2dcc1

dz
� 9

4
bz1� �2d2c0

dz2

(B2)

and

cc3 ¼ 0 (B3)

The solution to the governing equation for cc3 along with its
boundary conditions is,

cc3 ¼
3bz1
H
þ
bz3
H
þ 3bz13k2

4H
þ 3bz13k2 coth 2 Hkð Þ

2H
þ 3

bbz2 bz1k tanh Hkð Þ
2H

0@

þ 3bz13k coth Hkð Þ
H2

þ 3
bbz2 bz1k coth Hkð Þ

H

1A coshðkzÞ

� 3bz13k2 coth Hkð Þ
4H

þ 3bz13k2 coth Hkð Þcsch2 Hkð Þ
2H

 

þ 3
bbz2 bz1k
2H

þ 3bz13k coth 2 Hkð Þ
H2

þ 3
bbz2 bz1k coth 2 Hkð Þ

H

þ 3bz1 coth Hkð Þ
H

þ
bz3 coth Hkð Þ

H

!
sinhðkzÞ

(B4)

C Solvability condition at O
e3

6

� �
The normal force balance at the third order, yields

� p3 �
Bo0

Ca
z3 þ

2

Wi

@Z3

@z
� 1

Ca

@2z3
@x2
�D0

dc0

dz

@c3

@z
¼ 3z2

@p1
@z

þ 3z1
@p2
@z
þ 3z1

2@
2p1

@z2
� 6z2

Wi

@2Z1

@z2
� 6z1

Wi

@2Z2

@z2

þ 6

Wi

@z2
@x

@X1

@z
þ @Z1

@x

� �

� 12

Wi

@z1
@x

� �2 @X1

@x
� @Z1

@z

� �
þ 6

Wi

@z1
@x

@Z2

@x
þ @X2

@z

� �

þ 12z1
Wi

@z1
@x

@2X1

@z2
þ @

2Z1

@z@x

� �
� 6z12

Wi

@3Z1

@z3
� 9

Ca

@z1
@x

� �2@2z1
@x2

þD0T
Maxwell
3f

(C1)

Recall that the cos(kx) part of the normal force balance at the
first order is given by

�p1 �
Bo

Ca
z1 þ

2

Wi

@Z1

@z
� 1

Ca

@2z1
@x2
�D

dc0

dz

dc1

dz
¼ 0 (C2)

Multiplying eqn (C1) with ẑ1 cos(kx) and eqn (2) with ẑ3 cos(kx)
and upon subtracting the resulting equations, we get an
expression for A2.

D Linear stability and weak nonlinear analysis using the
Oldroyd-B model for the perfect conductor

We now perform a weakly nonlinear analysis of the electrohy-
drodynamic instability when the perfect conductor is repre-
sented by an Oldroyd-B model. The governing equations are

expanded and solved at successive orders: O(e), O
e2

2

� �
, and

O
e3

6

� �
. The ensuing analysis follows the procedure outlined in

the work of Dinesh and Narayanan.1,21 In addition, the solution
methodology is outlined in Section 4. For a perfect conductor,
the dimensionless governing equations using the Oldroyd-B
model are given as follows, beginning with the continuity
equation:

@u

@x
þ @w
@z
¼ 0 (C3)

the x-momentum equation

Re
@u

@t
þ u

@u

@x
þ w

@u

@z

� �
¼ � @p

@x
þ @2u

@x2
þ @

2u

@z2

� �

þ @txx
@x
þ @txz

@z

(C4)
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and the z-momentum equation

Re
@w

@t
þ u

@w

@x
þ w

@w

@z

� �
¼ � @p

@z
þ @2w

@x2
þ @

2w

@z2

� �

þ @tzx
@x
þ @tzz

@z

(C5)

where txx, txz, tzx, tzz are components of the polymeric stress
tensor. The xx-component of shear stress is given by

De
@txx
@t
þ u

@txx
@x
þ w

@txx
@z
� 2

@u

@x
txx � 2

@u

@z
txz

� �
þ txx

¼ 2Z
@u

@x
(C6)

The zz-component of shear stress yields

De
@tzz
@t
þ u

@tzz
@x
þ w

@tzz
@z
� 2

@w

@z
tzz � 2

@w

@x
tzx

� �
þ tzz

¼ 2Z
@w

@z
(C7)

The xz-component of shear stress is represented by

De
@txz
@t
þ u

@txz
@x
þ w

@txz
@z
� @u
@x

txz �
@w

@x
tzz �

@u

@z
txx

�

�@w
@z

txz

�
þ txz ¼ Z

@u

@z
þ @w
@x

� � (C8)

Here Re ¼ rh�U
m

, De ¼ l
h�=U

and Z = mp/m* are the Reynolds

number, Deborah number and the viscosity ratio, i.e., the
viscosity of the polymer divided by the viscosity of the solvent.

We now perform a linear stability analysis of the governing
equations following a similar procedure presented in Section 3.
The linearized form of the above equations under neutral
conditions, yield,

@û

@x
þ @ŵ
@z
¼ 0 (C9)

the x-momentum equation

0 ¼ �@p̂
@x
þ @2û

@x2
þ @

2û

@z2

� �
þ @t̂xx

@x
þ @t̂xz

@z
(C10)

and the z-momentum equation

0 ¼ �@p̂
@z
þ @2ŵ

@x2
þ @

2ŵ

@z2

� �
þ @t̂zx

@x
þ @t̂zz

@z
(C11)

The xx-component of shear stress is

t̂xx ¼ 2Z
@û

@x
(C12)

The zz-component of shear stress is given by

t̂zz ¼ 2Z
@ŵ

@z
(C13)

The xz-component of shear stress is represented by

t̂xz ¼ Z
@û

@z
þ @ŵ
@x

� �
(C14)

It is noteworthy that the Deborah number, De, is absent in the
governing equations corresponding to the shear stress compo-
nents of the Oldroyd-B model. The Deborah number which
takes into the elastic nature of the fluid an important char-
acteristic of the viscoelastic fluid is absent under the neutral
conditions, indicating that the elastic nature of the fluid does
not alter the critical potential required for an instability. The
Deborah number measures how fast stresses relax compared to
the flow time scale. In neutral stability, perturbations are
marginal with no net growth or decay, so relaxation does not
influence the neutral boundary but only affects the rate at
which instabilities grow or decay away from it. Consequently,
De appears in transient growth rate problems but not in neutral
stability curves. It can also be shown that under neutral stability
conditions, the perturbed velocity and pressure are zero.
Toward this end, we calculate the perturbed velocity in the z-
direction by eliminating pressure and the x-component velocity
in the governing equations, eqn (C9)–(C14). This yields,

ð1þ ZÞ d2

dz2
� k2

� �2

ŵ ¼ 0 (C15)

The solution for ŵ can be written as

ŵ = c1ekz + c2e�kz + c3zekz + c4ze�kz (C16)

The corresponding boundary conditions, i.e., no slip, no pene-
tration, kinematic and tangential stress in terms of ŵ are
given by,

ŵjz¼�1 ¼ 0;
dŵ

dz






z¼�1
¼ 0; ŵjz¼0 ¼ 0; and

1þ Zð Þ d2

dz2
� k2

� �
ŵ ¼ 0

(C17)

Upon solving the governing equations along with the boundary
conditions, we get ŵ = 0. Since the perturbed velocities ŵ and û
are zero, the perturbed pressure p̂ is also zero. Therefore, upon
substituting the perturbed quantities in the linearized normal
stress balance yields an expression for the critical potential, i.e.,

Boþ k2 ¼ DCa
k

H2
coth kHð Þ (C18)

Note that this expression is similar to the critical potential for a
Newtonian fluid (recall eqn (28) in Section 3). This is attributed
to the fact that the perturbed velocities and pressure are zero at
O(e). Therefore, the Oldroyd-B model for the soft-gel layer
results in a critical potential that is independent of the Deborah
number. We now focus on the solution of the governing

equations at O
e2

2

� �
.

D.1 O
e2

2

� �
Governing equations and solution. The govern-

ing equations at O
e2

2

� �
are given by the continuity equation,

i.e.,

@u2
@x
þ @w2

@z
¼ 0 (C19)
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the x-momentum equation

Re
@u2
@t
þ 2u1

@u1
@x
þ 2w1

@u1
@z

� �
¼ �@p2

@x

þ @2u2
@x2
þ @

2u2

@z2

� �
þ @ txxð Þ2

@x
þ @ txzð Þ2

@z

(C20)

and the z-momentum equation

Re
@w2

@t
þ 2u1

@w1

@x
þ 2w1

@w1

@z

� �
¼ �@p2

@z

þ @2w2

@x2
þ @

2w2

@z2

� �
þ @ tzxð Þ2

@x
þ @ tzzð Þ2

@z

(C21)

where (txx)2, (txz)2, (tzx)2, (tzz)2 are components of the polymeric

stress tensor at O
e2

2

� �
. The xx-component of shear stress is

given by

De
@ txxð Þ2
@t

þ 2u1
@ txxð Þ1
@x

þ 2w1
@ txxð Þ1
@z

� 4
@u1
@x

txxð Þ1
�

�4@u1
@z
ðtxzÞ1

�
þ txxð Þ2¼ 2Z

@u2
@x

(C22)

The zz-component of shear stress is

De
@ tzzð Þ2
@t

þ 2u1
@ tzzð Þ1
@x

þ 2w1
@ tzzð Þ1
@z

� 4
@w1

@z
tzzð Þ1

�

�4@w1

@x
tzxð Þ1

�
þ tzzð Þ2¼ 2Z

@w2

@z

(C23)

and the xz-component of shear stress can be written as

De
@ txzð Þ2
@t

þ 2u1
@ txzð Þ1
@x

þ 2w1
@ txzð Þ1
@z

� 2
@u1
@x

txzð Þ1
�

�2@w1

@x
tzzð Þ1�2

@u1
@z

txxð Þ1�2
@w1

@z
txzð Þ1

�
þ txzð Þ2

¼ Z
@u2
@z
þ @w2

@x

� �
(C24)

It is noteworthy that in the above equations O(e) terms are zero,
i.e., the first order velocity components in the viscoelastic fluid
layer are zero. In addition, all the time derivative terms are also
zero since we are conducting a weak nonlinear analysis around
the neutral stability point. Therefore, O(e) terms and the time
derivative terms vanish from the momentum and in the poly-
meric stress tensor equations.

We now calculate the perturbed velocity in the z-direction by
eliminating the pressure and the x-component velocity in the
momentum equations. This yields,

ð1þ ZÞ @2

@z2
þ @2

@x2

� �2

w2 ¼ 0 (C25)

At this order, velocities, pressure and interface formation are
written as

u2 ¼ bbu2 sinð2kxÞ þ u20

w2 ¼ ^̂w2 cosð2kxÞ þ w20

p2 ¼ ^̂p2 cosð2kxÞ þ p20

z2 ¼
^̂z2 cosð2kxÞ

c ¼ ^̂c2 cosð2kxÞ þ c20

(C26)

ð1þ ZÞ d2

dz2
� 4k2

� �2

^̂w2 ¼ 0 (C27)

The solution for ^̂w2 can be written as

^̂w2 ¼ c1e
2kz þ c2e

�2kz þ c3ze
2kz þ c4ze

�2kz (C28)

The corresponding boundary conditions, i.e., no slip, no pene-
tration, kinematic and tangential stress in terms of ŵ are
given by,

^̂w2





z¼�1
¼ 0;

d ^̂w2

dz







z¼�1

¼ 0; ^̂w2





z¼0
¼ 0; and

1þ Zð Þ d2

dz2
� 4k2

� �
^̂w2 ¼ 0

(C29)

Upon solving the governing equations along with the boundary

conditions, we get ^̂w2 ¼ 0. Note that ^̂w2 ¼ 0 will play a key role
in the calculations at O(e3/6).

ð1þ ZÞd
4 ^̂w2

dz4
¼ 0 (C30)

The solution for ^̂w2 can be written as

w20 = c1z3 + c2z2 + c3z + c4 (C31)

The corresponding boundary conditions, i.e., no slip, no pene-
tration, kinematic and tangential stress in terms of w20 are
given by,

w20jz¼�1¼ 0;
dw20

dz






z¼�1
¼ 0; w20jz¼0¼ 0; and

1þ Zð Þd
2w20

dz2
¼ 0

(C32)

Upon solving the governing equations along with the boundary
conditions, we get w20 = 0. It is noteworthy that w20 = 0, will play
a key role in the calculations at O(e3/6). The potential field is
given by

r2c2 = 0 (C33)

subject to the following conditions

c2 þ z2
dc0

dz
¼ �2z1

@c1

@z
þ 1 at z ¼ 0 and c2 ¼ 0 at z ¼H

(C34)
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The normal component of the momentum balance at the
interface, z = 0, is

p2 � p�2
� �

CaþBz2 �
@2z2
@x2
� CaD0

dc0

dz

@c2

@z
¼ CaD0T

Maxwell
2f

(C35)

(cf. Appendix A for the expression of TMaxwell
2f ) where

ccc2ðzÞ is
given by

^̂cðzÞ ¼
bbz2 þ ẑ1

� �2
k coth Hkð Þ
H

coshð2kzÞ

�
coth 2Hkð Þ bbz2 þ ẑ1

� �2
k coth Hkð Þ

� �
H

sinhð2kzÞ

(C36)

and

bbz2 ¼ �D0Ca ẑ1
� �2

k2 cosh 2Hkð Þ þ 2ð Þcsch2 Hkð Þ
4D0Cak coth 2Hkð Þ � 2H2 Bþ 4k2ð Þ (C37)

and where c20(z) is given by

c20ðzÞ ¼ �
ẑ1
� �2

k coth Hkð Þ
H2

� 1

H

0B@
1CAz

þ 1þ
ẑ1
� �2

k coth Hkð Þ
H

0B@
1CA (C38)

A detailed solution for the potential is provided in Dinesh et al.1

We now proceed to the solution of the governing equations at

O
e3

6

� �
.

D.2 O
e3

6

� �
Governing equations and solution. The govern-

ing equations at O
e3

6

� �
are given by

@u3
@x
þ @w3

@z
¼ 0 (C39)

the x-momentum equation

Re
@u3
@t
þ 3u2

@u1
@x
þ 3u1

@u2
@x
þ 3w2

@u1
@z
þ 3w1

@u2
@z

� �

¼ �@p3
@x
þ @2u3

@x2
þ @

2u3

@z2

� �
þ @ txxð Þ3

@x
þ @ txzð Þ3

@z

(C40)

and the z-momentum equation

Re
@w3

@t
þ 3u2

@w1

@x
þ 3u1

@w2

@x
þ 3w2

@w1

@z
þ 3w1

@w2

@z

� �

¼ �@p3
@z
þ @2w3

@x2
þ @

2w3

@z2

� �
þ @ tzxð Þ3

@x
þ @ tzzð Þ3

@z

(C41)

where (txx)3, (txz)3, (tzx)3, (tzz)3 are components of the polymeric

stress tensor at O
e3

6

� �
. The xx-component of shear stress is

expressed as

De
@ txxð Þ3
@t

þ 3u2
@ txxð Þ1
@x

þ 3u1
@ txxð Þ2
@x

�

þ 3w2
@ txxð Þ1
@z

þ 3w1
@ txxð Þ2
@z

� 2
@u

@x
txx � 6

@u2
@z

txzð Þ1

�6@u1
@z

txzð Þ2
�
þ txxð Þ3¼ 2Z

@u3
@x

(C42)

The zz-component of shear stress can be written as

De
@ tzzð Þ3
@t

þ 3u2
@ tzzð Þ1
@x

þ 3u1
@ tzzð Þ2
@x

�

þ 3w2
@ tzzð Þ1
@z

þ 3w1
@ tzzð Þ2
@z

� 6
@w2

@z
tzzð Þ1�6

@w1

@z
tzzð Þ2

�6@w2

@x
tzxð Þ1�6

@w1

@x
tzxð Þ2

�
þ tzzð Þ3¼ 2Z

@w3

@z

(C43)

and the xz-component of shear stress is represented by

De
@ txzð Þ3
@t

þ 3u2
@ txzð Þ1
@x

þ 3u1
@ txzð Þ2
@x

�

þ 3w2
@ txzð Þ1
@z

þ 3w1
@ txzð Þ2
@z

� 3
@u2
@x
ðtxzÞ1 � 3

@u1
@x

txzð Þ2

� 3
@w2

@x
tzzð Þ1�3

@w1

@x
tzzð Þ2�3

@u2
@z

txxð Þ1�3
@u1
@z

txxð Þ2

�3@w2

@z
txzð Þ1�3

@w1

@z
txzð Þ2

�
þ txzð Þ3¼ Z

@u3
@z
þ @w3

@x

� �
(C44)

It is noteworthy that in the above equations O(e) and O
e2

2

� �
terms are zero, i.e., the first and second order velocity compo-
nents and pressure in the viscoelastic fluid layer are zero.
Therefore, we do not see the product of these O(e) terms and

product of O(e) term with O
e2

2

� �
in the momentum equations

and the polymeric stress tensor equations. Toward this end, we
calculate the perturbed velocity in the z-direction by eliminat-
ing pressure and the x-component velocity in the momentum
equations. This yields,

ð1þ ZÞ @2

@z2
þ @2

@x2

� �2

w3 ¼ 0 (C45)

At this order, velocities, pressure and interface deformation are
written as

u3 ¼ ^̂
û3 sinð3kxÞ þ û3 sinðkxÞ

w3 ¼ ^̂
ŵ3 cosð3kxÞ þ ŵ3 cosðkxÞ

p3 ¼ ^̂
p̂3 cosð3kxÞ þ p̂3 cosðkxÞ

z3 ¼
^̂
ẑ3 cosð3kxÞ þ ẑ3 cosðkxÞ

(C46)
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ð1þ ZÞ d2

dz2
� 4k2

� �2

ŵ3 ¼ 0 (C47)

The solution for ŵ3 can be written as

ŵ3 = c1ekz + c2e�kz + c3zekz + c4ze�kz (C48)

The corresponding boundary conditions, i.e., no slip, no pene-
tration, kinematic and tangential stress in terms of ŵ are
given by,

ŵ3jz¼�1¼ 0;
dŵ3

dz






z¼�1
¼ 0; ŵ3jz¼0¼ 0; and

1þ Zð Þ d2

dz2
� k2

� �
ŵ3 ¼ 0

(C49)

Upon solving the governing equations along with the boundary
conditions, we get ŵ3 = 0. At the third order the potential field is
governed by

r2c3 = 0 (C50)

subject to c3 = 0 at z = H and the following condition at z = 0

c3 þ z3
dc0

dz
¼ � 3z1

2@
2c1

@z2
� 3z1

@c2

@z
� 3z2

@c1

@z

� 3z2z1
d2c0

dz2
� 3z1

3d
3c0

dz3

(C51)

The normal component of the momentum balance along the
interface at z = 0 gives

p3 � p�3
� �

CaþBz3 �
@2z3
@x2
� CaD0

dc0

dz

@c3

@z

¼ �9@
2z1
@x2

@z1
@x

� �2

þCaD0T
Maxwell
3f

(C52)

where TMaxwell
3f consists of the (1, 2) and (1, 1, 1) forcing terms

(cf. Appendix A for the expression of TMaxwell
3f ). Therefore, at this

order, c3 and z3 are expressed as

c3 ¼
cccc3ðzÞ cosð3kxÞ þcc3ðzÞ cosðkxÞ and

z3 ¼
bbbz3 cosð3kxÞ þ bz3 cosðkxÞ

(C53)

Here, the cos(kx) part of the third order problem alone plays a
role in the determination of A2 due to the requirement of the
solvability condition at the third order. The solvability condi-
tion yields an expression for A2, i.e.,

1

A2
¼ k tanhðkHÞ

8 sinh3ðkHÞ
3b sinhðkHÞ þ b sinhð3kHÞ � 5k coshðkHÞð

þk coshð3kHÞÞ � k cothðkHÞ
H

� 3k3H2 tanhðkHÞ
8D0Ca

(C54)

with b = [k(cosh(2kH) + 2)csch2(kH)]/[(2 tanh(kH)(B + k2) �
6k2 coth(kH))/(B + k2)]. The expression for A2 in the case of an
Oldroyd-B fluid is identical to that obtained when the perfect
conductor behaves as a Newtonian fluid. This equivalence

arises because, in both cases, the perturbed velocities and

pressure vanish at orders O(e), O
e2

2

� �
, and O

e2

6

� �
. As a result,

the governing equations remain the same for both Newtonian
and Oldroyd-B fluids. Consequently, the bifurcation behavior is
also identical, with both fluids exhibiting subcritical rupture of
the interface.1 The Deborah number characterizes the relative
importance of elastic relaxation compared to the characteristic
time scale of the flow, indicating whether the material responds
more like a solid (large De) or more like a fluid (small De). In the
case of neutral stability, perturbations are marginal and neither
grow nor decay. At this threshold, stress relaxation does not
contribute to shifting the onset of instability, since the system is
balanced precisely between stable and unstable behavior.
Instead, the Deborah number influences the dynamics away
from neutrality by determining how rapidly instabilities amplify
or decay. Consequently, De plays a central role in governing
transient growth rates of perturbations, but it does not explicitly
appear in the neutral stability curves that define the onset of
instability.
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