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An electric field imposed on a bilayer of fluids that are stably stratified in the presence of gravity leads to
an instability manifested by interfacial deflections. The layer of perfect conductor is simulated using a linear
viscoelastic model and the perfect dielectric is considered to be a layer of air. Under neutral conditions, the
key dimensionless groups are the dimensionless electric potential, Bond number and the Weissenberg
number. The branching behavior upon instability to sinusoidal disturbances is determined by weak
nonlinear analysis with the dimensionless potential advanced from its critical value at neutral stability. An
analytical expression obtained from weak nonlinear analysis leads to the unintuitive result that sinusoidal
deflections can either lead to supercritical saturated waves or lead to subcritical breakup depending on the
elasticity of the perfect conductor. The analytical expression also indicates that there is a transition wave
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number below which supercritical saturation ought to occur, it can be shown that such wave numbers can
be geometrically accessed, thus permitting any supercritical saturation to steady waves. In contrast, our
results demonstrate that when the perfect conductor is modeled as an Oldroyd-B fluid, the branching
remains subcritical in nature, ultimately leading to interface rupture—mirroring the behavior observed in the
Newtonian fluid case (as demonstrated by B. Dinesh and R. Narayanan, Phys. Rev. Fluids, 2021, 6, 054001).
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1 Introduction and physics

Electrohydrodynamics concerns the interaction between fluids
and electric fields. The foundational studies by Taylor and
Melcher®? established the theoretical basis for analyzing such
phenomena. Subsequent research has examined how electric
fields influence the morphology and stability of interfaces in
systems such as liquid bridges, drops, jets, and thin films.
When an electric field is applied perpendicular to an initially
flat interface, it typically induces destabilization.

Vertical electric fields have been applied in quiescent multilayer
flows for the controlled self-assembly of microscale hierarchical
structures in polymer melts and processes like soft lithography.*®
Other applications include inkjet printing,” enhancement of
mixing and heat transfer, as well as the development of soft
devices with adjustable shapes.’®'" For an overview of electro-
hydrodynamic instability in thin fluid films, see the review by
Papageorgiou.'?

In this work, we investigate the branching behavior of electro-
hydrodynamic instability in a system comprising a perfect con-
ductor—dielectric fluid pair. The perfect conductor is modeled in
two ways: first, using a linear viscoelastic model, and second, using
the Oldroyd-B fluid model. The dielectric fluid is assumed to be a
hydrodynamically passive air layer. As shown in Fig. 1, the fluids
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are confined between two rigid plates, with the bottom plate held
at a constant voltage D, while the top plate is grounded. The
applied voltage counteracts gravity and drives an instability that
leads to the formation of an array of pillars in the conducting
fluid.""*™"> However, when the elastic stresses in the conducting
fluid overcome the destabilizing effect of the constant voltage, the
interface undergoes saturated deformation without branching.
The instability arises due to competition between the applied
potential and stabilizing factors such as gravity, elastic stresses, and
surface tension. These competing effects can produce a minimum
in the voltage-wave number curve at the onset of instability.""®
At neutral stability, if the perfect conductor is modeled as a
Newtonian fluid, the velocity perturbations vanish. For a viscoe-
lastic perfect conductor, at low wave numbers, the destabilizing
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Fig. 1 Schematic of electrostatic instability. The bottom viscoelastic fluid
is a perfect conductor and the top fluid is a perfect dielectric. The bottom
plate is maintained a constant voltage D and the top plate is grounded.
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voltage is balanced by gravity and elastic stresses, while at high
wave numbers, surface tension opposes the destabilizing
effect.**'” The high-wave number behavior is similar to that seen
in the Rayleigh-Taylor instability, which is typically subcritical in
nature. In contrast, the low-wave number balance resembles that
of thermocapillary-driven problems, such as the Bénard-Maran-
goni instability, which generally exhibits supercritical behavior."®

The objective of this study is to determine whether a transi-
tion occurs between supercritical and subcritical behavior at a
critical wave number, or if the instability consistently exhibits
one of these two behaviors across all wave numbers.

We review previous studies relevant to this work. Wu and
Chou'’® showed that, for Maxwell fluids subjected to DC electric
fields, elasticity increases the growth rate of pillar formation.
They identified a critical Deborah number above which the
growth rate for certain wavenumbers diverges.

Tomar et al.>® examined the surface instability of a confined
viscoelastic liquid film under an applied electric field, considering
both Maxwell and Jeffreys models. Their analysis showed that
incorporating fluid inertia removes the singularity, resulting in
large but finite growth rates for all Deborah numbers and
identifying the dominant instability wavelength. They also
observed that the small inertia limit does not coincide with the
zero-inertia limit when describing the instability dynamics and
wavelength in polymer melts.

Espin et al.” studied the effects of viscoelasticity on instabil-
ities under AC and DC electric fields using the Jeffreys model
for both perfect and leaky dielectrics. In the DC case, asympto-
tic methods were applied to resolve a singularity occurring
when solvent viscosity is neglected, corresponding to the Max-
well limit. Their results show that elasticity increases both the
maximum growth rate and the wavenumber of the instability.

Dinesh et al." investigated the electrohydrodynamic instability
between a perfect conductor and a dielectric, modeling both as
Newtonian fluids. Their study found that the branching behavior
is always subcritical, resulting in rupture of the interface. In
contrast, the present study demonstrates that both subcritical
and supercritical branching behavior can occur when the perfect
conductor is described using a viscoelastic model.

Observations from previous studies indicate that pillar for-
mation due to instability spans the gap between the plates,
which is characteristic of subcritical interface behavior. How-
ever, elasticity in the viscoelastic fluid can also result in super-
critical saturation of the interface. The objective of this work is
to demonstrate this behavior through mathematical analysis
and to identify the physical conditions that lead to either
subcritical or supercritical instability.

The analysis presented here follows the methodology out-
lined in the works of Dinesh and Narayanan.">" We consider a
system comprising a perfect conductor-dielectric fluid pair and
derive an analytical expression to characterize the branching
behavior. The perfect conductor is modeled using a linear
viscoelastic framework. Additionally, we examine a case where
the perfect conductor is represented by an Oldroyd-B fluid.

A perturbation expansion is carried out around the neutral
stability state, with the applied voltage slightly exceeding its
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critical threshold. This approach allows us to investigate the
nonlinear evolution of the interface and distinguish between
subcritical and supercritical regimes.

2 Mathematical model

The model assumes a hydrodynamically active viscoelastic fluid
with constant properties whose free surface is exposed to a
passive gas in a stabilizing gravitational field, as depicted in
Fig. 1. The gas layer is considered to be air and hydrodynamically
inactive. The viscoelastic fluid and the air layers are between two
rigid electrically conducting plates located at —#* and #, across
which a constant voltage difference, D, is applied (¢f. Fig. 1). The
potential field in the top fluid is given by

Vi =0 (1)

The bottom viscoelastic fluid, represented by an asterisk, is
assumed to be a perfect conductor while the top fluid is taken to
be a perfect dielectric. The bottom fluid is taken to be linearly
viscoelastic for algebraic simplicity whilst retaining essential
physics in this study. Now, the stress tensor in a viscoelastic
fluid may be expressed in terms of the displacement field. The
displacement vector, R, is the displacement of the position
vector, X, in the current configuration from the position vector,
{, in the reference configuration. In other words,

x={+R(x) (2)

For a linear viscoelastic fluid (cf, ref. 22-24) the stress
tensor, T, is given by

T = —pI + G(VR + VR") + p1,(Vv + W) (3)

Here G and yg are the shear modulus and viscosity of the fluid
material and v is the velocity field. Now the velocity field in the
fluid is itself expressed in terms of the displacement field (cf,,
ref. 25 for a detailed explanation). This expression is given by

OR
X B (4)

v=(1-VR")"
In a linear viscoelastic soft-gel layer, the elastic field is described
by the displacement field vector (¢f eqn (2)), which represents the
deformation of material points, while the velocity field vector in
eqn (4), describes the rate of change of these displacements over
time. The relaxation mechanism occurs as the internal elastic
stresses, generated by deformation, gradually dissipate through
viscous dissipation in the soft-gel. This means the displacement
field changes slowly, and the velocity field captures how the material
returns toward its undeformed state by relaxing the elastic stresses.
Over time, energy stored in elastic deformation is released or
converted to viscous dissipation, resulting in a decrease of internal
stresses and a gradual return to equilibrium. This relaxation process
is characterized by time-dependent decay of stresses and strains
governed by the viscoelastic properties of the gel.>"******2° The
equations of motion in the viscoelastic medium are thus

0
p(a—:+v~Vv):V~T+gpiz (5)
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where T and v are given by eqn (3) and (4), where in eqn (4) the
superscript T on VR is the transpose of the tensor VR and I is the
identity tensor and where i, is the base vector in the positive z-
direction in eqn (5). The horizontal and vertical components of the
displacement vector, R, are denoted by X and Z.

The viscoelastic fluid is taken to be incompressible and the
mass conservation demands (ref. 25 and 30)

det(F) = 1 (6)

o

L. Here {;
9
represent the components of the position vector in the reference

configuration. Upon expansion of eqn (6) and using eqn (2) we get

0X 0Z 0X0Z 0ZOX

ox T o: oxo: oxor

where F is the deformation tensor given by F =

0 )

eqn (5) and (7) along with the representations for T and v
constitute the domain equations. Other models, such as the neo-
Hookean®***?" and Oldroyd-B models,”” can also describe the
soft-gel layer. In this work, we use the linear viscoelastic model to
obtain a mathematically tractable solution and focus on the core
physics of the electrohydrodynamic instability. A stability analysis
using the Oldroyd-B model is included in the Appendix D. The
governing equations are complemented by boundary conditions
at the rigid wall and at the soft-gel air interface.

At the wall, the displacement fields are taken to be zero. At
the interface, z = A(x, t), the normal and the tangential compo-
nents of the momentum balance hold. They are

nTt=0 and nTn-DT"n)=-yVn (8)

where the unit normal vector (n) and the unit tangent vector (t)
are given by

oh, . . Oh,
—ax + 12 Ix + i

_ 0> , ox -
n= X iz nd xz 7
ox ox

In addition we have an impermeable interface along with its
kinematic relation

t=

Oh
ot

oh P 1/2
()]

In eqn (8), the dimensional form of the Maxwell stress tensor,

v-n=

1
ie., ™, (cf ref. 33), is given by TM = egoEE — ¢4k - EL where

E = —V is the electric field, ¢ is the relative permittivity of the
fluid and &, is the permittivity of free space.

The governing equations are made dimensionless by using
the following scales denoted by the subscript ‘c’:

X =h",
U
Pe = l;l*

Zc:h*a Xc:h*v ZC:h*a
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Table 1 Physical properties of polyacrylamide viscoelastic fluid®*>>

Physical property Range

Density (p) 1000 kg m
Viscosity (1) 1.5kgm ‘st
Shear modulus (G) 10-45 Pa

Surface tension ()

Thickness (7*) 1x10°-20 x 10 ° m

Table 2 Range of key dimensionless quantities for polyacrylamide vis-
coelastic fluid. The velocity scale U is based on the capillary number such
that U =~

"

Dimensionless parameter Definition Range
Re ph*Ulu 1.5

Wi 1UIGh* 0.1-10
Bo pgh**ly 0.1-50

Here U is a characteristic velocity scale. The scaled potential
field in the top fluid is given by

V=0 (12)

The potential field is subject to a constant value of unity at the
bottom plate, ie., at z = —1, while the top plate at z = J# is
assumed to be grounded, where # = h/h*.

The dimensionless governing equations for the bottom fluid
are given by

ov 1 _, 1
Re( = +v- = — —VR+—V(V-R
e(az—l—v Vv) Vp+WiV +WiV(V )
(13)
Bo
2 ]
—I—Vv—i—calz
5 1*2
where Wi = ghU*’ Re :phﬂU and Bo :pg(1 ) and Ca:%.

The mass conservation eqn (7) remains unchanged and does
not induce any dimensionless groups. The interfacial force
balance conditions at z = k(x, ¢) become

n-T-t=0 and n~T-n—(TM~n)~n:—éV~n (14)

The normal component of the Maxwell stress in dimensionless
form can be written as

(1 ) = 20 - nf (v 1] (15)

Here, 9 = egoD*/h*u*U. For the perfect conductor-dielectric
model, the tangential components of the Maxwell stress tensor
vanish (¢f ref. 33). From the scaling of the equations and
boundary conditions, five key dimensionless groups emerge:
Re, Ca, Bo, Z, and Wi, which are evaluated using representative
physical parameters (see Tables 1 and 2). The base state R=v =
T = 0 is subject to a stability analysis to explore the onset and
nature of the bifurcation. We seek the neutral stability condition
and characterize steady-state branching, governed primarily by
Wi, Ca, Bo, and Z. Notably, under steady-state conditions, Ca
appears only as Ca/Wi, allowing U to be chosen such that Ca =1.

This journal is © The Royal Society of Chemistry 2025
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3 Linear stability analysis

A linear stability analysis is carried out by introducing small
perturbations V4, Ry, p1, and {; about the quiescent base state.
These are expressed using the expansion

llb(xi Z, t) = I/IO(Z) + lpl(z)cos(kx)e“,

with similar forms assumed for R, p, and (. Here, k denotes the
wavenumber of the perturbation and the subscript ““0” refers to
the base-state quantities. Neutral stability corresponds to ¢ = 0
in the above expansion.

Assuming constant fluid volume imposes the constraint

)
2n
J { dx = constant, where 1 =—
0 k
is the disturbance wavelength.
Since the base-state displacement R, = 0, the base-state
pressure gradient is balanced by the gravitational body force:

dpy

e —0'9.
here ¢ = pgh*Z/IUU and 5J = pj/pv takes values pdieltric/pconductor
and 1. The base-state potential field is given by Y, = 1 — z/#.
The perturbation fields, being non-zero, are determined by
solving the linearized governing equations for the soft gel.
Substituting the assumed forms of the disturbances into the
governing equations yields:

dz,
ik X —=0 16
el + dz (16)

i+ (SR ex) o (17)

T i a2 V)=

dp1 1 d221 2

—_— —k*Z ) =0 18

dz+Wi<d22 ! (18)

Linearizing the boundary conditions at the reference inter-
face,z=10

Z1=0 (19)
Ly N

The no displacement fields X; = 0 and Z; = 0, boundary
conditions, at the wall i.e., z = —1 are imposed. Upon eliminat-
ing p; and X; from the governing equations and using the
boundary conditions we get an expression for 7, i.e.,

(2](2 — 2k + €2k + 1>C1€k2+2k
—4e2k [ + etk 1

Z =
(26242 + 2%k + e + 1) 0
—4e*k + etk — 1
(=2k + & + 1) kz{ 12
—4e%f + e — 1
k(2e*k + & + 1)z¢ 67k
—de?kfc 4 e — 1

(21)

This journal is © The Royal Society of Chemistry 2025

View Article Online

Soft Matter

The linearized equation for the potential field in the top fluid
are given by

d? 5
where at 2z = 0 and 2z = #, we have
Vv, + %Cl =0 and Y, =0. Upon solving eqn (22), we get
z

U, = % — coth(k#) sinh(kz) + cosh(kz)] (23)
To determine the neutral stability criteria, we turn toward the
perturbed normal component of the momentum balance along
the interface, z = 0. First, we take the derivative of this equation
with respect to x to eliminate pressure, p; using the x-
momentum equation. Second, using the continuity equation,
we eliminate X; in terms of Z, ie.,

1 &z, 3k*dz, 230,

dy,d i
Vi R e

dz dz 7561

(24)

Upon substituting the solution for i, and Z, in eqn (24), we get
Cak (2k?* + cosh(2k) + 1)

_ 2
(1= 0)9Ca+ G nh (K cosh () — k) * ¥
(25)
9Cak coth(#k)
- (ZCekeott)
Cak (2k* +cosh(2k) + 1)
(= 0 G inh () cosh (6 — ) ¥
=Bo (26)
= 9.2Cai coth(kA)
7 :

Here, %Ca (also known as the Bond number, Bo), Wi/Ca and
9Ca, hereafter termed Z,Ca at the neutral point, can be
grouped as pairs and are observed to be independent of the
characteristic velocity scale, U, and the viscosities. In addition,
here ¢ is the ratio of the density of the perfect dielectric to the
density of the perfect conductor.

Ca k(2k* + cosh(2k) + 1)

k
2 _ o
Bo+ i Tsinh (k) cosh(k) — o) TK — ZCagzcoth(kA)
[ ——
1 11
Ca3 1
Bo + W_lp + k= QCd—%;
3Ca ) k
2 4 _ 9
Bok™ + g7 +47 = 7Ca55
(27)

Observe that for low wavenumbers and shallow film thick-

1
nesses, term I is of Cﬁ(ﬁ) and term II is of ((1). This is

obtained by expanding cosh(2k), sinh(k), and cosh(k) in term I
in series of the wavenumber k and neglecting higher order
terms of wavenumbers. For example, coth(k#') when expressed
in a series of wavenumbers can be written as 1/k#. Upon
multiplying eqn (27) by k%, the Bo term is of ((k%), the term

Cf
consisting of Wdi is of ((1), the curvature term is of @(k*), and

Soft Matter, 2025, 21, 7824-7841 | 7827
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the term containing ZCa is of ¢(k*). This indicates that for low
wavenumber, the stabilizing effect of elastic stresses is domi-
nant over the stabilizing effects of gravity, surface tension, and
the destabilizing effect of the potential.

It is noteworthy that the term associated with the elasticity
(Wi) of the perfect conductor has an opposite sign compared to
the term associated with the critical potential (%). This
indicates that the elastic stresses, like gravity, cause a stabiliz-
ing effect, whereas the potential leads to a destabilizing effect
on the interfacial deformations. It is noteworthy that when a
similar linear stability analysis is performed by employing the
Oldroyd-B model to capture the behavior of the soft-gel layer,
the following expression relating Bo and ZCa is obtained (cf.
Appendix D for the derivation), i.e.,

13
Bo + k% = 9Ca coth(ks#)

(28)

This expression matches the critical potential for a Newtonian
fluid (perfect conductor) and a hydrodynamically passive
gas (perfect dielectric)." The elasticity of the Oldroyd-B fluid
does not change the critical potential for the onset of
instability. As a result, the Oldroyd-B model does not affect
the outcome of the linear stability analysis under neutral
conditions. This result contrasts with our current findings,
where decreasing the Weissenberg number, Wi, raises the
critical potential required for instability. This is the main
reason for using the linear viscoelastic model to represent the
soft-gel layer in both the linear stability and weakly nonlinear
analyses.

Typical neutral stability curves obtained from eqn (27) are
shown in Fig. 2 drawn for the example of air on top of poly-
acrylamide gel. Observe that on the falling branch of the neutral
stability curve, ie., for low wave numbers the electrostatic
potential driving the instability is balanced by gravity and elastic
stresses, while on the rising branch, i.e., for high wave numbers
the voltage applied across the horizontal conducting walls is
stabilized by interfacial tension. Interfacial tension is a force
acting tangentially along the interface but creates a net restoring
force normal (perpendicular) to the interface through curvature
effects. The force pulls the interface inward to minimize its
surface area and restore stability. Interfacial tension stabilizes
the interface by acting as a restoring force that resists deforma-
tion, minimizing the surface area between two phases and
suppressing disturbances that would increase irregularities. This
helps maintain a smooth and stable boundary. Interfacial tension
enters the mathematical formulation through the normal stress
balance equation in eqn (8) (dimensional form) and via the
Capillary number Ca in eqn (14). This stabilizing effect of
interfacial tension for high wave numbers is analogous to Ray-
leigh-Taylor instability of a fluid, wherein the instability is always
subcritical in nature. The balance between potential, elastic
stresses and gravity for low wave numbers is reminiscent
of the Bénard instability which is supercritical in nature. Note
that for high Weissenberg numbers ie., Wi = 1 and Wi = 10, t
he neutral curve tends towards the critical curve corresponding to
that of a Newtonian perfect conductor, ie., the curve with the

7828 | Soft Matter, 2025, 21, 7824-7841
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(b)
Fig. 2 2qCa vs. k? obtained from eqn (26). The case of air on top of water is
assumed. Figure (a) is drawn for # =1, Bo = 5 and Wi = 0.1, 1 and 10. Note

that the solid dots in the figure correspond to the case where the perfect
conductor is a Newtonian fluid. Figure (b) is drawn for # = 1, Bo = 5, and

Wi = 0.1 taking k = E, with n being the horizontal mode index.
w

solid dots (cf Fig. 2(a) of Dinesh et al.'). For low Weissenberg
numbers, ie., Wi = 0.1, the critical potential Z,Ca for the
onset of an instability increases. This increment in the critical
potential is attributed to the stabilizing elastic stresses in the soft-
gel layer.

Not all wave numbers in Fig. 2a are accessible. When a
minimum appears in the curves, the accessible wave numbers,
k are related to the horizontal modal index, n, as shown in

. . . . nn
Fig. 2b for a one-dimensional system of width, w, where k = —.
w

where n takes integer values 1, 2, 3,..., with n = 1 representing
one wave at the interface, n = 2 representing two waves, and so
on. Here, w is the width of the container confining the perfect
conductor and perfect dielectric between flat plates. To obtain
the curve of the critical dimensionless potential versus the
wavenumber, the waveform (i.e., the value of n) is fixed while
the width “w” of the container is varied. This variation results
in a continuous and smooth curve for the dimensionless
potential as a function of the wavenumber. There are specific
values of “w” where two consecutive modes can coexist, and
around these points, the curves are non-monotonic. These

This journal is © The Royal Society of Chemistry 2025
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points and the wave numbers between them are crucial to our
study’s conclusions. Our aim is to determine whether the
instability is supercritical or subcritical for each accessible
wave number by performing a weak nonlinear analysis around
the critical state.

4 Weak nonlinear analysis and
discussion: linear viscoelastic
model

A weak nonlinear analysis is used to study how an interface
behaves just beyond the onset of an instability, whether it
stabilizes at a finite amplitude (supercritical saturation) or
grows toward rupture (subcritical rupture). For the case of the
perfect conductor behaving like a linear viscoelastic fluid, the
ensuing analysis follows the procedure outlined in the work of
Dinesh and Narayanan."?' We start with a linear stability
analysis to find the critical conditions, the governing equations
are then expanded in a small parameter (¢, given below in
eqn (29)) that measures deviation from this threshold. Next, we
solve the equations order by order, ie., ¢(¢*) and O(c*). This
leads to an equation in terms of the amplitude of the interfacial
deformation (which we refer as {; or /). To determine the
nature of the bifurcation, the dimensionless potential, &, is
advanced from its critical value, 7, by an amount ¢, such that ¢
is defined by

2

9:9m+% (29)

The response of the potential to an increase of the control
variable & is given by

2 3
V= Vo + S s (30)

The displacement fields, pressure field and the interface deflec-
tion change from their base state by

2 3
X(x,2) = Xo + eX1 (x,2) + %Xz(x, )+ %)@ (x,2)+ - (31)
&2 I
Z(x,z) =Zy+¢Z1(x,2) +322(x,z) +g23(x7z) +-- (32)
&2 &
p(x,2) = po+epi(x,2) + 5pa(x,2) +eps(x,2) + - (33)
and
& &
{(x) = o +eli(x)+ Eéz(x) + gC3(X) +-- (34)

At the interface, the interior displacement field, X, is expressed
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IX
X(x,2) =X -‘rS(X] +C18—ZO)

&2 0Xo )¢
X+ 60— 20—
+2( 2+ézaz +24 % +{

L, X,

oz2

% 3)
& . 0Xo L 00X, L 00X,

+E(X3 + S + 3Q2E + 3915

PXo | .,
+300, 92 + 30,

132 ¢ X
20”41 30" Ao
oz2 +h 023 ) *

and likewise for Z(x, z) and p(x, z). The equations at various
orders can thus be obtained. The equations at ((¢) are given by

oX, 97

W + E =0 (36)

B/ e (O (37)
ox Wi\ ox2 922 )
0])1 1 0221 8221 _

*E*ﬁ(axz 52 ) =0 (38)

The boundary conditions at (/(¢) at the rigid wall, i.e., z= —1 are

Z;=0 and X;=0 (39)

The interfacial conditions, i.e., at z = 0 at (/(¢) become
Zi—(1=0 (40)

1 (0X, 0Z;\
W(EJFW) =0 (41)
and
Bo 207z 19 dpdy,

M Wi G T et W

Observe that the ((¢) equations are precisely the neutral stability
equations. Hence (4(x) becomes {;(x) = .o/ cos(kx). Our job now is
to determine the sign of /%, noting that a positive value of .o/>
implies a supercritical bifurcation and a negative value implies a
subcritical bifurcation. When the system consisting of the perfect
conductor and perfect dielectric becomes unstable, interfacial
deformations start to grow. If the square of the amplitude, ie.,
/?, is positive, the interfacial deformations grow gently and the
amplitude of these deformations increases smoothly as we go
past the critical potential—this is a supercritical bifurcation. This
finally leads to the formation of saturated interfacial deforma-
tion. If the square of the amplitude, ie., /% is negative, the
interface resists disturbances but then suddenly jumps to a large
amplitude deformation once pushed away from the critical
potential, often showing hysteresis—this is a subcritical bifurca-
tion. In short, supercritical bifurcation means a smooth transi-
tion to a saturated interfacial deformation, while subcritical
bifurcation means an abrupt jump leading to the rupture of
the interface, which ultimately leads to pillars of the perfect
conductor spanning the gap between the plates.'” To determine
/%, we proceed to the next order.
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2
The governing equations at (0 (%) are given by

%4_%7 0X, 07, 09X, 0Z; (43)
ox 9z T Ox 0Oz Jdz Ox
8]12 1 82X2 82X2
ox +ﬁ(ax2 t oz
(44)
_ 10 /,0X,0Z, 0X,0Z;
T Widx\"ox 9z 0z Ox
and
op> 1 (0*Z, 8°Z,
_E+ﬁ( o2 T a2
(45)
_ Lo 28)(1 07, 28)(1 07,
T OWidz\ dx 0z 0z Ox
The boundary conditions at z = —1 are
Z,=0 and X,=0 (46)
and the interfacial conditions, i.e., at z = 0, are now
9Z
Zy == -20—— - : (47)
L(0% om) _ —4otoz 4 oo,
0z | Ox Wiodx 0z Wiodx Ox
(48)
2L, x 2,877
Wi 0z2  Widzox
and
Bo, 207, 18 dyy Oy
e twie: Gaoe d: o
8]71 461 8221 4 8&1 8X1
_ Maxwell os1 eI YAL 49
=T 2 - e T o )
40402
Wi dx 0Ox
2
The potential field at (O(%) is given by
V2, =0 (50)

subject to the following conditions

ho_ 2

l//2+C2d Dl atz=0andy,=0atz=#

(51)

Observe the pattern of eqn in (36)—-(42) and compare them with
eqn (43)-(51). The right-hand sides are comprised of forcing
terms that are quadratic combinations of ((¢) terms and
directly proportional to .«/>. We call these quadratic combina-
tions (1, 1) terms due to their bi-linear combinations of first
order variables. The solution to the second order problem must
therefore be the sum of several .#> dependent terms.
In addition, the boxed term in eqn (51) evolves due to the

2 2
& &
expansion ¥ = % +5 at 6“(3). This term leads to the
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3
determination of /> at (0 (%) Upon observing that eqn (36)-

(42) are homogeneous and employing solvability conditions on
eqn (36)-(42), we see that solvability of eqn (43)-(51) is auto-
matically satisfied. Thus we cannot determine .2/ at this order
and must advance to the next order. In weak nonlinear analysis,
the solvability condition ensures that the perturbation expan-
sions remain bounded by preventing unphysical growth of
perturbations. Applied to the normal stress balance equation
at the interface, this condition requires that higher-order non-
linear terms satisfy a compatibility criterion, correlating factors
like disturbance amplitude, surface tension, elasticity, and
electrostatic potential. This balance leads to an amplitude
equation that governs the evolution and saturation of interfacial
deformations beyond the linear stability threshold, ensuring a
physically consistent description of the interface evolution.

3
The governing equations at 6(%) are given by

Xy 07 _ X\ 0Z, | 0X:07)
ox 0z T Ox 0Oz ox 0z
(52)
007y 0N 07
Jz Ox Jz Ox
8p2 L 62X3+62X3 _;3&
Ox 0x? 022 ) Widx
(53)
L (0%107, 0,07, _0X,02 9,07
ox 0z ox 0z Jz Ox Jz Ox
and
Lo 1 (7, ¥Z)\_ 30
0z ox? 9z2 ) Wioz
(54)
L (0%107, 0,07, _0X,020 9,07
ox 0z ox 0z Jz Ox Jz Ox
The boundary conditions at z = —1 are
Z3:0 and X3:0 (55)
The interfacial conditions at z = 0 are
0*Z
2 1
= *3C2 3@1 =355 922 (56)
L(0K 0Z 60002 0K
0z Ox ) Widx\ oz ox
_ 600z o,
Wi ox \ 0z ox
1206\ (90X 0Z)\ 3L (9%,  9°Z
ﬁ(@x) E—i_ ax ) Wi\ 822 +828x (57)

3G X, N 7, 3(1 X N 3z,

022 0z0x 03 0z20x
_2mag, (779X
Wi Ox\ 022  0z0x
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and
_py— B0, +i%__%_ dipo 93
PTG T Wi 0z Caox Vdz oz
op1 opr . .0%p1 60,0°Z,
=3 T PN T o
6(, 0*Z,

60 L0 6 8{2 8X1+821
Wi 922 " Wi Ox \ 0z Ox
12 agl oX, 0z,

Ox ox 0z
6 00,(0Z, 00X,

Wi Wi Ox ( Ox +E>
%8{1 X, L+ 87,

0z0x

Wi ox \ 022
%wzcﬂ%ﬁ

(58)

Ox) 0x2

+ @O T%\élaxwell
At the third order the potential field is governed by
Vi3 =0 (59)

subject to 3 = 0 at z = # and the following condition at z =0

2
o _ gy 2y o
0z

d'//o

Wy + (3

(60)
3§l3d3l//0
dz?

- 352C1

In the absence of electrostatic potential and upon reversing the
direction of gravity, the governing equations for the weakly
nonlinear regime reduce to the classical Rayleigh-Taylor
instability problem. In this limiting case, the Bond number
advances beyond its critical value, i.e., Bo = Boy + £%/2. In
Rayleigh-Taylor instability, gravity destabilizes the system
when a denser fluid overlies a lighter fluid (cf. ref. 21 for weak
nonlinear analysis of Rayleigh-Taylor instability of a soft-gel
layer). In our current study, the destabilization arises from
Maxwell stresses at the soft-gel fluid interface, which causes
interfacial deformations. However, the stabilization of the
interfacial deformations arises from elastic stresses, gravity
and surface tension. It is noteworthy that from eqn (27) term
IT arises from the Maxwell stresses in the normal force balance
equation. This term is solely responsible for driving an instabil-
ity when a critical potential is applied across the perfect
conductor and perfect dielectric fluid layers. However, this
term is balanced by the Bond number term, term I, and surface
tension. The Bond number term indicates that gravity opposes
the potential, term I shows that elastic stresses act against the
potential, and the surface tension term also acts in opposition
to the potential.

If «/> is positive, the branch is supercritical, but if it is
negative, & would not be advanced as indicated by eqn (29) but
reduced instead and the branch would become a subcritical

This journal is © The Royal Society of Chemistry 2025
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pitchfork. The calculations that involve solvability require the use
of symbolic manipulation, which was carried out in Mathe-
matica®. The algebraic complications can be reduced if the non-
linear terms of eqn (7) are dropped.>* It has been observed by the
present authors that the results do not change qualitatively.

4.1 Solution of the nonlinear equations and tracing the cause
of the transition from super to subcritical branching

The solution to the first order governing equations is obtained
from the linear stability analysis discussed in the Section 3. We
now proceed to seek the solution for the governing equation at

2
@(%) At this second order, the displacement fields, pressure

field and interface deformation must be expressed as
X = X (2) sin(2kx) + X(2)

Z, = éz(z) cos(2kx) + Zx(z)
R (61)
D2 = Py(2) cos(2kx) + pa(z)

(> = {5 cos(2kx)

Here the displacement fields and the pressure field consist of
an x-dependent part and an x-independent part. The domain
equations for the x-dependent part of the problem are

4z
d—2 F2kXy =0 (62)
d? X 2
2kp2 + — < d 22 4k2X2> =0 (63)
and
Ay, 1 (82, .5\
_54—%((122 —4k*Z, | =0 (64)

As before, upon eliminating X » from the governing eqn (63)
and (64), by using the continuity eqn (62), we get

2 -
<%f 4k2) Z,=0

At z =0, we have the tangential stress and kinematic conditions.

(65)

Eliminating X, from the x-dependent part of the tangential
stress condition, eqn (48), by taking the horizontal derivative
and using the continuity equation, (62), we get

&7,
dz?

o zZ X
+4K2 7, = —Mk(zk X1—3k% dd221> (66)

while the x-dependent part of kinematic condition, (47), at z =
0 gives

—of—— P (67)
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Solving eqn (65) and applying the tangential stress condition,
(66), along with the kinematic condition, (67), we get

7, =&t (22 + &L — 2%z)) (68)

Employing eqn (68) in the continuity eqn (62), and the x-
momentum eqn (63), yields

5 1 2
Xy = e (%2(21(2 T 1) - 4C22> (69)
and
s 2k 2\ 2k
by = W('Q/ k— 252)e (70)

At the second order we are left with obtaining the solutions for
the x-independent parts of X,, Z, and p,. To do this, we eliminate
pressure from the momentum eqn (44) and (45), and further
eliminate X, by using the continuity eqn (43), resulting in an
equation for Z,. The x-independent part of this equation gives

d*Zy
i 0 (71)

At z = 0, we have the tangential stress condition and the kinematic
conditions. The tangential stress condition for Z,, is obtained by
eliminating X, from the eqn (48) by taking the horizontal deriva-
tive and using the continuity equation, (43). The x-independent
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The normal component of the momentum balance at the

interface, z = 0, is

Bog, 20Z, 1 0%
g+t -
Ca Wi 9z Ca 0x?
op 4,07,
0z Ca 0z2

4 90,02,
Wi ox Ox

dyy 0y,
dz oz

—pr—

(78)

— 90 T%uchll + 2Cl

4 9¢, 00X,
Wi dx 0z

where 7Y%l ¢onsists of the forcing terms which are bilinear,
also called (1, 1) terms, because they are products of terms with
subscript 1 (¢f Appendix A for the expression of T5"*"). The
terms associated with &, arrive from the expansion of the
Maxwell stresses at the second order. We note that all of
the forcing terms at this order are bilinear combinations of
first order terms, ie., (1,1) terms with the exception of the
boxed term in eqn (77). This implies that the forcing terms are
superposition of second harmonics, i.e., cos(2kx) terms and x-
independent terms. Their projection on to the eigenspace, i.e.,
cos(kx) is zero and thus solvability at second order is automa-
tically satisfied. The boxed term in eqn (77) is so identified as it
is the sole reason for us to determine .o/> at the third order. At
the second order, y, is expressed as,

part of the resulting equation gives . Yo =¥ (2)cos(2kx) +1h3(2) (79)
27 where J\(z) is given by
20 _ (72) ?
dz? 2 N2
S A (gl) keoth(#k)
and at z = 0 the x-independent part of the kinematic condition, Wy(z) = 7 cosh(2kz)
(47), yields ’
2 N2
dz, coth(2.#°k) <h2 + (gl) kcoth(%k))
e (73) - — sinh(2kz)
(80)
The solution to eqn (71) using the conditions (72) and (73) along
with the no displacements conditions at z = —1, gives
Zro=0 (74) and
ca(2+ 3gesch?(#k)  16k* (4k* + 2 cosh(2k) + cosh(4k) + 3)
£ a 2 Wi(sinh(2k) — 2k)(sinh(4k) — 4k) (51)
2 o (22 _ Zkeoth2#k)  2k(8K +cosh(dk) +1) 1 .
Ca 7 Wi(sinh(4k) — 4k) 20
Applying this solution to the z-momentum eqn (45), yields and where /,0(z) in eqn (79) is given by
d
P _y (75)
dz -\
2 kcoth(#k
Noting this, we turn toward the remaining equations at ¢ <%> Yoo(2) = (Cl> coth(#'k) _ 1 -
The potential field is given by A2 \7,/_,
S !
Vi, =0 (76) 20 Y20 (82)

subject to the following conditions

dy

. *251%@ atz=0 and y,=0atz= (77)
dz 0z

Uy +0
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The reason for us to be able to calculate .«/> at the third order is
due to the term y,. This term arises from the correction of the
base state potential at the second order.

Having obtained the solutions to the first and second order
equations in terms of .2/, we now turn to the equations at the

3
. . & . .
third order, i.e. 6(€> to determine .«/>. As noted earlier, the

forcing terms in eqn (52)-(60) are bi-linear combinations of
second order and first order terms i.e., (2, 1) terms and trilinear
combinations of first order terms ie., (1, 1, 1) terms. From
these combinations we can infer that the displacement fields,
pressure field and the interface deformation at this order can
be expressed as

ﬁ/ (z) sin(3kx) + X3(z) sin(kx)

X =
Z; = % (z) cos(3kx) + Z3(z) cos(kx) (83)
3 = s (2) cos(3kx) + pa (z) cos(kx)
and
G = 43 cos(3kx) + {3(z) cos(kx) (84)

At this order only the cos(kx) part of the displacement, pressure
and the interface deformation fields (the terms underlined in
eqn (83) and (84)) play a role in determining the amplitude, .«7.
Therefore, we see that the domain equations for the cos(kx) part
of the variables are

- dZ;

X P
kX5 + & =0 (85)
Ky + dQY”—kZY =0 86
73 T Wil a2 3T (86)

and
dps 1 (d2Zy 5.\

T d: +m(dz2 —kZ ) =0 (87)

Again as before, eliminating X; from (86) and (87) and using the
continuity equation, (85), we get

& ’
(@—kz) Z3:0

At z = 0 we have the tangential stress and the kinematic
conditions. The tangential stress is modified by eliminating
X; from the cos(kx) part of the eqn (57). This is done by taking
the horizontal derivative of the cos(kx) part of the eqn (57) and

(88)
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by using the continuity equation, (52). This gives

1 (€2s s | 3k ERy 3KdZ,
wil dz2 T owi dz22 T Wi dz
+9M2k421 152k d2 X, 3.2k d3X,
Wi 4Wi  dz? 4Wi dz3
6.272k3 dX,
Wi dz
(89)

and at z = 0, the cos(kx) part of the kinematic condition,
(56), yields

oL 3947, 92dZ
e I (90)
Solving eqn (85)-(90) gives
7y = %ek‘_ (382 k= + 1) — sz — 1) (01)

We split 75 into two parts, one that is free of /; and the other
that is homogeneous in #;. Thus,

2,=20+2) (92)
. 1
where Z;/ = Ze’“ (323K> (kz + 1)) and
Sh 1 = ~
Zy=g (—4h3(kz - 1)).
At the third order the potential field is governed by
Vs =0 (93)

subject to 3 = 0 at z = # and the following condition at z = 0

d ? 0 0
it w0—73”28;//'73cl 2 g_(;l/l
(94)
. 5d
=304, dl/jo 3¢ d;/;()

The normal component of the momentum balance along the
interface at z = 0 gives

Bo 207y 1 0 dyrg O5
P Wi Gaowe Va: o:
0, 0,
=30 3052
+ 3C262p1 _67@8221 _674/10222
1922 Wi 922 Wi 922

L6 0o 0z,
Wi dx \ 0z ox

(ac.)2 (axl B azl)
ox) \ox oz

(95)

+8 6 0, 8Zz+8X2
Wi dx \ dx 0z

120,00, (X, 821\ 62 0°Zy
Wi dx \ 822 ' 9z0x Wi 923
9 64/1 262(:1 Maxwell
I a(a) o] "o
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where T5>!! consists of the (1, 2) and (1, 1, 1) forcing terms
(cf. Appendix A for the expression of T5****!). The boxed term
in eqn (95) gives rise to a term in the expression for .o/ which is
always negative indicating the subcritical nature of the bifurca-
tion and plays a key role in the high wave number regime,
leading to subcritical branching upon instability. It is analo-
gous to a similar term in the Rayleigh-Taylor problem.
At this order, 5 is expressed as

s = l//f(z) cos(3kx) + Y5 (z) cos(kx) (96)

Here, the cos(kx) part of the third order problem alone plays a
role in the determination of .«#> due to the requirement of the
solvability condition at the third order (¢f. Appendix B for the

solution of 1//A3(z)). At the third order, solvability requires that
the inhomogeneous terms reside in the null space of the
homogeneous problem. This yields an expression for <%, the
details of which may be found in the Appendix C. In the limit of
Wi — o0, .o/ is given by

1 ktanh (ko) . , .
— == h(kA h(3kA’) — Sk cosh(k#
7 85inh3(k:/f)(3'gsm (kA) + Bsinh(3kA) — Sk cosh(kA)

kcoth(ko) 3k3#°* tanh(k#)

H 8%,Ca

+kcosh(3kH))
(97)

with f = [k(cosh(2k#) + 2)esch?(k#)]/[(2 tanh(k#)(Bo + k%) —
6k>coth(k#))/(Bo + k*)]. The above expression for 1/./* is
exactly the same that was reported in Dinesh et al.' Note that
in the limit of Wi — o0, the bottom fluid mimics the behavior
of a Newtonian perfect conductor. We now focus in the expres-
sion for 1/</> when the bottom fluid is considered to be a
viscoelastic perfect conductor, ie.,

View Article Online
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It is noteworthy that the above expression in eqn (98) for 1/.%/>
helps us glean the physics of electrostatic potential acting on a
viscoelastic perfect conductor-dielectric fluid pair. A positive
sign for 1/./* indicates that the branching behavior for the
interface deformation will lead to a supercritical saturation and
a negative sign signifies that the branching behavior leads to a
subcritical rupture of the interface. Also note that this expres-
sion consists of terms containing Wi, these terms play a key role
in stabilization of interfacial deformations driven by the elec-
trostatic potential. This stabilization is primarily attributed to
the elastic stresses in the perfect conductor that counteract the
destabilizing potential. This can be seen from the expression for
/> in eqn (99), which is obtained by expanding .«#> from
eqn (98) as a series in the wavenumber k. At low wavenumbers,
the O(k*) term is dominant. This term is positive and includes
the Weissenberg number (Wi), indicating that the interface
undergoes supercritical saturation. The presence of Wi shows
that elastic stresses contribute to the saturation of interfacial
deformations. This term arises from the tangential and normal
elastic stresses in eqn (41), (42), (48), (49), (57) and (58).

To further glean the physics of electrostatic instability, we
calculate the sign of 1/.</> from eqn (98), along the neutral
stability curve for Wi = 0.1. In addition, we also calculate the
wavenumber beyond which the sign of 1/.</” transits from a
positive to negative sign. This transition wavenumber is
obtained from the expression for 1/.¢/> by equating .«/ > = 0.
The neutral curve and the curve for the transition wavenumber
(straight line) are shown in Fig. 3. Note that the region on the
neutral stability curve above the straight line which is the
transition wavenumber always leads to supercritical saturation
of the interface deformation and the region below the straight
line leads to subcritical rupture of the interface. The intersec-
tion of the neutral curve and the straight line corresponding to

1 9k3  29ok(cosh(6.£k*) — 3) coth(A#k)csch?(A#k)  24kF coth?(#k)

of? Ca H?

A3

Wi(2k — sinh(2k))(sinh(2k) — 2k)*(sinh(4k) — 4k) (#*(Wisinh(4k)(Bo + 4k?)

+4k(—BoWi + 8Ca k? 4 Ca cosh(4k) + Ca — 4k*Wi)) + 2CaZ0kWi(4k — sinh(4k)) coth(2.7°k))

Wi(2k — sinh(2k))(sinh(2k) — 2k)?(sinh(4k) — 4k)(2Ca2okWi(4k — sinh(4k)) coth(2#k)

+a*(Wisinh(4k)Bo + 4k*) + 4k (—BoWi + 8Cak? 4 Ca cosh(4k) + (Ca — 4k*Wi)))

3CaZok?® (3esch? (A k) + 2)(Zo Wi(2k — sinh(2k))(4k — sinh(4k)) (3csch?(#k) + 1)

(98)

+164%k* (4k> + 2 cosh(2k) + cosh(4k) + 3))

T 22k — sinh(2k))(2CaZokWi(4k — sinh(&k)) coth(2AKk)+

A*(Wisinh(4k) (Bo + 4k*) + 4k(—BoWi + 8Cak? + Ca cosh(4k) + (Ca — 4k*Wi)))

(=7 + 16k> (8k* + 5k* +9) + 8(14k> — 1) cosh(2k) + 4 cosh(4k) + 8 cosh(6k) + 3 cosh(8k)+

_ 4k(8(sinh(k) — Ssinh(3k)) cosh (k) — 4k((k* + 3) cosh(4k) + 3k sinh(4k) + cosh(6k))))

Wi(sinh(2k) — 2k)?(sinh(4k) — 4k)

 Wighk?

2
o o3

+ O(k*) (99)
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the transition wavenumber is a co-dimension 2 point. Observe
that in the region for the supercritical behavior, the elastic
stresses along with gravity counter act the Maxwell stresses due
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Fig. 3 The critical potential versus wavenumber given by the neutral
stability curve and the transition wavenumber is represented by the straight
line. The critical potential versus wavenumber to the left of the intersection
point lead to a supercritical saturation of the interface and the region to
the right of the intersection point represents the subcritical rupture of the
interface. The results are presented for Wi = 0.1.

to the electrostatic potential. These stresses balance out leading
to a saturated interface deformation. However, if the fluid were
to be Newtonian the Maxwell stresses dominate over gravity
and always lead to a subcritical behavior. The region on the
neutral curve below the straight line depicts the subcritical
branching behavior of the interface. This behavior is attributed
to both the Maxwell stresses and the surface tension which
ultimately lead to the rupture of the interface. The surface
tension term arises from the diminished curvature, ie., the
boxed term in eqn (95) which is of O(k%). In short, if the
wavenumber £, is chosen such a way that the critical potential
lies to the left of the intersection point of the neutral curve and
the transition wavenumber, this will lead to a supercritical
saturation of the interface. On the contrary, if the critical
potential lies to the right of the intersection point, the inter-
facial deformations lead to a subcritical rupture.

4.2 Comments on the use of the Oldroyd-B fluid model for the
perfect conductor: linear stability and weakly nonlinear
analysis

A similar stability analysis is performed for the case where the
perfect conductor is simulated using the Oldroyd-B fluid model
(the details of the linear stability analysis are relegated to
Appendix D). For an Oldroyd-B fluid modeled as a perfect
conductor, the neutral stability relationship involving the cri-
tical dimensionless potential, Bond number, and curvature
terms remains identical to the relationship observed when
the perfect conductor is modeled as a Newtonian fluid. In
addition, the expression for .o/ in the case of an Oldroyd-B
fluid is identical to that obtained when the perfect conductor
behaves as a Newtonian fluid (the derivation of the weak
nonlinear analysis is provided in Appendix D). This equivalence
arises because, in both cases, the perturbed velocities and

2 6
the governing equations remain the same for both Newtonian

2 3
pressure vanish at orders ((e), C“<8—>, and C“<8—>. As a result,
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and Oldroyd-B fluids. Consequently, the bifurcation behavior is
also identical, with both fluids exhibiting subcritical rupture of
the interface."

5 Conclusions

Using weakly nonlinear analysis, it is shown that an electric field
imposed on a linear viscoelastic fluid, modeled as a perfect
conductor, adjacent to a dielectric air layer in the presence of
gravity can lead to either supercritical or subcritical instability of
the interface. The analysis is based on a regular perturbation
expansion, where the perturbation parameter is defined in terms
of the deviation of the applied potential from its critical value.

The results indicate that for low wavenumbers (ie., wide
containers), the interface deforms smoothly and exhibits super-
critical saturation. In contrast, at high wavenumbers (i.e., narrow
containers), subcritical branching occurs. An analytical expression
shows that supercritical behavior arises due to the stabilizing
influence of elastic stresses and gravity, which dominate over the
destabilizing Maxwell stresses. On the other hand, the subcritical
nature of the instability at high wavenumbers is primarily driven
by electrostatic forcing and the reduced influence of curvature,
which scales as ((k*). These effects are sufficient to overcome the
stabilizing contributions from gravity and elasticity.

Additionally, when the perfect conductor is modeled as an
Oldroyd-B fluid, the analysis reveals that the branching
remains subcritical, resulting in interface rupture. This beha-
vior is consistent with that observed in Newtonian fluids.
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Appendices i 3
A Maxwell stresses at (/ % and at ( (%)

73! is given by the following expression

, Ay [, Py 9\ *dy
Maxwell _ [2Y0 L Z=1) ZF0
Do B {dz (ZCI 0z? 2<8x dz

ot () (0
Ox dz Ox 0z ox
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Tyl is given by the following expression

0L\ 2y s Ly ([, O
12((%) EW‘(’a(dz (241

0Ox0z

Maxwell __
T3f

Oy [ O dibg 0 1) | Ay (o O
Tox T ox dz) 2 0z 8x) (3C2 oz2 )

+ 2dy P Ay Py, 0 Py
+3<(“) & g TO (E 32 Waxaz)

O (O, 0L di) | awl Ca% s

ax \ox  “ox d : 0z
(A2)

3

B Solution to @\3 at ¢ (%

We only need to determine the solution of the cos(kx) part of
the third order problem, because this part alone plays a role in
the determination of ./ at this order. The governing equation

d2
(62

The corresponding boundary conditions for 1/73 atz=0 and at
z=J, are

for @ is given by

k2) =0 (81)

~d 3.dy, ~d 32dy;  9/~\2d>
I+ B = Sh e R - - (6)
(B2)
and
Uy =0 (B3)

The solution to the governing equation for @\3 along with its
boundary conditions is,

—~ (38 &
Vs = <%+#+

>3 =~ .
. 3{; kcoth(#k) 4 3(241kcoth(%k)> cosh(kz)

30,0,k tanh (k)
24

30,3k coth 2 (k)
2

38,3k
an

A2 H

30,3k2 coth (A k)csch? (A k)
24

(30K coth(#k)
an

3{24“1k 3¢,3k coth?(#k) 3§akcoth2(yfk)
2H #? w

~

N 3¢, coth(#k) . Gooth(rk)
w A

) sinh(kz)

(B4)
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&3
C Solvability condition at ¢ —
The normal force balance at the third order, yields
B @C 207y 1 PG dlﬁo 01//2 3 3171
bs TWie: Caoe TVaz o: or
p2 20Pp1 6L P71 6L 8222
T TR T Wi Wi oz

L6 on(ox oz

Wi dx \ 0z ox
12 00)? 0%, _ o
Ox ox 0z

+%% 32X1+8221 3
Wi Ox \ 0z2  0z0x

17 Maxwell
+ 9 T3f

+ 0 6 9(; 822_‘_%
Wi dx \ Ox 0z

6(° 2, _ _(3C1) Roae

Wi 023 ox ) ox?

(1)

Recall that the cos(kx) part of the normal force balance at the
first order is given by

2020 12 dbody

Ca 0x2 & d

(C2)

Multiplying eqn (C1) with {; cos(kx) and eqn (2) with ; cos(kx)
and upon subtracting the resulting equations, we get an
expression for .o/>.

D Linear stability and weak nonlinear analysis using the
Oldroyd-B model for the perfect conductor

We now perform a weakly nonlinear analysis of the electrohy-
drodynamic instability when the perfect conductor is repre-
sented by an Oldroyd-B model. The governing equations are

2
expanded and solved at successive orders: ((g), 0(%), and

3
0 <%) The ensuing analysis follows the procedure outlined in

the work of Dinesh and Narayanan."?" In addition, the solution

methodology is outlined in Section 4. For a perfect conductor,
the dimensionless governing equations using the Oldroyd-B
model are given as follows, beginning with the continuity
equation:

ou Oow
a + E =0 (CS)
the x-momentum equation
Re @4, @4, @ — _8_p+ @+@
o Yox T az) T Tox " \ox T 022
(c4)
Oty OTys
ox 0z
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and the z-momentum equation

Re(@—l—u%—kw@) = —@ (@—0—@)
ot ox 0z 0z ox?  0z2
(C5)
aT;x aTzz
+ ox 0z

where Tyy, Tz Tzxy T2, are components of the polymeric stress
tensor. The xx-component of shear stress is given by

De Orax + uarxx + warxx — Z%T — 2@1 +1
ot Ox 0z ox ™ Tz ’“
Ou
= 2n— Co6
[ (C6)
The zz-component of shear stress yields
01, Ot Jdt,, 0w ow
De (W + MW +w 82 — 25’532 — Zafzvy) + 7.
ow
= 2n—o Cc7
U (€7)
The xz-component of shear stress is represented by
De Otz + uaTXZ + W% — %r — @r - @r
ot Ox 9z Ox ™ ox T 9z
(C8)

v N (o o
0z = =1 0z Ox

U
Here Re = p—, De

= h*;U and n = up/p* are the Reynolds
number, Deborah number and the viscosity ratio, ie., the
viscosity of the polymer divided by the viscosity of the solvent.
We now perform a linear stability analysis of the governing
equations following a similar procedure presented in Section 3.
The linearized form of the above equations under neutral
conditions, yield,
on  ow

a‘f’g—o (CQ)

the x-momentum equation

0 op N 0% N 0% N Oy N 01y (c10)
T O0x  \ox? 022 ox = 0z
and the z-momentum equation
op Pw P 0t.x 07,
0=—F7 — = ~ C11
oz (8x2+822 tox T o (C11)
The xx-component of shear stress is
oii
Tor =2 C12
t [P (C12)
The zz-component of shear stress is given by
ow
7., = C13
T =20 (C13)
The xz-component of shear stress is represented by
o Ow
2 =0 — 4+ — 14
Ty n(az—i-ax) (C19)
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It is noteworthy that the Deborah number, De, is absent in the
governing equations corresponding to the shear stress compo-
nents of the Oldroyd-B model. The Deborah number which
takes into the elastic nature of the fluid an important char-
acteristic of the viscoelastic fluid is absent under the neutral
conditions, indicating that the elastic nature of the fluid does
not alter the critical potential required for an instability. The
Deborah number measures how fast stresses relax compared to
the flow time scale. In neutral stability, perturbations are
marginal with no net growth or decay, so relaxation does not
influence the neutral boundary but only affects the rate at
which instabilities grow or decay away from it. Consequently,
De appears in transient growth rate problems but not in neutral
stability curves. It can also be shown that under neutral stability
conditions, the perturbed velocity and pressure are zero.
Toward this end, we calculate the perturbed velocity in the z-
direction by eliminating pressure and the x-component velocity
in the governing equations, eqn (C9)—-(C14). This yields,

@ L\
1+ — k") w=0 C15
()52 #) (c15)
The solution for W can be written as
W= €% + ce + 32" + cize (C16)

The corresponding boundary conditions, i.e., no slip, no pene-
tration, kinematic and tangential stress in terms of W are
given by,

dw

e and

w =0,

z=—1

d2
(1+n) (@ - kz)w =0

Upon solving the governing equations along with the boundary
conditions, we get 1w = 0. Since the perturbed velocities W and #
are zero, the perturbed pressure p is also zero. Therefore, upon
substituting the perturbed quantities in the linearized normal
stress balance yields an expression for the critical potential, i.e.,

1 =0, W9 =0,

o
Il

(C17)

Bo +k* = @Ca% coth(k)

(C18)

Note that this expression is similar to the critical potential for a
Newtonian fluid (recall eqn (28) in Section 3). This is attributed
to the fact that the perturbed velocities and pressure are zero at
O(¢). Therefore, the Oldroyd-B model for the soft-gel layer
results in a critical potential that is independent of the Deborah
number. We now focus on the solution of the governing

&2
equations at (/ <—>

D1 O (f) Governing equations and solution. The govern-
ing equations at 0 (32) are given by the continuity equation,
Le.,

8u2 6&1’2 _
ox T T

0 (C19)
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the x-momentum equation

Re (% o2y 2,1,1%) __9m

ot Ox 0z Ox
, " (C20)
O0°ury 0% O(txx)y  O(Txz),
+ <8x2 + 822) + Ox + 0z
and the z-momentum equation
ow, ow ow\ _ Op
Re(w* 2 *2‘“5) "o
(Cc21)

n 8wy n
Ox?

where (Txx)2y (Txz)2y (Tzx)2s (T22)2 are components of the polymeric
2
& .
stress tensor at (0 3) The xx-component of shear stress is

8wy O(T2x)y N (1=:)y
022 Ox 0z

given by
(()(‘L'xx)z a(TXX) 1 a(fxx) 1 aul
De< o Ty T A
(C22)
8u1 o 8u2
_45(7.&:)1) + (Txx)z_ Zrla
The zz-component of shear stress is
O(t=2), (=), (=), owy
De< ER + 2u, o + 2wy % 4 % (t22),
(C23)

owy owy
*45(%)1) +(t22),= 21 o

and the xz-component of shear stress can be written as

a(fxz)z O(TXZ)I , a(TXZ)l Ou
De( o Mg Mg T gt
owy Ouy owy
—25@7:)1—@(rm)l—zym)l) Foe),  (c29)

_ 8u2 (9W2
=" ( 9 " ox >

It is noteworthy that in the above equations (/(¢) terms are zero,
i.e., the first order velocity components in the viscoelastic fluid
layer are zero. In addition, all the time derivative terms are also
zero since we are conducting a weak nonlinear analysis around
the neutral stability point. Therefore, (¢/(¢) terms and the time
derivative terms vanish from the momentum and in the poly-
meric stress tensor equations.

We now calculate the perturbed velocity in the z-direction by
eliminating the pressure and the x-component velocity in the
momentum equations. This yields,

LAY
(I+n) (@ + W) wy =0 (Cc25)
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At this order, velocities, pressure and interface formation are
written as

U = :Ijz sin(2kx) + U

wa = Wz cos(2kx) + wa

P2 = P¢08(2kx) + pao (C26)
L= 22 cos(2kx)
V= ;bz cos(2kx) 4y
& 2
(1+n) (@ - 4k2> Wy =0 (C27)
The solution for fvz can be written as
Wy = c1e®F & cye ke 4 c3ze® 4 cqze (C28)

The corresponding boundary conditions, i.e., no slip, no pene-
tration, kinematic and tangential stress in terms of W are
given by,

d VAVQ

::—17 dz

(C29)
d? :
(1+1n) (@ - 4k2)w2 =0

Upon solving the governing equations along with the boundary
conditions, we get 1w, = 0. Note that w, = 0 will play a key role
in the calculations at ¢(c*/6).

d4{i’2 _
dz4

(1+1n) 0 (C30)

The solution for w, can be written as

Woo = G120 + 22 +C32+ ¢4 (c31)

The corresponding boundary conditions, i.e., no slip, no pene-
tration, kinematic and tangential stress in terms of w,, are
given by,

d bl
wl,—_,=0, 3220 =0, wyl,_,=0, and
= (C32)
d2W20
1 =0
(I +n)—3

Upon solving the governing equations along with the boundary
conditions, we get w,, = 0. It is noteworthy that w,, = 0, will play
a key role in the calculations at @(¢*/6). The potential field is
given by

Vi, =0 (C33)
subject to the following conditions
d
¢2+C2ﬂ:—251%+1 atz=0 and yY,=0 atz=4
dz 0z

(C34)
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The normal component of the momentum balance at the
interface, z = 0, is

2’0
ox?

iy s _

~Ca% 5,

Y7, Maxwell
Ca9 T2f

(p2 — p3)Ca+ 8L, —
(€35)

(¢f. Appendix A for the expression of T5{**!)) where @(z) is
given by

é + (Cl ) 2k coth(#k)

W) = — cosh(2kz2)
= A\ 2
coth(2k) (cz + (cl) kcoth(yfk))
- — sinh(2kz)
(C36)
and
A\ 2
~ 20Ca (Cl) k*(cosh(2k) + 2)csch?(# k)
© = " ig,Cakcotnzak) — 2 g v ) ()
and where ,(2) is given by
A\ 2
(cl) keoth(#k) 4
Yao(z) = 72 7 z
~\2
(gl) k coth(#k)
+ 1+ (C38)

H

A detailed solution for the potential is provided in Dinesh et al.'
We now proceed to the solution of the governing equations at

3
D2 O (—) Governing equations and solution. The govern-

3
ing equations at (0 (%) are given by

8u3 an o
the x-momentum equation
Ous ouy Ouy Ou, Ouy
Re| —=+ 3ur——+ 3ut——+ 3wr—+ 3w ——
e(5t+ u28x+ ulax+ ”zaz+ Wlaz>
) ) (c40)
_ Op;s 0°us  0°us O(Txx); | O(Txz)5
- 8x+<8x2 * 822)+ ox oz
and the z-momentum equation
ows owy owy owy 0wy
Re <W + 3M2W + 3“1 8)( =+ 3”2@ + 311’1 62 )
(c41)
Ops 8w N 8w, N O(T2x)s N O(t22)s
oz ox* = 922 Ox 0z

where (Tx)3, (Txz)s, (Tzx)3s (T22)3 are components of the polymeric

&3

stress tensor at @(E) The xx-component of shear stress is
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expressed as

a(Txx)3 ) 8(Txx)1 a(fxx)z
De{ o +3u e + 3uy ox
O(Txx); O(Txx), ou Our
, ) 2> —6—(1. C42
+ 3w % + 3wy % 28xf“\x 6 % (Txz)y (C42)

Ouy Ous

_65(1}:)2) + (Tax)3= 2’75

The zz-component of shear stress can be written as

De{a(fzz)3 + 3y Iz=z) a(;:;)z

1
ot ox + 3w

L1 3w,

0(t-2)

(1, ow ow
S e, @

8W3
76W(rﬁ)176§(rﬂ)2> + (t22)3= 21 o2

and the xz-component of shear stress is represented by

De<8(gt:)3+3u 3(;.;:% +3u15(;,;z)2
+ 3w (;;4)1 + 3!4)18(8'“)2 - 3(2;;2(%_7)1 — 3%(%)2
R UL LT L LN
_3%( YA)1—3%(TU)2> + (Tx:)3= n(% %;3)
(Ca4)

2
. . . &
It is noteworthy that in the above equations ¢(¢) and (9(5)
terms are zero, ie., the first and second order velocity compo-
nents and pressure in the viscoelastic fluid layer are zero.
Therefore, we do not see the product of these ()(¢) terms and

2
product of () term with ¢ (%) in the momentum equations

and the polymeric stress tensor equations. Toward this end, we
calculate the perturbed velocity in the z-direction by eliminat-
ing pressure and the x-component velocity in the momentum
equations. This yields,

92 2\ 2
(1 +Vl)(@+@> w3 =0

At this order, velocities, pressure and interface deformation are
written as

(C45)

us =ty sin(3kx) + d sin(kx)

>

w3 = w3 cos(3kx) + w3 cos(kx)
. (Cc46)
p3 = p3 cos(3kx) + p; cos(kx)

= 23 cos(3kx) + &5 cos(kx)
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hE g
The solution for w; can be written as
Ws = 1% + e + 326 + cuze (Ca8)

The corresponding boundary conditions, i.e., no slip, no pene-
tration, kinematic and tangential stress in terms of W are
given by,

dW}

dz =9,

z=—1

d2
(H—n)(F—k )»@3:0

Upon solving the governing equations along with the boundary
conditions, we get ; = 0. At the third order the potential field is
governed by

and

W3|z: 1= Y%

v =0"" 07

(C49)

V2¢3 =0 (CSO)

subject to 3 = 0 at z = # and the following condition at z =0

¢3+g3ﬂ = -3 288‘”1 a% —357t a‘”l
(c51)
,3g Q dd[g 34' 3d lﬁo

The normal component of the momentum balance along the
interface at z = 0 gives

5 W0 95
dz 9z

&G
‘C

(1’? 173)
(C52)

P, (0
At (a

o _> +C390T¥axwe“

where T3>*!! consists of the (1, 2) and (1, 1, 1) forcing terms
(¢f. Appendix A for the expression of T5**!"). Therefore, at this
order, Y3 and (3 are expressed as

Wy = i\:(z) cos(3kx) + @:(z) cos(kx) and
(C53)

(3= Q’i cos(3kx) + (A3 cos(kx)

Here, the cos(kx) part of the third order problem alone plays a
role in the determination of .2/ due to the requirement of the
solvability condition at the third order. The solvability condi-
tion yields an expression for /%, i.e.,

1 ktanh(kJ)

(3B sinh(kA#) + psinh(3k#’) — Sk cosh(kA)

/2 8sinh’ (k)
kcoth(k#) 3k3A? tanh(k#)
+k cosh(3k#)) — 7 - $99Ca
(C54)
with B = [k(cosh(2k#") + 2)esch®(k#))/[(2 tanh(k#) (% + k*) —

6k> coth(k#))/(% + k*)]. The expression for .«/> in the case of an
Oldroyd-B fluid is identical to that obtained when the perfect
conductor behaves as a Newtonian fluid. This equivalence
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arises because, in both cases, the perturbed velocities and
2 2
. ; € &

pressure vanish at orders ((g), ¢ (3), and O (E) As a result,

the governing equations remain the same for both Newtonian
and Oldroyd-B fluids. Consequently, the bifurcation behavior is
also identical, with both fluids exhibiting subcritical rupture of
the interface." The Deborah number characterizes the relative
importance of elastic relaxation compared to the characteristic
time scale of the flow, indicating whether the material responds
more like a solid (large De) or more like a fluid (small De). In the
case of neutral stability, perturbations are marginal and neither
grow nor decay. At this threshold, stress relaxation does not
contribute to shifting the onset of instability, since the system is
balanced precisely between stable and unstable behavior.
Instead, the Deborah number influences the dynamics away
from neutrality by determining how rapidly instabilities amplify
or decay. Consequently, De plays a central role in governing
transient growth rates of perturbations, but it does not explicitly
appear in the neutral stability curves that define the onset of
instability.
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