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Surface charge relaxation controls the lifetime
of out-of-equilibrium colloidal crystals

Laura Jansen, Thijs ter Rele * and Marjolein Dijkstra

Interactions between charged colloidal particles are profoundly influenced by charge regulation and

charge renormalization, rendering the effective potential highly sensitive to local particle density. In this

work, we investigate how a dynamically evolving, density-dependent Yukawa interaction affects the

stability of out-of-equilibrium colloidal structures. Motivated by a series of experiments where

unexpectedly long-lived colloidal crystals have suggested the presence of like-charged attractions,

we systematically explore the role of charge regulation and charge renormalization. Using Poisson–

Boltzmann cell theory, we compute the effective colloidal charge and screening length as a function of

packing fraction. These results are subsequently incorporated into Brownian dynamics simulations that

dynamically resolve the evolving colloid charge as a function of time and local density. In the case of

slow relaxation dynamics, our results show that incorporating these charging effects significantly pro-

longs the lifetimes of out-of-equilibrium colloidal crystals, providing an explanation for the experimental

observation of long-lived crystals. These findings demonstrate that the interplay of surface charge

dynamics and colloidal interactions can give rise to complex and rich nonequilibrium behavior in

charged colloidal suspensions, opening new pathways for tuning colloidal stability through electrostatic

feedback mechanisms.

1 Introduction

Suspensions of charge-stabilized colloids have attracted sus-
tained interest in soft matter research for nearly a century,
driven by their relevance in diverse applications ranging from
industrial coatings to pharmaceutical formulations.1 The theo-
retical framework for understanding interactions in these
systems is provided by the Derjaguin–Landau–Verwey–Over-
beek (DLVO) theory, which describes the screened electrostatic
colloidal interactions in an electrolyte through a distance-
dependent Yukawa potential.2,3 Despite its conceptual simpli-
city, the DLVO potential has proven highly effective in describ-
ing the behavior of most charged colloidal systems and remains
a central tool in colloid science.4,5

Since the 1980s, several experiments have cast doubts on the
validity of DLVO theory for colloidal suspensions under low-salt
conditions.6–8 These studies reported evidence of long-ranged
like-charge attractions between colloids—an effect not pre-
dicted by the DLVO framework. Observed phenomena suggest
such attractions include vapor–liquid phase separation,9

the formation of dilute voids,10–12 clustering of colloids,13,14

and colloidal crystals with unexpectedly long lifetimes.15,16

The origin of these apparent attractive interactions has yet to
be resolved. It is important to note, however, that these find-
ings remain controversial. Some results have proven difficult to
reproduce,17 while others may stem from experimental arti-
facts, such as out-of-equilibrium hydrodynamic effects caused
by the proximity of the particles to a substrate.18

Another intriguing phenomenon observed in charged-colloid
suspensions is reentrant melting, where colloids undergo a phase
transition from a crystal to a fluid phase upon increasing the
density.19,20 This behavior seems to originate from charge regula-
tion mechanisms. Here, charge regulation is an umbrella term
that includes a broad class of processes in which neither the
surface charge nor the surface potential is constant.21,22 The
specific form of charge regulation depends on the underlying
charging mechanism, which can involve either ionizable surface
groups22 or the adsorption of ionic species.19,20,23 Depending on
the nature of the surface chemistry and solvent environment, the
surface charge may increase24 or decrease19,20,23,25 with increasing
colloid density. Furthermore, these charging mechanisms do not
occur instantaneously, but are typically dynamic with finite time-
scales associated with charging processes.26–29

A related but distinct density-dependent phenomenon is
charge renormalization, in which the bare colloid charge is
replaced by a reduced effective charge that accounts for the
counterions condensed on the particle surface.30–32 This effec-
tive charge enables the use of linearized Poisson–Boltzmann
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theories, while still capturing nonlinear screening effects. As a
result, both the colloid charge and the screening length become
renormalized quantities.30,31 Charge renormalization is widely
used to reconcile the significantly lower effective charges
observed in experiments with the much higher bare charges
typically obtained from titration measurements.33–37

In this work, we employ Poisson–Boltzmann cell model
calculations to determine the renormalized charge and screen-
ing length as a function of the packing fraction of the
colloids,23,25,31 following the approach of Zoetekouw et al.25

These results serve as input for Brownian dynamics (BD)
simulations that explicitly account for the time- and density-
dependent evolution of the colloid charge. Using these simula-
tions, we investigate the structural lifetimes of colloidal crystals
in both cubic and planar slab geometries, focusing on how they
are influenced by variations in charging dynamics.

To study this theoretical model in a physically relevant
setting, we chose parameters consistent with the experiments
of Larsen and Grier.15,16 In their experiments, polystyrene
sulfate colloids with a diameter of 652 � 5 nm were used at a
low volume fraction of Z = 0.02.16 These particles carried a high
surface charge due to strongly acidic sulfate surface groups,
enabling them to be compressed into crystalline structures
using an oscillating electric field. Upon removal of the field,
the crystals reverted to a homogeneous fluid phase. Notably,
superheated colloidal crystals prepared at relatively high ionic
strength melted within approximately 10 seconds, whereas
those at lower ionic strength remained metastable for up to
30 minutes, before reaching their equilibrium state.15,16 These
long-lived structures also exhibited significant density varia-
tions, with differences as high as 70%.15

We investigate these so-called superheated crystals from a
new perspective, aiming to demonstrate not only our new
method for incorporating dynamic surface charge relaxation
but also the impact of density-dependent interactions on the
stability of charged colloidal crystals in suspension. Using the
BD simulations described above, we systematically study how
the lifetime of a crystal depends on charge regulation and
charge renormalization, with particular focus on the rate at
which these charging and decharging processes occur.

We demonstrate that crystal lifetimes are significantly
enhanced by reducing the rate at which colloids equilibrate
their surface charge, indicating that slow, density-dependent
charging processes contribute to stabilizing the superheated
crystal state. However, the simulated crystals do not exhibit the
pronounced density differences as observed in experiments,15

suggesting that additional mechanisms beyond our current model
are needed to fully explain the experimental observations.

This paper is organized as follows. In Section 2, we intro-
duce the experimental and theoretical background motivating
our Poisson–Boltzmann (PB) cell theory calculations and dis-
cuss the physically relevant parameter regimes. Section 3 out-
lines the BD simulations and the machine-learning-based
analysis techniques employed in this work. In Section 4, we
present the results of our PB cell theory calculations, which are
then employed in BD simulations to investigate the structural

lifetimes of superheated colloidal crystals in both cubic and
planar slab geometries, with the latter compared directly to
experimental observations. Finally, we summarize our key
findings and conclusions in Section 5.

2 Model and theory
2.1 Interactions between charged colloids

According to the classical DLVO theory, the effective interaction
potential between two identical, homogeneously charged col-
loidal spheres of radius a and total charge Ze with e the
elementary charge, immersed in a solvent containing both
coions and counterions with dielectric constant e and Debye
screening length k�1, is described by a purely repulsive
screened-Coulomb (Yukawa) interaction2,3

bUYukðrÞ ¼ Z2lB
expðkaÞ
1þ ka

� �2
expð�krÞ

r
; (1)

where r represents the center-of-mass distance between the
spheres, b = 1/kBT with kB Boltzmann’s constant and T the
temperature, and lB = e2/4pekBT is the Bjerrum length. Note
that we ignore the dispersion forces here.

In addition, we describe the hard-core repulsion between
the colloids by a Weeks–Chandler–Andersen (WCA) potential38

bUWCA rð Þ ¼
4beWCA

s
r

� �12
� s

r

� �6
þ1
4

� �
r � 2

1
6s;

0 r4 2
1
6s;

8>><
>>: (2)

where s = 2a denotes the particle diameter with a the particle
radius, and eWCA is a parameter that sets the strength of
the WCA potential. We use beWCA = 40, which has been used
extensively in previous studies to model hard spheres.39 The
total interaction potential between two colloids is simply the
sum of the two potentials, bU(r) = bUYuk + bUWCA(r). In this
work, the range of the colloid interaction always exceeds
r 4 21/6s, so the specific form of the WCA potential serves
primarily as a formal repulsive core rather than playing a
significant physical role.

This study explores the effect of charge renormalization and
charge regulation on the stability of out-of-equilibrium colloi-
dal structures by taking into account a dynamically evolving
Yukawa interaction that depends on the instantaneous local
colloid density. Below, we describe how charge renormalization
and charge regulation are accounted for within the framework
of a Poisson–Boltzmann cell theory.

2.2 Charge renormalization and charge regulation

Originally, Derjaguin, Landau, Verwey, and Overbeek derived a
Yukawa-like interaction potential by linearizing the Poisson–
Boltzmann equation and applying the linear superposition
approximation, i.e., using single-sphere solutions of the linear-
ized Poisson–Boltzmann (PB) equation to describe the
interaction potential between two spheres. This provided a
convenient analytical form for screened electrostatic interac-
tions between charged colloids.2,3 However, when the electric
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or surface potential of the colloids become sufficiently large,
non-linear effects become significant and the linearization of
the Poisson–Boltzmann equation and the linear superposition
break down. In such regimes, experimental studies have
consistently shown that the effective colloid charge, obtained
by fitting the interactions to a Yukawa potential, is signifi-
cantly lower than the bare charge determined through titra-
tion, which directly probes the surface chemical groups.33–35

In other words, the bare charge overestimates the charge
needed in the Yukawa potential to accurately describe phase
behavior. To resolve this, Alexander et al. introduced the
concept of charge renormalization, in which the long-range
asymptotic decay of the full non-linear PB solution is matched
to a Yukawa form with an effective charge.30,31 This approach
captures non-linear screening effects while retaining the ana-
lytical simplicity of the Yukawa potential, thereby improving
the accuracy of theoretical predictions for colloidal interac-
tions and phase behavior.

In many theoretical treatments, the charge on a colloidal
surface is assumed to be constant and fixed. However, this
assumption often fails to capture the behavior observed in
realistic experimental systems, where the origin of surface
charge must be explicitly considered. Typically, the charge
arises from the dissociation of chemical groups on the colloidal
surface in a polar solvent, such as water, resulting in a net
surface charge. As a result, the colloid charge is not a fixed
quantity but a dynamic one that can vary with system para-
meters such as temperature, pH, colloid packing fraction, and
background ion concentration. This phenomenon, known as
charge regulation, must be taken into account to accurately
describe colloidal interactions under realistic experimental
conditions.

2.2.1 Poisson–Boltzmann cell theory. To account for non-
linear screening and charge regulation effects, we employ the
spherical cell approximation, which allows us to solve the full
non-linear Poisson–Boltzmann (PB) equation. In this frame-
work, a system of N colloidal particles is modeled by partition-
ing the volume into identically sized spherical Wigner–Seitz
cells, each containing a single colloid at its center.40 The cell is
characterized by a radius R, which is related to the particle size
a and the colloid packing fraction Z through the relation
Z = Zmax(a/R)3. Here, Zmax C 0.74 represents the maximum
packing fraction of a face-centered cubic (FCC) or hexagonal
close-packed crystal of hard spheres, as used in ref. 25. While
this convention of introducing a maximum packing fraction is
not universally adopted in the literature,23,31,41 it can be
reverted to the standard form by setting Zmax = 1. This reduces
the complex many-body problem to a one-body problem with
spherical symmetry, enabling the numerical solution of the
non-linearized PB equation inside a single spherical cell.
Within the Poisson–Boltzmann framework, the ion distribu-
tions follow a Boltzmann distribution n�(r) = nN exp(8f(r)),
where f(r) = ec(r)/kBT is the dimensionless electric potential, r
is the radial distance from the center of the colloid, and nN is
the bulk concentration of coions or counterions.42 Substituting
the total charge density rc(r) = en+(r) � en�(r) into the Poisson

equation from electrostatics r2c(r) = �rc(r)/e, leads to the non-
linear PB equation

r2f(r) = k2 sinhf(r), (3)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8plBn1
p

is the inverse Debye screening length.42,43

To determine the renormalized charge, we follow the
approach by Alexander et al.30 and numerically solve the non-
linear Poisson–Boltzmann (PB) eqn (3) under appropriate
boundary conditions. Since the PB equation is a second-order
differential equation, two boundary conditions are required to
obtain a unique solution. The first boundary condition,

dfðrÞ
dr

				
r¼R
¼ 0; (4)

ensures total charge neutrality within the spherical cell.43 The
second boundary condition is imposed at the colloidal surface
and reflects the surface chemistry of the colloids. This condi-
tion can vary depending on whether the surface charge or
surface potential is held fixed, or if charge regulation is taken
into account. In this work, we focus on dissociation reactions of
acidic groups, in line with the polystyrene sulfate colloids we
use as a model system.15,16 This dissociation equilibrium is
described by

AH " A� + H+, (5)

where A� represents a surface charge group on the colloid and
H+ the released counterion. This reaction leads to a relation
between surface charge and surface potential22,44

Z

M
¼ 1

1þ 10pKa�pH exp �fðaÞð Þ; (6)

where M is the number of surface groups, Z is the bare surface
charge and pKa and pH = �log([H+]) are the negative logarith-
mic acid dissociation constant and the negative logarithmic
hydrogen ion concentration, respectively. The derivation of
this relation, presented in Appendix A, follows directly from
the chemical equilibrium conditions at the colloid surface.
The bare charge is related to the electric potential via
Gauss’ law,41,43 forming the second boundary condition to
the non-linear PB equation. For strongly acidic surface groups,
the assumption of a constant charge is equally viable. More-
over, ion-exchange resins are used to replace stray ions with a
dominant species. Thus, for all intents and purposes, the
counterion concentration can be taken to be equal to [H+].

2.2.2 Linearized Poisson–Boltzmann cell theory. Using the
solution to the non-linear Poisson–Boltzmann equation, we can
calculate the renormalized charge Z* and the renormalized
inverse screening length ~k. However, when transitioning from
the non-linear to the linearized Poisson–Boltzmann equation,
one must choose a reference point about which the equation is
linearized. Conventionally, this is done at the cell boundary
R,23,41 but one could also linearize around the mean electric
potential fm, resulting in ref. 31 and 45

Z� ¼ a tanhfm

lB

a2~k2 ðR=aÞ3 � 1

 �

3
; (7)
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and

~k2 ¼ k2 coshfm; (8)

where the mean electric potential fm is given by

fm ¼
4p
Vf

ðR
a

fðrÞr2dr: (9)

Here, Vf refers to the free volume within the spherical Wigner–
Seitz cell, which reads31,45

Vf ¼
4pR3

3
1� Z

Zmax

� �
: (10)

In this work, we employ the cell model linearized around the
mean electric potential (eqn (7)), as it enables a one-to-one
mapping between Z* and ~ka over a broad range of packing
fractions Z. This mapping simplifies the numerical methods
concerned with updating the equations of motion for these two
parameters, as will be explained in more detail in Section 3.1.
The theoretical framework and results for the linearized cell
model using the cell boundary R are provided in Appendix B.

2.3 Relaxation dynamics of surface charge and screening
length

Using eqn (7) and (8), the renormalized surface charge Z* and
inverse screening length ~k are evaluated as functions of the
local colloid packing fraction Z. These quantities form the basis
for the out-of-equilibrium Brownian dynamics simulations,
which employ the Yukawa potential defined in eqn (1). To
determine the local colloid packing fraction Z, the simulation
volume is partitioned into Wigner–Seitz cells using the Voronoi
tesselation, for instance via voro++.46 As the system evolves, the
local packing fraction Z—and consequently the surface charge
Z* and reduced screening parameter ~ka—changes dynamically.
Instead of updating these quantities instantaneously, we intro-
duce a time delay that accounts for the finite relaxation time
between changes in the chemical environment and the relaxa-
tion to a new (renormalized and regulated) charge. This rate of
change is governed by the surface chemistry underlying charge
renormalization and charge regulation.

2.3.1 A microscopic model for charge renormalization. So
far, we have treated charge renormalization in a coarse-grained
manner. To develop a more microscopic description, we draw
parallels to Manning’s counterion condensation theory for
polyions.47

Manning’s 1969 theory predicts that counterions condense
onto an infinitely long, thin line charge when the spacing
between charged groups is smaller than the Bjerrum length.47

A later refinement classified condensed counterions as free,
territorially bound, or site-bound.48 Territorially bound ions
can move freely along the polyion surface, whereas site-bound
ions are more restricted. However, experiments and simula-
tions show that the site binding is short-lived, typically less
than a few nanoseconds.49–51 For this reason, we only consider
territorially bound and free counterions.

Manning condensation was formulated for cylindrical polyions,
and counterion behavior depends strongly on geometry.32,52–54

This geometric dependence is well illustrated by toy models such
as those of Tang and Rubinstein.53 Despite this dependence on
geometry, counterion condensation and charge renormalization
are closely related.33,54–56 For example, Diehl and Levin55 used
molecular dynamics simulations with monovalent counterions
around a spherical colloid and recovered the renormalized charge
as predicted by Alexander et al.30 In their approach, condensation
was identified by comparing the potential energies and kinetic
energies of the counterions, and the renormalized charge was
obtained by substracting the number of condensed counterions
from the bare charge.

2.3.2 Adsorption kinetics for counterion condensation. In
light of these observations, we propose that charge renormali-
zation can be interpreted as an adsorption process. This inter-
pretation is consistent with its established role in models of
dynamical charge regulation.57–59 Adsorption-based frame-
works are also widely used in studies of linear flexible
polyions,50,60–63 and, to a lesser extent for globular polyions.64

A wide range of models exists for describing adsorption
kinetics, varying in complexity.65 In the absence of experi-
mental data specific to our system that could justify a more
elaborate model, we adopt a simple and widely used pseudo-
first-order kinetic scheme65–67

dNadsðtÞ
dt

¼ k Nads;eqðZÞ �NadsðtÞ
� 


; (11)

where Nads,eq(Z) is the equilibrium number of adsorbed coun-
terions on a single colloid and Nads(t) is the number of
adsorbed counterions at time t. For simplicity, we assume that
the adsorption rate k is constant, independent of counterion
concentration, and equal to the desorption rate. Assuming all
counterions are monovalent, we can identify the number of
adsorbed counterions with the adsorbed charge, Nads,eq(Z) =
Zads,eq(Z) and Nads(t) = Zads(t). Following Diehl and Levin, we
define the renormalized charge as Z* = Z � Zads,55 where Z is
the bare colloid charge arising from surface dissociation reac-
tions, and �Zads represents the reduction due to counterion
adsorption. In our system, the bare charge can be treated as
constant, since the surface groups are strongly acidic and
thus largely insensitive to local density variations, as shown
in Fig. 1(a). Hence, we set dZ/dt = 0, or equivalently, Z = Zeq.
Substituting this relation into the kinetic equation yields a
differential equation for the time evolution of the renorm-
alized charge

t
dZ�ðtÞ
dt

¼ Z�eqðZÞ � Z�ðtÞ; (12)

where t = 1/k represents the characteristic timescale over which
the colloidal surface charge relaxes towards equilibrium with
its local chemical environment. Hence, the time evolution of Z*
follows from first-order adsorption kinetics. To maintain con-
sistency, we impose that the time evolution of the inverse
screening length ~k, as defined in eqn (7), mirrors that of the
renormalized charge by making use of the one-to-one mapping
between Z�eq and ~ka, as is discussed in Section 3.1. Here,

we follow a framework similar to that of Boon et al.,68 who
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observed that the equilibration time of the electric double layer
is typically much shorter than both the colloidal diffusion time
and the timescales of most surface-charge reaction processes.
This slow-reaction assumption allows us to describe the double
layer in quasi-equilibrium. Consequently, we can employ the
equilibrium DLVO potential at each instant, with the non-
equilibrium effective charge Z*(t) and inverse screening length
~kðtÞ serving as time-dependent inputs. Furthermore, we note
that the same differential equation eqn (12) has previously been
used to model charging dynamics in aqueous nanochannels.69

Finally, we emphasize that our adsorption model assumes a
uniform surface charge density on the colloids. This simplifica-
tion contrasts with more detailed charge-regulating Poisson–
Boltzmann calculations, which can yield heterogeneous and
asymmetric charge distributions between colloids, and in some
cases predict like-charge attractions.70,71

2.3.3 Relaxation time s for charge renormalization. Lastly,
we provide a tentative estimate of the timescale t for charge
renormalization, acknowledging the inherent difficulties and
therefore restricting ourselves to a lower bound. We focus on
the relaxation of the innermost region of the electric double
layer during a Brownian encounter—when two colloids
approach closely enough for their double layers to overlap
and become perturbed.72 Previous studies have shown that
the diffuse part of the double layer relaxes rapidly and can be
considered in near-instantaneous equilibrium under such
conditions.59,72,73 By contrast, the relaxation of condensed
counterions involves a range of processes with different time-
scales and a strong dependence of interaction geometry.58,72–75

In our simple adsorption model, the characteristic timescale
t in eqn (12) should be comparable to, or longer than, that of
lateral counterion diffusion, in contrast to diffusion-limited
models.73,75 As a lower-bound estimate, we take t to be the
characteristic diffusion time along the colloid surface, obtained
by dimensional analysis72,73

tion ¼
a2

Dion;c
; (13)

where Dion,c is the diffusion coefficient of ions in the condensed
layer and a the colloid radius. It is worth emphasizing that the
particular nature of the counterion association with the surface
may result in t c tion.

Using the diffusion coefficient of H+ in bulk water as an
estimate for Dion,c, we obtain a lower bound of tion E 0.01 ms.
Experimental data suggests that the diffusion coefficient in the
condensed layer may be comparable to its bulk value.74,76,77

However, the structure of the electric double layer is complex,
and the diffusion coefficients in the innermost layer remain
debated.78 In the presence of significant energy barriers attrib-
uted to lateral diffusion, the effective diffusion constant may be
orders of magnitude smaller than in bulk.73

Given these uncertainties, we also explore relaxation times t
that are significantly larger than tion E 0.01 ms. Additionally,
systems with bulky counterions in nonpolar solvents, which are
also actively studied,24,54,79 may exhibit even slower relaxation

dynamics, justifying our consideration of a broad range of t
values.

2.3.4 Generalization to charge regulation. The time-
evolution equation for charge renormalization (eqn (12)) can
also be interpreted as a simplified model for charge-regulating
systems governed by ion adsorption,80 where the rate-limiting
timescale is determined by the kinetics of charge regulation
rather than renormalization. In this case, the slow response is
attributed to charge regulation dynamics, while the time
dependence of charge renormalization itself is neglected.
Charge regulation can be much slower than particle diffusion,
sometimes requiring timescales on the order of minutes to
hours to reach equilibrium.26–28,81,82 To reflect this broader
applicability, we also consider relaxation times up to t E 3 s.

Here, we assume that the relaxation time t = 1/k in the
charging dynamics of eqn (12) is constant. In reality, the
relaxation time t is expected to increase with higher counterion
concentrations [H+].83 Nevertheless, the order of magnitude of t
is primarily determined by the specific system under considera-
tion, as discussed in Section 2.3. For this study, we adopt a
constant-t assumption, which provides a reasonable approxi-
mation for the essential relaxation dynamics. We have added a
discussion on the concentration dependence of t and the
rationale for employing the constant-t model in Appendix C.
Still, incorporating the concentration dependence of t repre-
sents a natural extension for future work. Another natural
extension would entail the decoupling of the time evolu-
tion of ~k� and Z*, as these can progress through different
timescales.

3 Methods
3.1 Brownian dynamics with a dynamic colloid charge and
screening length

In this work, we investigate the melting behavior of charged
colloids using BD simulations. The time evolution of particle
positions is evaluated using the Langevin integration scheme,
where we follow the integration method proposed by Ermak
and Yeh.84 In this approach, the position ri of particle i at time
t + dt is given by

riðtþ dtÞ ¼ riðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
2Ddt
p

WðtÞ � D

kBT
rUdt; (14)

where dt is the integration time step, and W(t) denotes a
Wiener process that introduces stochastic noise corresponding
to thermal fluctuations to the particles. The diffusion constant
D determines the rate at which colloidal particles diffuse,
setting the characteristic timescale td = a2/D, known as the
diffusion time td. This timescale reflects how long it takes a
particle to diffuse a distance comparable to its own size a.
Finally, the interparticle forces are derived from the interaction
potential U(r), which consists of a Yukawa potential accounting
for the screened electrostatic repulsions and a hard-core WCA
potential describing the excluded volume, as defined in eqn (1)
and (2), respectively. By employing this integration scheme,
we assume particles are in the overdamped limit and neglect
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hydrodynamic interactions. These approximations allow us to
study macroscopic length and timescales. Nonetheless, hydro-
dynamic coupling under confinement18 and in the presence of
charge regulation83 is highly non-trivial and represents an
interesting direction for extending our model.

In the simulations, we used a time step of dt = 8 � 10�6td.
The interaction potential was truncated and shifted to zero at a
cutoff distance Rc = 8s, following the truncated and shifted force
method,85 resulting in a negligible interaction strength of at
most bU(Rc) E 0.0001.

The interaction potential depends on the renormalized
charge Z* and the inverse screening length ~k; we explained
how to derive both of these parameters in Section 2. Here, the
mean electrostatic potential fm for each packing fraction Z was
calculated using the Simpson integration method, while the PB
cell model was solved numerically using the SCIPY SOLVE_BVP
routine. Solutions for Z* and ~k were obtained for the packing
fraction range Z A [0, 0.735], and discretised into 4000 evenly
spaced points. During the BD simulations, the values of Z* and
~k were determined as continuous functions of Z using linear
interpolation.

To determine the instantaneous renormalized charge Z* and
inverse screening length ~k of each colloid during the simula-
tion, we first compute its local packing fraction Z using the
Voronoi tesselation algorithm provided by voro++,46 which is
computationally demanding. Initially, the renormalized charge
Z* and inverse screening length ~k of each particle are set to
their equilibrium values, Z�eq and ~keq, for the initial configu-

ration. To balance accuracy and efficiency, we update the
equilibrium charge Z�eq of each colloid via the Voronoi tessela-

tion at a frequency of at least 1000 times per relaxation time t.
This ensures sufficient temporal resolution for systems with
fast dynamics while reducing computational costs in more
slowly relaxing systems. The charge Z*(t) and inverse screening
length ~kðtÞ are updated at each simulation time step dt by
integrating eqn (12). While a time-evolution equation for ~k
could in principle be derived from eqn (7), this would require
knowledge of the time dependence of additional parameters in
eqn (7) and would depend on the point of linearization.
Instead, we evolve only Z*(t) and ensure consistency by using
a one-to-one mapping between Z*(t) and ~kðtÞ at each time step.
This mapping is valid within a specific range of packing
fractions and allows us to accelerate the simulations. In the
regime where a one-to-one mapping between Z* and ~ka exists,
the value of ~ka consistent with the time-evolved Z* is deter-
mined via an effective packing fraction using linear interpola-
tion. Simulations were carried out for a maximum duration
of 160td.

In eqn (1), a single renormalised inverse screening length ~k
is used, even though two interacting particles generally experi-
ence different local densities and thus different ~k values.
To account for this asymmetry, we approximate the interaction
between particles i and j using the average inverse screening
length, defined as ~kij ¼ ~ki þ ~kj

� 
�
2. This approximation is

expected to be reasonable in regions with small density gradi-
ents, such as those considered in Section 4.3. More detailed

approaches could incorporate the full ion configurations around
each colloid to define an effective screening length, but such
treatments are beyond the scope of the present work.

3.2 Identification of crystalline particles

To determine when the colloidal crystals have fully melted, we
use a machine-learning (ML) scheme to identify which particles
are in a crystalline structure. To this end, we first classify the
local environment of each particle by calculating the bond
order parameters (BOPs).86 These BOPs are based on spherical
harmonics Ym

l of order l, where m is an integer between m = �l
and m = l. For each particle i, we calculate

qlmðiÞ ¼
1

NbðiÞ
XNbðiÞ

j¼1
Ym

l rij
� 


; (15)

where rij = rj � ri is the distance vector between particle i and j,
and the summation runs over all Nb(i) nearest neighbours of i.
To distinguish more accurately between distinct thermo-
dynamic phases, we calculate the averaged BOPS defined by
Lechner and Dellago,87 where we average qlm(i) over the nearest
neighbours and the particle itself87

QlmðiÞ ¼
1

NbðiÞ þ 1
qlmðiÞ þ

XNbðiÞ

k¼1
qlmðkÞ

 !
: (16)

By averaging over �l r m r l, we define a rotationally
invariant BOP

QlðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

2l þ 1

Xl
m¼�l

QlmðiÞj j2
vuut : (17)

We calculated these BOPs (eqn (17)) for l A [2, 11] using the
PYTHON package PYSCAL3,88 where the nearest neighbours
were determined using a Voronoi tessellation.

The BOPs for all particles over the full simulation trajectory
were projected onto two principal components using principal
component analysis (PCA). A Gaussian mixture model (GMM)
with two components was then fitted to this reduced dataset,
under the assumption that one component represents the fluid
phase and the other the FCC crystal phase. From the GMM, we
obtained a crystallinity probability for each particle, which was
summed across all particles and plotted as a function of time.
To mitigate the influence of residual noise, we manually set the
long-time crystallinity fraction to zero, effectively removing a
small percentage of false positives.

In Appendix E, we provide a more detailed description of
this method and demonstrate its robustness across various ML
training conditions. The aim of this procedure is not to
accurately identify the local structure of individual colloidal
particles, but rather to capture the overall structural evolution
of the system. Notably, these systems contain a substantial
number of interface particles, which are notoriously difficult to
classify.89
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4 Results and discussion
4.1 Effect of charge regulation and charge renormalization on
colloidal interactions

Using the Poisson–Boltzmann cell theory as outlined in Section 2.2,
we calculate both the bare colloidal charge Z, which arises from
charge regulation, and the renormalized charge Z*, which
accounts for charge renormalization, using eqn (6) and (7),
respectively. Additionally, we calculate the corresponding
renormalized inverse screening length ~k using eqn (8). These
calculations are based on a simple dissociation boundary
condition with M = 105 the number of surface groups, a =
465.5lB the colloid radius, ka = 1.185 the reduced screening
parameter, and [H+]/Ka = 0.05 the ratio between the bulk
concentration of hydrogen and the acid dissociation constant.
All parameters except [H+]/Ka are taken from the 1997 paper by
Larsen and Grier,16 where we use a Bjerrum length of lB =
0.7 nm. In Fig. 1(a), we plot the bare colloid charge Z (dark blue)

and the renormalized charge Z* (light blue) as functions of the
packing fraction Z. We find that the bare charge Z remains
approximately constant over a broad range of packing fractions
but decreases sharply as Z approaches the maximum packing
fraction Zmax. In contrast, the renormalized charge Z* exhibits a
non-monotonic trend due to counterion condensation: it
increases with Z at low packing fractions and begins to decrease
as Z drops near Zmax. The increase in Z* with Z has also been
found in cell model calculations performed in the canonical
ensemble.24

Fig. 1(b) shows the corresponding renormalized inverse
screening length ~k. We clearly observe that ~k increases rapidly
with colloid packing fraction Z in this low-salt system. This
increase in ~k results from the higher salt concentration at
higher colloid density, as is described by the Gibbs-Donnan
effect.90 Our choice for the ratio between the bulk concen-
tration of hydrogen and the acid dissociation constant [H+]/Ka

was limited by the numerical stability of our calculations.

Fig. 1 Effect of charge regulation and charge renormalization on colloidal interactions. (a) Bare charge Z (dark blue) and renormalized charge Z* (light
blue) as functions of packing fraction Z. (b) Renormalized screening parameter ~ka as a function of Z. (c) Total interaction potential bU(r) between two
colloids as a function of center-of-mass distance r for two packing fractions, Z = 0.0006 (blue) and 0.145 (red), representative of the initial gas and crystal
phase, respectively. (d) Initial configuration used in the simulations consisting of a cubic crystallite surrounded by a dilute fluid phase. (e) Slice of thickness
5s through the center of the simulation box, showing the renormalized charge Z* of individual particles (see colorbar for color coding). (f) Same slice as in
(e), but with particle radii scaled by the local screening length according to 5/ks + 0.7. Panels (e) and (f) correspond to time t = 2td. The parameters used
in the calculations are adopted from ref. 16.
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However, in Appendix B we show that the solution to the PB
equation in this parameter space regime is largely insensitive to
the exact value of the bare surface charge. Therefore, the
chosen value of [H+]/Ka is still expected to yield results that
are representative of our model system.

The renormalized charge Z* and the inverse screening
length ~k can be employed in eqn (1) to define a dynamically
evolving, density-dependent interaction potential. In Fig. 1(c),
we illustrate this interaction at two representative packing
fractions, Z = 0.0006 and Z = 0.145. This plot clearly shows that
the Yukawa interaction is significantly more repulsive at low
packing fraction. This reduction in repulsion at higher Z is
primarily due to enhanced electrostatic screening, reflected in
the increase of ~k. Although the renormalized charge Z* also
rises with density, its effect is outweighed by the stronger
screening.

4.2 Melting behavior of a cubic crystallite

Using the dynamically evolving, density-dependent Yukawa
potential described above, we study the lifetime of a small
cubic crystallite with an FCC structure, surrounded by a dilute
fluid phase, for various values of the relaxation time t. The
initial configuration, shown in Fig. 1(d), consists of a cubic
crystallite of 8788 particles arranged in an FCC structure with
an initial packing fraction Zi, centered at the origin of the
simulation box. This crystal is surrounded by 2000 randomly
placed particles in a fluid phase. To achieve the desired global
packing fraction Zg, we adjust the total volume of the simula-
tion box while keeping the initial packing fraction Zi of the
cubic crystal fixed. In all our simulations we use periodic
boundary conditions in all three spatial directions. The para-
meters for all configurations used in this work, including Zg, Zi,
and the relaxation time t, are listed in Table 1, each identified
by a code Bi with i A [1, 16]. We first consider simulations
B9–B12, in which the crystal has an initial packing fraction of
Zi C 0.231225, the global packing fraction is Zg C 0.004189,
and the fluid phase initially has a packing fraction of Z C 0.0015.
Note that, at equilibrium, the colloids form a homogeneous fluid
phase at a global packing fraction of Zg C 0.004189.

In the dense crystalline region, the effective charge of the
particles is higher than in the surrounding dilute fluid, as
shown in Fig. 1(e). However, the particle interactions are less
repulsive in the dense region due to the increased screening,
reflected by a larger value of ~ka. This effect is illustrated in
Fig. 1(f), where the colloid radius gives an impression of the
interaction range. Interestingly, particles in the gas phase
appear effectively larger to one another than those in the
crystal, owing to the longer-range interactions at lower
densities.

Typical configurations of the system at different stages of its
melting process are shown in Fig. 2, illustrating how the
expansion of the crystal depends on the relaxation time t. At
low values of t, like t = 0.04td with td the diffusion time of the
colloids (Fig. 2(b)), the crystal rapidly expands into a dilute
crystalline structure before eventually melting. In this regime,
the charging mechanism responds almost instantaneously, so

its time dependence is minimal. At longer relaxation times,
t = 4td (Fig. 2(d)), the expansion proceeds much slower. After a
time of t = 8td, a dense FCC crystal still coexists with a
surrounding dilute fluid phase. In contrast, for a short relaxa-
tion time of t = 0.04td, a large portion of the simulation box is
already occupied by a dilute crystalline structure at the same
time point.

Two main factors contribute to the stability of the crystal.
The first arises from the relaxation dynamics within the dense
region. Due to diffusion, particles tend to move on average from
dense to dilute regions. Since the range of repulsion increases
as the local density decreases, this can trigger a feedback loop
that drives rapid crystal expansion. However, when the relaxa-
tion time t is large, this feedback loop is suppressed because
the particles have not yet adjusted to their new chemical
environment. In other words, for small values of t, the particles
closely follow the light blue curves in Fig. 1(a) and (b).
In contrast, for large t, particles can effectively take a variety
of paths through parameter space—spanning Z*lb/a, ~ka, and
Z—rather than remaining on an instantaneous response curve.
This point is illustrated in Appendix D, where we study the time
evolution of the charge and screening length of particles
initially at the exterior and in the interior of the superheated
crystal.

The second factor contributing to the stability of the crystal
is the formation of an intermediate layer between the dense
crystallite and the surrounding dilute fluid phase. When the
charging dynamics is fast, i.e. small t, particles at the surface of
the crystallite quickly become more repulsive due to their lower
local density. As a result, they experience strong outward
repulsive forces that rapidly drive them away from the crystal
center. In contrast, when the charging dynamics is slower,
i.e. larger t, surface particles do not immediately adjust to the
reduced local density. Instead, they diffuse more gradually
away from the crystallite, forming a dense, fluid-like layer.
Although these particles have a lower local density than those

Table 1 Parameters for the initial configurations of the BD simulations on
a cubic crystallite with an FCC structure surrounded by a dilute fluid phase.
The configurations are characterised by a code Bi, a global packing fraction
Zg, the initial packing fraction of the crystal Zi, and the relaxation time t
used in the simulations

Code Zg Zi t/td

B1 0.001047 0.057806 4
B2 0.001047 0.057806 0.4
B3 0.001047 0.057806 0.04
B4 0.001047 0.057806 0.004
B5 0.002094 0.115613 4
B6 0.002094 0.115613 0.4
B7 0.002094 0.115613 0.04
B8 0.002094 0.115613 0.004
B9 0.004189 0.231225 4
B10 0.004189 0.231225 0.4
B11 0.004189 0.231225 0.04
B12 0.004189 0.231225 0.004
B13 0.005236 0.404644 4
B14 0.005236 0.404644 0.4
B15 0.005236 0.404644 0.04
B16 0.005236 0.404644 0.004
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inside the crystallite, their increased repulsion still plays a
stabilizing role. This intermediate fluid layer acts as a barrier,
exerting a counteracting force that resists further expansion of
the crystal and thus enhances the stability and thereby the
lifetime of the crystal. The strong repulsions in the intermedi-
ate fluid layer delay the breakup of the crystal, which ultimately
melts due to weaker repulsions between colloids inside the
crystal. Note that this effect strongly depends on the long
screening length k�1 (resulting from the low ionic strength in
the experiment), since the repulsions in the dilute regions need
to be long-ranged in order to stabilise the crystal. The effects
of increased stability of the crystal are shown in Fig. 2.
At t = 0.04td, the crystal has completely dissolved by t = 40td.
In contrast, at t = 4td, crystalline regions remain visible at the
same time point. The stabilizing fluid layer surrounding the
crystal is also clearly visible in this figure.

To enable a more precise comparison between different
values of t, we quantify the extent of crystal melting by
measuring the fraction of particles in an FCC-crystalline local
environment. Fig. 2(c) shows the time evolution of the fraction
of crystalline particles. The method used to identify the crystal-
line particles is described in Section 3.2 and detailed further in
Appendix E. For each simulation, we calculated the BOPs for
each particle. The datasets from simulations B9–B11 were
projected onto the resulting principal components obtained
by performing PCA on data from simulation B12. Subsequently,
a GMM was trained on the projected datasets. From Fig. 2(c),

a clear distinction emerges between systems with a relaxation
time t 4 td and those with t o td. For t o td, the crystalline
fraction gradually decreases until there is no crystal left around
t = 45td. In contrast, for t 4 td, the fraction of crystalline
particles initially plateaus, followed by a gradual decrease, with
complete melting occuring at approximately t = 65td.

In addition, we examine how the initial packing fraction Zi

of the crystal influences its lifetime. We analyze three sets of
simulations with varying initial packing fractions: B1–B4 with
Zi = 0.057806, B5–B8 with Zi = 0.115613, and B13–B16 with
Zi = 0.404644. For each set, PCA was performed using data
from the simulation with t = 0.004td. The remaining three
datasets in each set were projected onto the resulting principal
components. A GMM was then trained and tested on each of
the nine projected datasets. The resulting fraction of crystalline
particles are presented in Fig. 3. Based on Fig. 3, we observe
that increasing the initial packing fraction Zi enhances the
lifetime of the crystal, at fixed relaxation time t. More specifi-
cally, the lifetime of the crystal increases progressively from
Fig. 3(a)–(c). This effect is particularly pronounced at larger
relaxation times t (see the red curves). As the initial packing
fraction Zi increases, the difference between the two regimes
t o td and t 4 td becomes increasingly evident. At low initial
packing fraction Zi (Fig. 3(a)), the influence of t on the melting
rate is minimal. This is because density-dependent interaction
effects are weak in dilute systems, and introducing a time lag in
the response of the interactions has little impact. In contrast, at

Fig. 2 Melting behavior of a cubic crystal with an FCC structure. For clarity, only slices of thickness 6s through the center of the simulation box are
shown. The colors of the particles represent their renormalized charge Z*, as indicated by the color bar. (a) Slice of the initial configuration used in the
melting simulations. (b) Typical configurations from the melting simulation with relaxation time t = 0.04td. (c) Time evolution of the fraction of particles
identified as crystalline by our machine learning approach. (d) Typical configurations from the melting simulation with t = 4td.
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higher initial packing fractions Zi (Fig. 3(b) and (c)), the delayed
response of the interactions plays a more important role. Here,
larger values of t noticeably extend the lifetime of the crystal.
This suggests that as the system is driven further out of
equilibrium, the crystal becomes more long-lived, and the
delayed relaxation of the colloid surface chemistry plays an
increasingly important role in the stabilization of the crystal.

To convert the dimensionless timescales discussed in this
section into physical units, we refer to the particle diffusion
coefficients reported by Larsen and Grier; either D = 0.12 mm2 s�1

(ref. 15) or D = 0.15 mm2 s�1.16 These values correspond to
diffusion times of either td = 0.89 s or td = 0.71 s, respectively.
Using the shorter diffusion time, td = 0.71 s, the two relaxation
times translate to t = 0.04td = 28 ms, and t = 4td = 2.8 s, and the
lifetimes of the crystal range from 32 s–64 s.

In summary, for this specific set of initial conditions, the
charge relaxation time—approximately ranging from milli-
seconds to seconds—strongly influences the lifetime of a super-
heated crystal, since a larger relaxation time can double the
crystal lifetime. These results show that incorporating non-
instantaneous charge regulation and charge renormalization
effects into simulations of charged colloids enhances the
stability and lifetime of crystalline structures.

4.3 Melting behavior of a crystal in a slab geometry

Next, we investigate a system with a geometry more closely
resembling the experimental setup used by Larsen and
Grier.15,16 While the previous simulations of small compressed
cubic crystals surrounded by a fluid phase allowed for a
quantitative analysis of the effect of the relaxation time t, the
more complex geometry considered in the next simulations
reveals that the specific details of the initial configuration also
play a significant role in extending the lifetime of superheated
crystals.

The initial configuration of the particles is shown in
Fig. 4(a). An FCC crystal consisting of 22 000 particles with an
initial packing fraction of Zi is positioned at the centre of an
elongated simulation box. We apply periodic boundary condi-
tions in all three spatial directions, resulting in two planar

crystal-gas interfaces. The surrounding dilute gas phase con-
tains 194 randomly placed particles. The total volume of the
simulation box is adjusted to achieve a target global packing
fraction Zg, while keeping Zi of the crystal fixed. The height of
the box is maintained at approximately 31.5s, corresponding to
about 20.5 mm or 0.02 mm—matching the height of the
experimental setup used by Larsen and Grier.15 All relevant
parameters are provided in Table 2. A key difference between
the simulations and experiments is, however, the use of peri-
odic boundary conditions in the simulations. Furthermore, the
simulations use a fully filled slab geometry, in contrast to the
experiments, which consist of an unspecified number of layers.
As a result, a direct quantitative comparison between the
simulations and experiments is not feasible. Nevertheless, in
the following, we highlight qualitative features that resemble
those observed in the experimental system.

We first examine a system with an initial packing fraction
of the crystal of Zi = 0.089215, and a global packing fraction of
Zg = 0.009. The relaxation time is set to t = 0.04td. However,
given the low initial density of the superheated crystal, this
value of t is not expected to significantly influence the out-of-
equilibrium dynamics (see Fig. 3). The simulation presented
here corresponds to simulation P3 in Table 2. To track the
evolution of the crystal during expansion, we employ our
machine learning method for identifying crystalline particles
described in Section 3.2 and further detailed in Appendix E.
To obtain the FCC class probabilities shown in Fig. 4, we
projected the BOPs from P3 onto the first two principal compo-
nents obtained from simulation P2. A GMM was then trained
and tested on these reduced BOPs. Fig. 4(b) illustrates the
expansion of the crystal, with particles color-coded according
to their probability of belonging to the crystal phase. The color-
coding was also validated against visual inspection of simula-
tion trajectories in Supplementary Movies of the system.91 Due
to the large system size, the simulation could not be run until it
reaches full equilibrium.

We make the following observations when we run such a
simulation. After an initial relaxation, the FCC crystal at the
center of the box falls apart into irregularly shaped domains,

Fig. 3 Melting behavior of cubic crystallites. Fraction of crystalline particles as a function of time t/td for varying relaxation times t and different initial
packing fractions Zi of the crystal and global packing fraction Zg: (a) (Zi, Zg) = (0.057806, 0.001047) from simulations B1, B2, B3, (b) (Zi, Zg) = (0.115613,
0.002094) from simulations B5, B6, B7, and (c) (Zi, Zg) = (0.404644, 0.004189) from simulations B13, B14, B15. In this dilute regime, the small variations in Zg

between simulations have a negligible impact on the crystal lifetime.
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separated by disordered particles, as shown in the left frame of
Fig. 4(b). The subsequent frames illustrate the time evolution of
these ordered regions. Notably, islands of FCC-structured par-
ticles persist and even grow in some cases in the central region
of the box, where the local density remains relatively high.
In these dense areas, ordered domains can span the full height
of the simulation box. In contrast, the low-density regions near
the left and right boundaries of the box, consist primarily
of disordered particles. Between the dense crystal and the
dilute phase, smaller crystalline domains are observed drifting
through the disordered background. This drift is attributed to
the slow, diffusion-driven expansion of the system, which

gradually redistributes particles over time. Large ordered struc-
tures, similar to those shown in Fig. 4(b), persist throughout
the entire duration of the simulations, which extended up to
t = 135td. These results indicate that the out-of-equilibrium
coexistence between ordered and disordered phases described
in this section has a macroscopic lifetime of at least approxi-
mately 1.5 min, and potentially significantly longer.

In addition, we also consider conditions analogous to those
in the experimental study, where the system equilibrated into a
disordered fluid with a global packing fraction of Zg = 0.02.
However, in our simulations at this global packing fraction, the
crystal did not melt. This behavior is shown in the Supplemen-
tary Video91 and in Fig. 5(a), which shows the expansion of the
crystal from simulation P7. The color-coding of the particles
denote the FCC class probability, determined using the method
described in Section 3.2, with principal components derived
from simulation P6.

From the final two frames of Fig. 5(a), it can be inferred that
the particles have reached the boundaries of the simulation
box. However, the system did not show any signs of melting
throughout the entire simulation. This suggests that at a global
packing fraction of Zg = 0.02, our simulations do not reproduce
the disordered equilibrium fluid observed experimentally by
Larsen and Grier.15,16 This discrepancy suggests that the effec-
tive strength or range reported for the Yukawa potential in
eqn (1) in the experimental system may be overestimated.

The first two frames of Fig. 5(a) show the system before the
colloids reach the boundaries of the simulation box. During
this early stage, particles located near the dilute region are

Table 2 Parameters for the initial configurations of the BD simulations on
a crystal in a slab geometry adjacent to a low-density gas phase, with the
two phases separated by two planar interfaces. The configurations are
characterised by a code Pi, a global packing fraction Zg, initial packing
fraction of the crystal Zi, and the relaxation time t used in the simulations

Code Zg Zi t/td

P1 0.009 0.089215 4
P2 0.009 0.089215 0.4
P3 0.009 0.089215 0.04
P4 0.009 0.089215 0.004
P5 0.02 0.089213 4
P6 0.02 0.089213 0.4
P7 0.02 0.089213 0.04
P8 0.02 0.089213 0.004
P9 0.03 0.089213 4
P10 0.03 0.089213 0.4
P11 0.03 0.089213 0.04
P12 0.03 0.089213 0.004

Fig. 4 Melting behavior of a crystal with an FCC structure in a slab geometry. (a) Initial configuration with particles colored according to their
renormalized charge Z*, as shown by the color bar. The crystal has an initial packing fraction of Zi = 0.089215, and a global packing fraction of Zg = 0.009.
The relaxation time is set to t = 0.04td. This corresponds to simulation P3 of Table 2. (b) Time evolution of the system during expansion of the crystal.
The particle colors represent the probability of belonging to the crystal phase. The images show slices of thickness 10s, centered along the height of the
simulation box with dimensions of approximately 72s � 147s. For visual clarity, all particle radii are set to 0.7s.
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more likely to be assigned to the FCC class probability than
particles farther inward. This is an artifact of the classification
method. Once the system has fully expanded and the particles
form a continuous structure – due to periodic boundary con-
ditions – this artifact vanishes. Fig. 5(b) displays the packing
fraction gradient of simulation P7 at t = 64td. We observe that
the only significant density variation occurs along the direction
of expansion.

While the shapes of the ordered regions in Fig. 4(b) and 5(b)
resemble those observed in the experimental system, we did
not observe any significant density differences between the
ordered and disordered regions. This suggest that additional
factors are likely necessary to explain the coexistence of dense
crystalline and dilute fluid regions reported by Larsen and
Grier.15,16 Nonetheless, our simulations display long-lived
order–disorder coexistence, characterized by islands of FCC-
ordered particles that evolve in shape and drift as a result of the
expansion of the system. These results indicate that not all
features observed in experiments necessarily stem from like-
charge attraction. Moreover, our findings highlight the strong
effect of system size and geometry on the stability and lifetime
of superheated crystals. Although the compressed cubic crystal-
lites discussed in Section 4.2 were initialized at nearly ten times
the density of the crystal in the slab geometry, the latter
maintained ordered regions for substantially longer durations.

4.4 Walls and like-charge attractions

One aspect not addressed in our analysis is the complex inter-
play between walls and colloids. To place our long-box simula-
tions in the broader context of wall-induced like-charge
attraction, we briefly discuss previous studies examining elec-
trostatic and hydrodynamic effects on the effective interactions
of charged colloids near walls.

Many experimental studies have investigated the effective
interaction potential between pairs of colloids, positioned
either near a single plate or confined between two glass
plates.16,92–103 Several of these studies report indications of
like-charge attraction,16,92,94,95,97,98,100–103 although possible
experimental artifacts have also been raised.92,93,100,104 The
most compelling evidence for an attractive potential between
polystyrene particles arises in samples confined between two
glass walls,94,95,98,100–103 where strong confinement was found
to be essential.94,95,101 Studies based on Poisson–Boltzmann
theory showed, however, that the interaction potential between
two like-charged colloids confined within a cylinder remains
strictly repulsive.105–108 Importantly, both the strongly confined
geometry and the cylindrical confinement differ significantly
from that considered in the present work.15,16 The effective
interaction between colloids near a single wall has also been
studied, where it was suggested that planes of colloids may
generate partial confinement, allowing particles to act as walls
for one another and transmit the influence of the container
into the bulk crystal.16,101 While Larsen and Grier16 reported an
attractive interaction potential for polystyrene colloids near a
single wall, these findings have been challenged by subsequent
studies,94,96,97 leaving the existence of such attractions for
polystyrene colloids unclear. In contrast, attractive interactions
have been more consistently observed for weakly acidic silica
colloids.92 Interestingly, for silica systems, the influence of a
single wall decreases with decreasing ionic strength,92,95,99

whereas low-salt conditions are required for stabilizing meta-
stable crystals.15,16 Thus, for polystyrene colloids, confinement-
induced like-charge attractions have been observed only under
strong confinement, whereas for silica colloids, the measured

Fig. 5 Expansion of a crystal in a slab geometry at a global packing
fraction Zg = 0.02, corresponding to simulation P7 of Table 2. (a) The first
four frames show the evolution of the crystalline regions during expansion
of the crystal. (b) Packing fraction gradient across the simulation box at
time t = 64td, with the color bar indicating the local packing fraction Z.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/7
/2

02
6 

10
:3

5:
09

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00713e


8296 |  Soft Matter, 2025, 21, 8284–8299 This journal is © The Royal Society of Chemistry 2025

wall-induced attractions decrease with decreasing salt concen-
tration—contrasting with the low-salt conditions required
to maintain the metastability of superheated crystals. These
observations suggest that confinement-induced attractions
cannot explain the metastability of superheated crystals formed
by polystyrene latex colloids.

Finally, Squires and Brenner18 showed that non-equilibrium
hydrodynamic coupling between a pair of colloids located at a
distance h from a container wall can give rise to an apparent
like-charge attraction. Their analysis assumed constant, uni-
form negative charges on all three objects, with the plate’s
surface charge density treated as a fitting parameter.

Notably, recent observations of like-charge attraction in
samples of large membrane-coated colloids revealed an asym-
metry with respect to the sign of the colloid charge: only
negatively charged colloids exhibited particle clustering.109,110

Further experimental work showed that negatively charged
particles can display like-charge attraction in polar solvents,
whereas positively charged colloids do so in nonpolar
solvents.14 Kubincová et al. attributed this asymmetry to an
electrosolvation effect,13 a conjecture that has since been sup-
ported by further studies reporting promising evidence.111–113

Nonetheless, it remains an open question whether the cases of
like-charge attraction discussed here arise from the same under-
lying mechanisms.

5 Summary and conclusions

In this study, we have performed simulations of charged
colloids, in which the colloid charge was considered as a
dynamically evolving, density-dependent parameter. Using
Poisson–Boltzmann cell theory calculations, we determined
the renormalized and regulated charge as functions of packing
fraction. To capture the non-instantaneous charging behavior
of colloidal surfaces, we introduced a time-dependent differ-
ential equation governing the charging dynamics during the
simulations. This approach was then applied to low-salt sus-
pensions of superheated colloidal crystals. To the best of our
knowledge, this represents the first simulation implementation
of charge-regulating colloids with explicitly density-dependent
charges.

The first series of simulations was initialised by placing a
cubic colloidal crystal next to a colloidal fluid. Although all
simulated crystals eventually melted, their lifetimes were
significantly extended when both density- and time-dependence
were incorporated into the determination of colloid charge and
screening length. More specifically, the simulations revealed two
distinct regimes based on the relaxation time t, relative to the
diffusion timescale td: t 4 td and t o td. Systems with t 4 td

exhibited notably longer crystal lifetimes and are most relevant for
experimental settings where charge regulation is slow. In contrast,
systems with to td, where the relaxation dynamics are effectively
instantaneous, displayed faster melting dynamics. Within
the context of our experimental model system, we observed an
out-of-equilibrium crystal-fluid coexistence lasting at least 46 s.

Additionally, increasing the initial packing fraction of the crystal
further enhanced its stability and lifetime.

In the second set of simulations, a colloidal crystal slab was
positioned adjacent to a low-density colloidal gas phase, with
the two phases separated by two planar interfaces as opposed to
six interfaces in the case of a cubic crystal. As the crystal
expanded, a dynamic coexistence emerged between crystalline
and fluid-like regions, with ordered crystalline domains drift-
ing through surrounding disordered regions of colloids. These
crystalline regions grew in some areas and dissolved in others,
leading to a continuously evolving structure. This non-
equilibrium phase coexistence persisted throughout the entire
simulation duration of t = 135td, closely resembling the hetero-
geneous structures observed by Larsen and Grier.16 However, in
contrast to the experimental observations, our simulations did
not exhibit significant density differences between the crystal-
line and fluid regions, as both phases maintained comparable
local densities. This discrepancy suggests that additional phy-
sical mechanisms are necessary to fully account for the
observed metastability and phase coexistence in charged colloidal
crystals. Furthermore, our results highlight the significant influ-
ence of system size and geometry on the stability and lifetime of
superheated crystals. Although the compressed cubic crystallites
discussed in Section 4.2 were initialized at nearly ten times the
density of the crystal in the slab geometry, the latter sustained
ordered regions for substantially longer timescales.

Altogether, incorporating dynamically evolving, density-
dependent colloidal interactions leads to unexpected dynamic
melting behavior, characterized by long-lived coexistence
between crystalline domains and disordered regions. These
results underscore the importance of conducting more detailed
simulations of systems with density-dependent charging, as
such interactions can give rise to non-intuitive and emergent
out-of-equilibrium phenomena. Notably, our findings depend
on the initial colloid configuration and the charge-regulation
curve used. Changing the surface-charging mechanism under
scrutiny is therefore expected to produce markedly different out-
of-equilibrium responses, offering intriguing possibilities for
tuning colloidal phase behaviour. Finally, we note that meta-
stable crystalline clusters are often explained in terms of effective
like-charge attractions. In contrast, our results show that the
lifetime of metastable crystals can be significantly extended by
the slow relaxation dynamics of surface charges—arising from
charge regulation and charge renormalization—while the colloi-
dal interactions remain purely repulsive. It would be interesting
to further investigate the kinetic relaxation mechanism pre-
sented here in combination with more detailed charge-
regulating Poisson–Boltzmann calculations, in order to capture
the influence of solvent effects and heterogeneous surface
charge distributions on like-charged colloidal interactions.
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J. L. Arauz-Lara, Phys. Rev. E:Stat., Nonlinear, Soft Matter
Phys., 2003, 67, 050403.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/7
/2

02
6 

10
:3

5:
09

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://pubs.rsc.org/en/Content/ArticleLanding/2025/SM/D5SM00713E
https://pubs.rsc.org/en/Content/ArticleLanding/2025/SM/D5SM00713E
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00713e


This journal is © The Royal Society of Chemistry 2025 Soft Matter, 2025, 21, 8284–8299 |  8299

99 S. H. Behrens and D. G. Grier, Phys. Rev. E:Stat., Nonlinear,
Soft Matter Phys., 2001, 64, 050401.

100 K. S. Rao and R. Rajagopalan, Phys. Rev. E:Stat. Phys.,
Plasmas, Fluids, Relat. Interdiscip. Top., 1998, 57, 3227–3233.

101 J. C. Crocker and D. G. Grier, Phys. Rev. Lett., 1996, 77,
1897–1900.

102 M. D. Carbajal-Tinoco, F. Castro-Román and J. L. Arauz-
Lara, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Inter-
discip. Top., 1996, 53, 3745–3749.

103 G. M. Kepler and S. Fraden, Phys. Rev. Lett., 1994, 73,
356–359.
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