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Timely up- or down-regulation of gene expression is crucial for cellular differentiation and function.
While gene upregulation via transcriptional activators has been extensively investigated, gene silencing
remains understudied, especially by modelling. This study employs 3D simulations to study the
biophysics of a chromatin fibre where active transcription factors compete with repressors for binding
to transcription units along the fibre, and investigates how different silencing mechanisms affect 3D
chromatin structure and transcription. We examine three gene silencing feedback mechanisms: positive,
negative, and neutral. These mechanisms capture different silencing pathways observed or proposed in
biological systems. Our findings reveal that, whilst all mechanisms lead to a silencing transition, the

Received 3rd July 2025, signatures of this transition depend on the choice of the feedback. The latter controls the morphologies

Accepted 23rd July 2025 of the emergent 3D transcription factor clusters, the average gene expression and its variability, or gene
noise, and the network of ensuing correlations between activities of neighbouring transcription units.

These results provide insights into the biophysics of gene silencing, as well as into the interplay between
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1 Introduction

During interphase, chromatin, the fibre composed of DNA and
histone proteins, is transcribed into mRNA, which in turn
provides the template to assemble proteins.' Although the
whole genetic material is present in every cell, only a subset
of genes is transcribed in each cell type, leading to what is
known as cellular differentiation.” Experiments investigating
how transcription is orchestrated keep exposing exciting chal-
lenges to address and new questions to answer.>* A leitmotif is
the apparent link between the regulation of gene expression
and 3D chromatin organisation. The advance of experimental
techniques has allowed to find indirect evidence for this
connection.””

Hi-C experiments, detecting contacts between distant geno-
mic loci,® have revealed the presence of topologically associat-
ing domains - usually sub-megabase chromatin regions
enriched in self interactions - that often contain co-regulated
genes.®® At a larger scale, chromatin is organised into A and B
compartments, which closely correspond to euchromatin and
heterochromatin regions first observed by optical microscopy
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transcriptional regulation and 3D genome organisation.

in the 1930s.'° Heterochromatin, typically located at the nu-
clear periphery, appears as highly condensed chromatin, whereas
euchromatin, generally occupying more central regions of the
nucleus, is less compact. It is now established that euchromatin,
being more accessible to transcription factors and RNA poly-
merases, predominantly contains actively transcribed genes, while
genes within heterochromatin domains are largely associated with
transcriptional repression.™

Gene transcription - initiated and maintained by interac-
tions between RNA polymerases, active transcription factors,
and chromatin elements such as promoters and enhancers'>"* -
has been extensively investigated both experimentally'*™® and
through theoretical modeling."”™*® In contrast, comparatively less
is known about gene silencing - the mechanisms by which gene
transcription is turned off.>

In bacteria, gene silencing is typically mediated by transcrip-
tion repressor proteins that inhibit gene expression by binding
to the operator, a specific genomic region located near the
promoter. This binding prevents RNA polymerase from acces-
sing the promoter, thereby blocking transcription.”* A well-
known example is provided by the lac operon repressor, which,
in the absence of lactose, hinders the loading of RNA poly-
merases on lac operon promoter.>?

In eukaryotes, transcription silencing is more convoluted
and it encompasses a wide spectrum of mechanisms. First,
eukaryotic gene silencing can be achieved through regulatory
elements known as silencers, which serve as binding sites for
repressor proteins." When a repressor binds to a proximal
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silencer - located near a gene promoter - it reduces the likelihood
of RNA polymerase loading onto the promoter, analogous to
transcription repression in bacteria.>® Alternatively, an eukaryote
repressor may simultaneously bind to a distal silencer and to a
promoter, resulting in the promoter becoming inaccessible to RNA
polymerase and other activator proteins.”* Second, eukaryotes can
repress transcription by means of local alterations in chromatin
structure.?*?*2¢ ChIP-seq techniques have shown that specific DNA
and histone modifications, known as epigenetic marks, are closely
associated with distinct chromatin states. For example, trimethyla-
tion of histone H3 on lysine 27 (H3K27me3) is linked to hetero-
chromatin formation, whereas histone H3 lysine 27 acetylation
(H3K27ac) tags more accessible and transcriptionally active chro-
matin regions. Gene silencing can thus be mediated by the
deposition and removal of these epigenetic marks, often carried
out by corepressor complexes — protein assemblies recruited to
chromatin by intermediate proteins - that function as epigenetic
writers.”” For instance, histone acetyl groups are removed by
protein complexes carrying the enzymes HDAC1 and HDAC2,*®
such as the corepressor coREST, which is recruited to chromatin
via interaction with transcription factors like REST.*

Although the importance of eukaryotic gene silencing, alongside
activation, is now emerging through new experimental findings,***"
a mechanistic understanding of the balance between positive and
negative transcription regulation remains elusive.*>** Little is known
about the quantitative impact of different repression mechanisms
on gene activity and how they may alter the 3D structure of active
chromatin, for example, by disrupting transcription factories —
clusters of active RNA polymerases and associated transcription
factors.>>**

To gain new insights into the biophysical mechanisms of gene
silencing, here we develop a polymer model based on 3D coarse-
grained molecular dynamics simulations. In our framework, chro-
matin is represented as a polymer interacting with diffusing active
and repressive transcription factors, enabling us to investigate how
distinct silencing mechanisms affect the composition of transcrip-
tion factor clusters and, consequently, gene expression. Although
our approach is based on a simplified toy model that includes only
essential components, it is important to note that models similar
in spirit to ours - based on sequence and average epigenetic
marks - have been successfully used in the past to explain the
formation of transcription factories, and to predict chromatin loops
and contact maps consistent with experiments."”****> Compared to
these earlier models, ours includes dynamic deposition and
removal of repressive epigenetic marks. This allows us to explore,
for the first time, the interplay between active transcription factors
and repressors in a unified, dynamic setting. Our findings offer
predictions that may inform future experiments and guide the
development of more sophisticated models investigating the
spatio-temporal dynamics of transcription.

2 Model

Chromatin is depicted as a coarse-grained polymer, whose
beads are assumed to contain 1-3 kbp each, corresponding to
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43 Consecutive beads are

a bead diameter ¢ ~ 20-30 nm.
connected via spring potentials and an additional Kratky-
Porod-like potential applied to triplets of consecutive beads is
used to endow the filament with a persistence length. The
chromatin polymer is initially composed of two types of beads
representing non-specific sites and active transcription units,
TUs (grey and orange beads in Fig. 1(C)). The latter can be
thought of as gene promoters or enhancers. For the sake of
comparison, we consider the same 1000 beads long polymer
chain as in ref. 17 and 42 with 39 TUs placed randomly as
depicted in Fig. 1(A). Transcription factors (TFs), which are
simulated as additional spheres diffusing in the system and
interacting with chromatin, are divided into active and repres-
sive (red and green beads in Fig. 1). The latter have the ability of
silencing a TU they are bound to with a given probability ps,
generating a repressed TU (blue beads in Fig. 1), which can
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Fig. 1 (A) Initial polymer bead sequence. Orange and gray lines denote
the location of active TUs and unmarked chromatin sites respectively.
Bead ID number ranges between 1 and 1000. (B) Sketch of the ON-OFF
dynamics of active (red) and repressive (green) TFs occurring with switch-
ing rates oon = oof. TFS in the OFF state only interact sterically with the
chromatin filament. Interactions between chromatin and ON TFs depend
on the silencing feedback mechanism. (C)—(E) Schematic representation
of the three silencing models (positive, negative and neutral feedback). The
chromatin filament is represented as a polymer formed by a sequence of
connected beads. Active and repressed TUs are depicted as orange and
blue beads respectively, while unmarked chromatin is represented by gray
beads. ON and OFF active (repressive) TFs are instead depicted as dark and
light red (green) beads respectively. Thicker and thinner arrows denote
strong and weak attractive interactions. In the positive feedback model
(panel (C)) repressive ON TFs are strongly attracted to both active and
repressed TUs, and weakly to unmarked chromatin beads. In the negative
feedback model (panel (D)) repressive ON TFs are strongly attracted only
to active TUs, while in neutral feedback (panel (E)) they are weakly
attracted to the whole chromatin filament. In all three feedback mechan-
isms active TFs are strongly attracted to active TUs and experience a weak
attraction to repressed TUs and unmarked chromatin.

This journal is © The Royal Society of Chemistry 2025
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revert back to an active TU after a time tg. As depicted in
Fig. 1(B), both active and repressive TFs switch back and forth
between an ON and OFF state at rates o, = oo With a
probability pgwitch. Similarly to ref. 17 and 42, we consider
40 active TFs and as many repressive TFs, with 20 of them
initially in the initial ON state and the remaining in the OFF
state. Although varying the concentration of TFs is known to
influence chromatin spatial organisation®* and the transcrip-
tional profiles of TUs,** in this work we employ a number of
active TFs comparable to the number of TUs. This choice
promotes competition for TF binding, resulting in non-trivial
and spatially heterogeneous transcriptional activity profiles.*>
When in the OFF state, active and repressive TFs experience a
purely steric interaction with the whole chromatin filament.
Active ON TFs are strongly attracted to active TUs and weakly to
all other chromatin beads (non-specific sites and repressed
TUs). The interaction between repressive ON TFs and chroma-
tin depends instead on the transcriptional feedback we simu-
late. We consider three different schemes, or transcriptional
feedbacks, each modelling a different silencing mechanism.

In the positive feedback model (Fig. 1(C)), repressive ON TFs
experience a strong affinity for both active and repressed TUs,
while displaying a weaker attraction to non-specific binding
sites. This represents a color and stick scenario, wherein
repressive TFs bind to active TUs, repress them and subse-
quently maintain a high affinity for repressed TUs. As a result,
the latter are less likely to regain accessibility and to become
attractive to active TFs. This mechanism is analogous to the
repression observed in bacteria, where a repressor physically
obstructs the binding of RNA polymerase to promoter regions.

The negative feedback model (Fig. 1(D)) involves repressive
ON TFs sterically interacting with the majority of chromatin
beads, with the exception of active TUs, to which they bind with
high affinity. This corresponds to a color and flee scenario, as
repressive TFs typically detach from chromatin after silencing
active TUs (and hence turning them into inactive TUs). This
feedback simulates the action of proteins that modulate chro-
matin accessibility and are commonly associated with repres-
sors. An example is the previously mentioned corepressor
COREST, which carries the enzymes HDAC1 and HDCA2, lead-
ing to the removal of acetylations marks and, consequently,
chromatin compaction and transcription repression.

Finally, in the neutral feedback model (Fig. 1(E)), repressive
ON TFs are weakly attracted to the entire chromatin filament,
regardless of bead type. This represents a color and linger
scenario, in which repressive TFs keep hanging around the
chromatin chain, sliding along it, even after silencing active
TUs. This mechanism simulates an alternative mode of inter-
action for corepressors involved in deacetylation, which may
display low rather than no affinity for unmarked chromatin and
repressed TUSs.

We will now investigate the effects of these three mechan-
isms on 3D chromatin organisation and transcriptional activity.
The simulation box we consider is large enough to ensure that
the system is dilute. Additional details about the model and its
implementation, parameter choice and mapping to physical
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units, and finally the sampling of observables are reported in
the SL.*

3 Results

3.1 Size and composition of clusters of transcription factors

Since simulated transcription factors represent complexes of
proteins and RNA polymerases, we model them as multivalent
spheres capable of simultaneously binding to multiple chro-
matin loci, thereby forming bridges. Notably, their multivalent
nature, combined with their ability to engage in both weak and
strong attractive interactions with the chromatin polymer,
drives the spontaneous formation of TF clusters through a
mechanism known as bridging-induced phase separation
(BIPS).*** In a simplified scenario, when a multivalent TF,
attracted to the entire chromatin filament, binds to a chroma-
tin bead, it induces a local increase in chromatin density by
attracting additional nearby chromatin beads. This process, in
turn, facilitates the binding of additional TFs in the vicinity of
the initial TF, where the density of chromatin binding sites has
increased, leading to the formation of a TF cluster.

The formation and composition of TF clusters appear to be
significantly affected by both the silencing mechanism
assumed in the model and the silencing probability p.
Fig. 2(A) and (B) illustrates representative cluster structures
observed under low and high p, conditions across the three
transcriptional feedback mechanisms. At low pg values, only a
few TUs are repressed, resulting in cluster composition being
primarily determined by interactions between TFs and active
TUs. In the color and stick model, active and repressive
TFs experience the same attraction with active TUs and non-
specific chromatin beads, leading them to form mix clusters
(Fig. 2(A-i)). In the other two mechanisms, TFs still aggregate
around active TUs, but active and repressive TFs no longer mix.
In the color and flee scenario, active TFs bind both to active TUs
(strongly) and unmarked chromatin sites (weakly), while repres-
sive TFs only bind to active TUs: as a result, repressive TFs are
driven to cluster cores, which are enriched in TUs, while active
TFs localize at outer shells of clusters, where they can bind both
TUs and the nearby unmarked chromatin (see Fig. 2(A-ii)).
Conversely, in the color and linger mechanism, repressive
TFs exhibit only weak attraction to active TUs, driving them
to the outer layer of the TF clusters (Fig. 2(A-iii)).

A sharp increase in the silencing probability ps results in a
significantly larger number of repressed TUs. In the color and
stick mechanism, the composition of clusters undergoes a
notable shift: since active and repressive TFs experience weak
and strong interactions with repressed TUs respectively, active
TFs now relocate to the outer shell of TF clusters, while
repressive TFs form the cluster core (Fig. 2(B-i)). Furthermore,
active TFs are less likely to remain stably bound to a cluster,
leading to a decrease in the average size of clusters formed by
active TFs as pg increases (Fig. 2(C-i)). In the color and flee
scenario, clusters are primarily composed of active TFs, as
repressive TFs dissociate from the chromatin filament after it

Soft Matter, 2025, 21, 6975-6983 | 6977
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Fig. 2 (A) Simulation snapshots showing the typical 3D arrangement of the chromatin filament and TF cluster structure (insets) at low silencing

probability (ps = 10™%). Panels (i), (ii) and (i) refer to the three silencing mechanisms assumed in the models (positive, negative and neutral feedback
respectively). (B) Typical simulation snapshots for the positive, negative and neutral feedback ((i)—(iii)) at high silencing probability (ps = 0.05 in (i) and (iii),
ps = 0.1in (ii). (C) Average size of clusters formed by active TFs over time for the the positive (panel (i)), negative (panel (i) and neutral (panel (iii)) feedback

models. The darker the curve, the higher the silencing probability ps it represents.

is recolored (Fig. 2(B-ii)). However, the reduction in active TUs
sites leads to a decrease in the number of active TF clusters and
a concomitant increase in their average size (Fig. 2(C-ii)).
Finally, the color and linger mechanism combined with a high
number of repressed TUs (i.e., high p) involves similar attrac-
tive interactions between the chromatin filament and both
active and repressive TFs, which then form mixed clusters.
Here, the weak attraction between (active and repressive) TFs
and the repressed TUs, combined with the strong interaction
between active TFs and remaining active TUs is sufficient to
maintain the active clusters stable (Fig. 2(C-iii)).

3.2 The silencing transition

As previously mentioned, the spatial arrangement of chromatin
in 3D is closely linked to the transcriptional activity. There-
fore, it is not surprising that the variety of structures and
compositions of TF clusters observed in our simulations
correlates with differences in the transcription levels of active
transcription units.

6978 | Soft Matter, 2025, 21, 6975-6983

From a simulation perspective, the transcription activity of
an active TU can be predicted by measuring the fraction of time
the TU is bound by an active TF." In Fig. 3(A), the transcription
activity (a), averaged over all active TUs in the chromatin fibre,
is plotted as a function of ps for the three transcriptional
feedback cases. The three curves show a sharp decrease in (a)
for critical values of p, between 10~ and 102, which we refer to
as the silencing transition. At low silencing probabilities, the
positive feedback model (color and stick) exhibits the highest
transcriptional activity, reflecting the formation of large clus-
ters composed of both active and repressive TFs, which incor-
porate multiple active TUs and enhance their transcription
activity (see Fig. S2 in SI). On the other hand, the neutral
feedback model (color and linger) shows the lowest activity at
small pg, as the repressive TF outer shell in the clusters prevents
nearby active TUs from joining the cluster and contributing to
the overall activity (see Fig. 2(A-iii)). Interestingly, after the
silencing transition - at higher p, values - the negative feedback
model (color and flee) displays the highest activity, reflecting
the formation of larger clusters of active TFs (Fig. 2(C-ii)).

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 (A) Average transcriptional activity of active TUs (a) versus silencing probability ps for the positive (blue curve), negative (red curve) and neutral

(green curve) feedback mechanisms. For each value of ps and for each feedback case, (a) values are obtained by first computing the average of the
activity of each TU over 100 independent simulations, (aty), and then averaging the values of (aty) over the different TUs. All three silencing mechanisms
show a drop in (a) above a critical ps, lying between 1073 and 10~2. We refer to this phenomenon as the silencing transition. (B) Kymographs of a single
representative run with ps = 1072 for the positive (panel (), negative (panel (ii)) and neutral (panel (iii) feedback case. In the y-axis the ID number of each
of the 39 TUs in the chromatin chain is reported (the ID number ranges between 1 and 1000 as the chromatin polymer is composed of 1000 beads). Time
is shown in the x-axis. Black, yellow and red pixels denote the transcriptional state of a specific TU at a certain time point. Black pixels refer to OFF TUs,
yellow pixels refer to non-transcribing ON TUs (i.e. ON TUs without any active TF close by), while red pixels correspond to actively transcribing ON TUs.
(C) "Boomerang plots"*® showing the variance of the activity o, 1y versus the average activity (atu) for each TU of the chromatin filament. Darker spots
represent larger ps values. Averages and variances are computed over 100 independent simulations. Panels (i), (ii) and (iii) refer to the three silencing

mechanisms (positive, negative and neutral feedback respectively).

In contrast, the positive feedback model undergoes a sharp
silencing transition, as the large clusters of both active and
repressive TFs observed at small pg dissolve, giving rise to
clusters composed mainly of repressive TFs (see Fig. 2(B-i)).
In all cases, therefore, the average transcriptional activity can
be understood by inspecting the composition and size of TF
clusters, providing another example of a link between 3D
chromatin structure and transcription.

Besides having an effect on the average transcription activity
among all TUs, the three different transcriptional feedback
mechanisms yield notable differences on single TU transcrip-
tional activity (see Fig. S3 in SI) and on transcription noise
(or variability). Kymographs — graphical representations captur-
ing the temporal evolution of a spatial profile — reported in
Fig. 3(B) show the activity state of each TU after the silencing
transition (p; = 102). Black, yellow and red pixels respectively
correspond to repressed TUs, active non-transcribing TUs (i.e.,
without an active TF close by) and active transcribing TUs. The

This journal is © The Royal Society of Chemistry 2025

latter are clearly more frequent in the negative feedback, where
larger clusters of active TFs form enhancing the activity. More
kymographs at different pg are reported in Fig. S4. A quantifica-
tion of the transcriptional variability of single TUs is instead
shown in Fig. 3(C). The variability is normally referred to as
transcriptional noise,*® and provides an indication about how
the activity of a single TU changes from cell to cell, because, for
instance, of molecular events such as binding-unbinding of
TFs, or due to the variability of TF concentration inside a
cell.*>*® From a simulation point of view, the noise of a given
TU, o1y, is computed as the standard deviation of its activity
averaged over independent simulations. As each simulation
can be thought as representing a single cell, the transcriptional
noise obtained from a set of simulations can be related to the
variation of transcriptional activity that would be observed in a
cell population. By plotting ary versus (ary) for each TU and at
different values of pg, we obtained what we call a boomerang
plot*® (Fig. 3(C)). For the three mechanisms, the activity is

Soft Matter, 2025, 21, 6975-6983 | 6979


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00686d

Open Access Article. Published on 06 August 2025. Downloaded on 10/8/2025 4:15:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

-1
ps=10
391 — 391~

.’.,A-'-.%- -.y.. -u.ﬁl

p=10"  p=102

ps=1 o*

positive

negative

neutral

Fig. 4 TU correlation networks for five values of ps (columns) in the
positive, negative and neutral feedback mechanism (top, middle and
bottom row respectively). The complete networks consist of n = 39
individual TUs. TUs from first to last are shown as peripheral nodes and
run clockwise from top. Blue and green edges respectively denote positive
and negative correlations above a threshold of 0.25, corresponding to a
p-value ~2 x 1072, We show in the SI,*® that most of the interactions
(edges) are statistically significant.

larger for small values of p, — as TUs are more likely to be active
and transcribing - and it decreases with the increase of the
silencing probability. Interestingly, in the color and stick and
color and linger models, the noise o1y reaches its maximum
close to the silencing transition - this is similar to what is
expected to happen near a phase transition, where fluctuations
peak. In the color and flee feedback, instead, oy remains high
even after the transition (for p; > 10~?), as the lack of attraction
between repressive TFs and repressed TUs does not favour the
formation of repressive TF clusters around repressed TUs,
which can then easily revert back to an active state, increasing
the transcription variability (Fig. 3(C-ii)).

3.3 Silencing-induced patterns of transcriptional correlations

Fig. 3 shows that the silencing transition is accompanied by the
changes in structure and composition of TF clusters observed
while varying p; in Fig. 2. But this is not the whole story: as we
shall see, the silencing transition also drives a change in the
spatiotemporal patterns of transcription of different TUs.

This phenomenon can be see from Fig. 4, where red dots
represent the different TUs composing the chromatin chain,
while blue and green lines connecting two TUs indicate a
positive and negative correlation between their transcription
activity, respectively (the Pearson correlation matrices used to
obtain Fig. 4 are shown in Fig. S5). The emerging correlation
networks are visibly affected by the value of py, i.e. by the point
along the silencing transition in Fig. 3(A). For the three feed-
back scenarios, a small pg results in the formation of mostly
positive short range correlations, due to the formation of
clusters of active TFs, and negative long range correlations,
unveiling the competition between active TUs for a finite
number of active TFs. This is similar to the multicolour model
studied in ref. 18, where no epigenetic feedback was
considered.
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However, the trend of correlation networks is different in the
three feedback scenarios as the system goes through the silen-
cing transition. First, in the positive feedback (color and stick)
model, positive short range correlations fade away while
approaching the transition, and reappear again at high values
of ps. At ps =9 x 107", positive correlations are observed at both
short and long range, indicating that these are generated by the
formation of stable clusters of repressive TFs which switch off
the transcription activity of the TUs they bind to. In the positive
feedback case, then, the positive correlations we observe are
related to clusters of active TUs before the silencing transition
(small pg) and to clusters of repressed TUs after it (high p;).
Second, in the negative feedback (color and flee) model,
positive short range correlations also disappear while going
through the transition and form again at high ps, but in this
case they are always led (at any value of pg) by the formation of
clusters of active TFs which results in negative long range
correlations. Finally, in the neutral feedback (color and linger)
model, after the transition TUs are mainly positively correlated,
both at short and long range.

4 Conclusions

In summary, we have presented a new model coupling 3D
chromatin structure to transcriptional silencing, to investigate
the potential mechanisms of eukaryotic gene repression, and
the signatures they leave on quantities which can in principle
be measured experimentally, such as average gene expression,
transcription factory composition, and emergent transcrip-
tional correlation networks. Our model includes two species
of transcription factors, one promoting gene transcription
(active TFs) and the other promoting gene silencing (repressive
TFs). Through 3D coarse grained molecular dynamics simula-
tions, we have shown that different silencing mechanisms
influence the nature of the silencing transition, as well as the
size and composition of the emergent clusters of transcription
factors. First, a positive feedback (color and stick) silencing
mechanism, through which repressors bind and modify tran-
scription units, results in a silencing transition, from mixed
clusters of active TFs and repressors to silenced clusters of
tightly-bound repressors which prevent gene activation. Sec-
ond, a negative feedback (color and flee) silencing mechanism,
through which repressors bind strongly active transcription
units but do not bind at all inactive ones, gives a silencing
transition accompanied by the formation of significantly fewer,
albeit larger, active TF clusters. Finally, a neutral feedback
(color and linger) silencing mechanism, through which repres-
sors inactivate transcription units without binding them
strongly, leads to a shallower silencing transition between
active and mixed clusters of similar size.

We also find that the variability in the transcriptional
activity of single genes, also known as transcriptional noise,
is maximum near the silencing transition for the positive and
neutral feedbac: this is because TUs are more likely to switch
back and forth between an active and silenced state close to the

This journal is © The Royal Society of Chemistry 2025
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critical point (Fig. 3(C)). Instead, in the negative feedback
model, which may be appropriate to the case of eukaryotic
co-repressors containing writers or erasers of epigenetic marks,
the lack of non-specific interactions between chromatin and
silencing protein complexes results in a large noise even after
the silencing transition. The control of transcriptional noise is
important in differentiation, as controlling the variability of
expression may enable cells to adapt gene expression during
development or in response to environmental signals.

Finally, the three silencing feedback mechanisms investi-
gated in this work also shape the network of correlations
between the activity of different TUs: following the silencing
transition, long-range correlations become positive in the posi-
tive feedback model, while they keep being negative in the
negative feedback model, where the absence of non-specific
interactions is once again key (Fig. 4).

In the future, it would be interesting to include the action of
repressors into more complex and realistic chromatin models,
such as the HiP-HoP model,°>*' which incorporate more
chromatin compaction levels depending on epigenetic marks
and the action of cohesin-driven loop extrusion.'®*® By inves-
tigating the correlation of simulated gene activity with experi-
mental data inferred from GRO-seq or RNA-seq methods'**? it
should be possible to gain a deeper understanding of the
importance played by silencers in gene expression and chro-
matin architecture. Additionally, experiments involving live-cell
imaging providing information about the binding sites of
silencer complexes could help test our findings which relate
gene activity to TF cluster composition.
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