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Sedimentation equilibrium as a probe of the
pressure equation of state of active colloids

Yunhee Choi, †a Elijah Schiltz-Rouse, †a Parvin Bayati †a and
Stewart A. Mallory *ab

We introduce a theoretical and computational framework for extracting the pressure equation of state

(EoS) of an active suspension from its steady-state sedimentation profile. As EoSs are prerequisites for

many theories in active matter, determining how pressure depends on key parameters such as density,

activity, and interparticle interactions is essential to make quantitative predictions relevant to materials

design and engineering applications. Focusing on the one-dimensional active Brownian particle

(1D-ABP) model, we show that the pressure measured in a homogeneous periodic system can be

recovered from the spatial profiles established in sedimentation equilibrium. Our approach is based on

exact mechanical considerations and provides a direct route for determining pressure from

experimentally measurable quantities. This work compares sedimentation-derived equations of state

with those obtained from periodic simulations, establishing a foundation for using sedimentation as a

generic tool to characterize the behavior of active suspensions.

Introduction

Sedimentation equilibrium is one of the most powerful and
enduring methods for probing the physical properties of colloi-
dal suspensions.1,2 In a typical experimental setup, micron-sized
particles sediment under gravity in a confined container, produ-
cing an inhomogeneous steady-state density profile. Equilibrium
is achieved when osmotic pressure gradients exactly balance
gravitational settling, allowing direct access to the system’s
mechanical properties and interparticle interactions.3,4

Historically, this approach played a central role in establish-
ing the statistical thermodynamics of colloids.5 Perrin’s semi-
nal work showed that the sedimentation profile of colloidal
particles follows a Boltzmann distribution, enabling one of the
first quantitative estimates of Avogadro’s number.1 Ultimately,
this early work gave irrefutable evidence for the atomic hypoth-
esis and the discrete nature of matter.6 Later, theoretical
developments further revealed that sedimentation profiles
encode the mechanical equation of state (EoS), linking local
density to pressure. This insight enabled precise determination
of the pressure EoS and facilitated characterization of inter-
particle interactions across a wide range of passive colloidal
systems.7–14 Together, these contributions underscore the

versatility of sedimentation equilibrium as a fundamental tool
in soft matter research. However, extending this framework to
active suspensions remains a significant challenge.

Active colloids, including catalytic Janus particles,15–20

motile bacteria,21–26 and active droplets,27–31 are micron-size
particles that can convert environmental or chemical energy
into directed motion, violating the principle of detailed balance
and thermodynamic equilibrium at a single particle level. At a
macroscopic and collective level, active suspensions evolve toward
nonequilibrium steady states. As a result, standard tools of equili-
brium statistical mechanics no longer apply. Nonetheless, equa-
tions of state have become central to theoretical studies of active
matter, informing our understanding of motility-induced phase
separation, anomalous transport, and collective dynamics.32–47

This is largely because pressure is a mechanical quantity that
remains well-defined in nonequilibrium systems.48–55 In simulation,
pressure is typically computed for homogeneous active systems
using virial-like expressions incorporating interparticle forces and
persistent self-propulsion. While the sedimentation of active col-
loids has received considerable attention,56–79 a quantitative link
between sedimentation profiles and the pressure measured in bulk
homogeneous systems has yet to be firmly established.

Focusing on the one-dimensional active Brownian particle
(1D-ABP) model with purely repulsive interactions, we develop an
exact theoretical framework that relates the sedimentation profile
to the mechanical equation of state measured in periodic simula-
tions. We identify the distinct contributions to the pressure from
the local force balance and compare sedimentation-derived
results to bulk simulations across a range of system parameters.
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This comparison serves as proof of concept for using sedimenta-
tion as a practical tool to extract pressure EoSs in active matter.
Our findings lay the groundwork for extending this approach to
higher-dimensional systems and experimental realizations.

Passive sedimentation equilibrium

We begin by outlining the standard procedure for extracting the
mechanical EoS of a passive colloidal suspension from its
steady-state sedimentation profile.2 This framework is illu-
strated schematically in Fig. 1, which shows how a measured
local number density profile r(z), when combined with the
appropriate force balance, yields the corresponding spatial
profile of the osmotic pressure P(z). Eliminating the vertical
coordinate z between these two quantities allows one to obtain
the homogeneous equation of state P(r). The remainder of this
section details this approach and demonstrates its equivalence
to the virial route commonly used in periodic systems.

As shown in Fig. 1, we consider a system of N passive spherical
colloidal particles suspended in a solvent at temperature T, con-
fined between two horizontal walls at z = 0 and z = L. Each particle
undergoes Brownian motion and interacts with other particles via
an isotropic pair potential. In addition, all particles experience a
weak gravitational force of strength Fg acting in the negative z-
direction. By symmetry, the system is translationally invariant in
the xy-plane, and we define the local number density as

rðzÞ ¼ 1

A

XN
i¼1

d z� zið Þ
* +

; (1)

where A is the cross-sectional area perpendicular to the direction of
gravity and zi is the vertical position of particle i. The density
profile satisfies the normalization conditionðL

0

rðzÞdz ¼ rs; (2)

where rs = N/A is the bulk cross-sectional number density.

Generally, the temporal and spatial evolution of the local
number density r(z) is governed by coupled conservation
equations for mass and momentum. Derivations of these
governing equations for colloidal systems can be found in
several standard texts.80–82 Here, we focus on the steady-state
behavior, where the density profile is time-independent and
determined by the local mechanical force balance

qzszz(z) + bz(z) = 0, (3)

where szz(z) is the zz-component of the stress tensor and bz(z) is
the z-component of the body force density. In simple terms,
eqn (3) states that external body forces due to gravity or
confinement are locally balanced by osmotic stress gradients.

In the limit of weak inhomogeneity, where the density varies
slowly with z, a local density approximation (LDA) is appro-
priate, and the stress can be expressed as szz(z) = �P(z), where
P(z) is the osmotic pressure in the z-direction.7 For passive
colloidal suspensions, the osmotic pressure consists of thermal
and interaction contributions:

P(z) = Pb(z) + Pc(z) = r(z)kBT + Pc(z), (4)

where Pb(z) = r(z)kBT is the thermal (Brownian) pressure, and
Pc(z) is the interaction pressure. The body force density
accounts for gravity and confinement:

bz(z) = Fgr(z) + Fw(z)r(z), (5)

where Fw(z) is the force the confining walls exert. For short-
ranged, strongly repulsive boundaries, the wall contribution
can be approximated as

Fw(z)r(z) E pbotd(z) � ptopd(z � L), (6)

where pbot and ptop are the mechanical pressures on the bottom
and top walls, respectively. Substituting these expressions into
the force balance [eqn (3)] yields

�qzP(z) + Fgr(z) + pbotd(z) � ptopd(z � L) = 0. (7)

Fig. 1 Schematic for determining the equation of state (EoS) from the sedimentation profile of a passive colloidal suspension. (left) Spherical colloidal
particles sediment under the presence of a gravitational force Fg in a container of height L, establishing a steady-state inhomogeneous density profile.
Colored horizontal lines denote reference heights associated with distinct local densities. (middle) The density profile r(z) (blue) decreases with height,
and the corresponding pressure profile P(z) (red) is obtained via integration of the force balance [eqn (7)]. (right) Combining the density and pressure
profiles yields the mechanical equation of state P(r). Snapshots show periodic systems with densities matching those at the marked heights in the
sedimentation system, demonstrating equivalence between local sedimentation pressure and bulk pressure in homogeneous periodic systems.
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Integrating eqn (7) across the full domain z A (�N, N)
gives the well-known result for the total pressure difference
between walls:

Dp = pbot � ptop = �Fgrs. (8)

In most experimental settings, the container is tall enough
that no particles accumulate at the top wall, allowing the
simplification ptop = 0. With knowledge of the density profile
r(z), the pressure at any height 0 o z0 o L can be obtained by
integrating eqn (7):

Pðz0Þ ¼ Fg

ðz0
1
rðzÞdz: (9)

The interaction contribution to the pressure then follows by
substituting eqn (4) into eqn (9):

Pcðz0Þ ¼ �rðz0ÞkBT þ Fg

ðz0
1
rðzÞdz: (10)

The integration limits in eqn (9) and (10), and throughout
the remainder of the manuscript, are written as (�N, +N) for
consistency with the mathematical framework used in the
derivation, particularly the treatment of the Dirac delta func-
tion representing the rigid walls. Physically, particles are con-
fined to the domain z A [0,L], and the density r(z), along with
the pressure P(z), vanishes outside this range. The procedure
outlined above (see Fig. 1) provides a direct method for extract-
ing the pressure equation of state P(r) from the steady-state
density profiles of a sedimenting passive colloidal system.

It is useful to compare these results to the bulk pressure
obtained for a homogeneous system of N particles in a volume
V with periodic boundary conditions. In such systems, the total
pressure is typically computed using the microscopic virial
expression:83–86

PðrÞ ¼ PbðrÞ þPcðrÞ ¼ rkBT þ
1

3V

XN
i¼1

ri � Fi

* +

¼ rkBT þ
1

3V

X
io j

rij � Fij

* +
;

(11)

where r = N/V is the bulk number density, ri is the position of
particle i, and Fi is the net force on particle i from all other

particles. The first term represents the Brownian contribution,
while the second term accounts for interparticle interactions.
The second line follows from assuming pairwise additive
forces, where rij = ri � rj and Fij is the force exerted by particle
j on particle i. The various pressure components measured in a
periodic system should agree with those extracted from the
sedimentation profile under the local density approximation.
For clarity, all relevant expressions for pressure are summar-
ized in Table 1.

1D-ABP model

To investigate if a similar procedure can be applied to active
colloids, we consider two variants of a one-dimensional active
Brownian particle (1D-ABP) model, illustrated in Fig. 2. This
minimal model captures the essential features of self-
propulsion and interparticle interactions while remaining ana-
lytically and computationally tractable. Moreover, its phase
behavior and phenomenology are well characterized in prior
studies.87,88 Although we focus on this 1D geometry, the
theoretical framework presented is readily extendable to
higher-dimensional active systems.

In both system variants, N active Brownian disks are con-
fined to a narrow channel of length L. The channel width is
small enough to prevent particle overtaking, enforcing single-
file motion and effectively reducing the dynamics to one

Table 1 Comparison of expressions for pressure components in sedimentation and periodic systems of passive colloidal suspensions. The table
summarizes how total, Brownian, and collisional pressures are computed in each geometry. In sedimentation systems, pressure arises from integrating
the density profile under gravity, whereas in periodic systems, pressure is determined from bulk properties using virial expressions

Sedimentation system Periodic system

Total pressure Pðz0Þ ¼ Fg

Ð z0
1rðzÞdz P ¼ rkBT þ

1

3V

P
io j

rij � Fij

* +

Brownian pressure Pb(z) = r(z)kBT Pb = rkBT

Collisional pressure Pcðz0Þ ¼ �rðz0ÞkBT þ Fg

Ð z0
1rðzÞdz Pc ¼

1

3V

P
io j

rij � Fij

* +

Fig. 2 Schematic of the one-dimensional active Brownian particle (1D-
ABP) model studied in this work. In both geometries, particles are confined
to a narrow channel that enforces single-file motion and experience a self-
propulsion force Fa = gUa cos y along their orientation. (a) In the periodic
system, particles move on a closed loop without external potential. (b) In
the sedimentation geometry, particles are confined by hard walls and
subject to a constant gravitational force Fg.
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dimension. The first variant [Fig. 2a] employs periodic bound-
ary conditions and represents a homogeneous, bulk system.
The second variant [Fig. 2b] consists of a finite channel
bounded by rigid walls, with particles subject to a constant
gravitational force Fg acting in the negative x-direction.

In both geometries, each particle experiences a self-propulsion
force Fa = gUa cosy, where g is the translational drag coefficient, Ua

is the propulsion speed, and y is the angle between the particle’s
orientation and the x-axis. The orientation undergoes rotational
diffusion in the plane perpendicular to the channel, with a
characteristic reorientation time tR. Neglecting translational
Brownian motion and hydrodynamic interactions, the over-
damped Langevin equations governing the particle dynamics are

_x ¼ Ua cos yþ
1

g
Fc þ Fg þ Fw

� �
; (12a)

_y = x(t), (12b)

where Fc is the interparticle collision force, Fw is the force from
the channel walls, and Fg is the gravitational force. Both Fc and
Fw are derived from a short-ranged, purely repulsive Weeks–
Chandler–Andersen (WCA) potential89 with interaction
strength e and Lennard-Jones diameter s. We choose e/(Fas) =
100 to approximate hard-particle behavior. The rotational noise
x(t) is characterized by hx(t)i = 0 and autocorrelation hx(t)x(t0)i =
(2/tR)d(t � t0). For the periodic system, Fg = Fw = 0.

Initial configurations are generated by randomly placing
particles in the channel without overlap, with orientation
angles drawn from a uniform distribution. Simulations were
performed using HOOMD-blue90 with N = 100 particles in the
sedimentation geometry and N = 1000 in the periodic geometry,
using a timestep dt = 10�5t, where t = s/Ua. Each simulation was
run for at least 4 � 103t to obtain sufficient statistics.

Phenomenology & pressure of periodic 1D-ABPs

The phenomenology and pressure behavior of the periodic 1D-ABP
model have been examined in detail in an earlier study.87,88 For the
interested reader, these studies analyzed this model’s clustering
behavior, pressure, and transport properties. To summarize, the
system is governed by two key dimensionless parameters: the
packing fraction f = rsp, where r = N/L is the line density and
sp = 21/6s is the effective particle diameter, and the active Péclet
number Pe = c0/s, where c0 = UatR is the run length of an isolated
particle. The Péclet number quantifies the persistence of directed
motion relative to particle size. In the limit Pe { 1, the dynamics
reduce to those of the equilibrium Tonks gas.91–95 At larger values
of Pe, persistent motion leads to large dynamic clusters, although
the system does not undergo motility-induced phase
separation.87,96–98 Notably, the periodic 1D-ABP system remains
homogeneous and isotropic for all values of f and Pe.

In the periodic 1D-ABP model, the total pressure P is defined
via the micromechanical virial48 as

P = rhxFneti = rhxFci + rhxFai, (13)

where Fnet = Fa + Fc is the net force acting on a particle. This
expression is the active analog of the virial pressure used for
passive systems [eqn (11)]. The first term on the right-hand side
defines the collisional pressure:

Pc ¼ r xFch i ¼ r
2

X
iaj

xijFij

* +
; (14)

where Fij is the pairwise force between particles i and j, and xij is
their separation. The last term of eqn (14) assumes pairwise
additive interactions.

The second term defines the swim pressure, which captures
the contribution from self-propulsion:

Ps = rhxFai = rhvFaitR = rghv2itR. (15)

The form of the swim pressure Ps = rhvFaitR is known as the
active impulse representation,39,99 and the final equivalent form
of the swim pressure is Ps = rghv2itR, which highlights an
analogy to the Brownian pressure, with the swim pressure being
proportional to the mean-square velocity.87 However, unlike
thermal systems, hv2i depends nontrivially on both Pe and f.
These two expressions for the swim pressure are valid for active
systems with a well-defined reorientation time tR and no inter-
particle torques—conditions satisfied by the ABP model.

In the absence of interparticle interactions (Fc = 0), the
pressure reduces to the ideal expression

P0 ¼
1

2
rgUa

2tR: (16)

As part of our prior work,87 we showed that the reduced
swim pressure Ps = Ps/P0 is directly related to a dimensionless
kinetic temperature Tk, which captures the suppression of
particle speed due to collisions:

Ps ¼
2 vFah i
gUa

2
¼

2 v2
� �
Ua

2
¼ 1�

2 Fc
2

� �
gUað Þ2

¼Tk: (17)

Using scaling arguments based on the statistics of inter-
particle collisions, we derived a quantitative analytical expres-
sion for Ps as a function of packing fraction f and Péclet
number Pe:

Ps ¼
1

9b2
2 cos

1

3
arccos

27

2
b2 � 1

� �� �
� 1

� 	2
; (18)

where b = aPef/(1 � f), with a = c/(1 + Pe)d, c = 1.1, and d = 0.05.
Furthermore, we also obtained simple expressions for the
reduced collisional and total pressure:

Pc ¼ Ps
f

1� f

� 	
; (19)

P ¼ Ps
1

1� f

� 	
: (20)

Together, eqn (17)–(20) establish a direct and quantitative
link between activity, packing fraction, and pressure in the 1D-
ABP model. These results serve as a theoretical reference for
evaluating sedimentation-based measurements of pressure.
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Active sedimentation equilibrium

We now outline a theoretical framework that connects the
sedimentation profile of active Brownian particles (ABPs) to
the pressure EoS established in periodic systems. Our analysis
focuses on three central observables: the local number density,
the local polar order, and the wall pressure. The local number
density at position x is defined as

rðxÞ ¼
XN
i¼1

d x� xið Þ
* +

; (21)

and satisfies the normalization conditionðL
0

rðxÞdx ¼ N: (22)

The local polar order field characterizes spatial variations in
particle orientation and is given by

mðxÞ ¼
XN
i¼1

cos yið Þd x� xið Þ
* +

: (23)

As there are no aligning torques in the ABP model, the total
polar order must vanish at steady state:100

M ¼
ð1
�1

mðxÞdx ¼ 0: (24)

The governing continuum equations for ABPs have been
derived in several prior studies.47,54,101 Here, we present an
abbreviated derivation tailored to the 1D-ABP system. At steady
state, the system satisfies the local mechanical force balance:

qxsxx(x) + bx(x) = 0, (25)

where sxx(x) is the xx-component of the stress tensor and bx(x)
is the body force density in the x-direction. For 1D-ABPs under
gravity, the body force density has three contributions—from
self-propulsion, gravity, and wall interactions:

bx(x) = gUam(x) + Fgr(x) + Fw(x)r(x). (26)

Assuming a slowly varying density profile, we adopt a local
density approximation and identify sxx(x) = �Pc(x), where Pc(x)
is the collisional pressure. For strongly repulsive, short-ranged
wall interactions, the generic force balance eqn (25) becomes:

�qxPc(x) + gUam(x) + Fgr(x) + pbotd(x) � ptopd(x � L) = 0,
(27)

with pbot and ptop denoting the wall pressures at x = 0 and x = L.
Integrating eqn (27) across the full spatial domain x A

(�N, N) and applying the global constraint on polar order
[eqn (24)], the difference in wall pressure is given by

Dp = pbot � ptop = �FgN. (28)

This result is analogous to the wall pressure difference
obtained for passive systems [eqn (8)] and, notably, is indepen-
dent of the form of the wall potential as discussed in prior
work.36,100

Without loss of generality, we assume ptop = 0 and obtain the
collisional pressure at position x0 by integrating eqn (27):

Pcðx0Þ ¼ gUa

ðx0
1
mðxÞdxþ Fg

ðx0
1
rðxÞdx: (29)

We can now compare the expression for collisional pressure
for the active system [eqn (29)] with the passive case [eqn (10)].
Both expressions include a gravitational term involving the
integral of the density profile. However, in passive Brownian
systems, the thermal pressure appears explicitly and must be
subtracted to isolate the interaction pressure. In active systems,
by contrast, the pressure depends nonlocally on the orientation
field through the integral of m(x). While the concept of swim
pressure plays a central role in periodic geometries, it does not
appear explicitly in the sedimentation force balance, under-
scoring a key distinction between passive and active systems.

To explicitly introduce the swim pressure into the force
balance [eqn (27)], we note that the polar order field m(x) can
be expressed as the gradient of a polarization flux. This
relationship arises naturally from coarse-graining the N-body
Fokker–Planck equation, which yields a hierarchy of equations
for the orientation moments. For 1D-ABPs, the steady-state
conservation law for polar order is:47,101

gUam(x) = �tRqx jm
xx(x), (30)

where the polarization flux is defined as

jmxxðxÞ ¼
X
i

viFa;id x� xið Þ
* +

¼ rðxÞ vðxÞFaðxÞh i: (31)

Comparing eqn (30) and (31) with the periodic system
expression for swim pressure [eqn (15)], we can, by inspection,
identify the polar order as the gradient of a local swim pressure:

gUam(x) = �qxPs(x) = �qx[r(x)hv(x)Fa(x)itR]. (32)

Here, we note that the local swim pressure can also be
expressed in terms of the local mean-square velocity as Ps(x) =
�qx[gr(x) hv(x)2itR], which follows from the equivalent repre-
sentations of swim pressure in periodic systems previously
discussed. However, throughout this study, we express the local
swim pressure in terms of the active impulse representation for
brevity.

From eqn (32), the local swim pressure at location x0 can be
determined by direct integration:

Psðx0Þ ¼ rðx0Þ vðx0ÞFaðx0Þh itR ¼ �gUa

ðx0
1
mðxÞdx: (33)

Now, the collisional pressure [eqn (29)] can be rewritten in
terms of the swim pressure by substituting eqn (33):

Pcðx0Þ ¼ �Psðx0Þ þ Fg

ðx0
1
rðxÞdx: (34)

This leads to a total pressure defined as

P(x) = Pc(x) + Ps(x), (35)
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which simplifies the force balance equation to

�qxP(x) + Fgr(x) + pbotd(x) � ptopd(x � L) = 0. (36)

Assuming again ptop = 0, the total pressure at position x0

becomes

Pðx0Þ ¼ Fg

ðx0
1
rðxÞdx: (37)

This result mirrors the passive sedimentation case [eqn (9)],
indicating that—at the level of total pressure—the active system
satisfies a formally similar balance. Yet a key distinction remains:
the total pressure includes a nonlocal swim component. Unlike
Brownian or collisional pressures, which act locally through stress
gradients, the swim pressure reflects the system’s orientational
structure and is inherently nonlocal.47,50 Eqn (33) demonstrates
that computing the swim pressure at x0 requires either the full
polar order field for x 4 x0 or knowledge of the local density r(x0)
and velocity-active force correlation hv(x0)Fa(x0)i. Ultimately, the
swim pressure or polar order contribution behaves more like a
body force than a conventional stress. While eqn (37) represents
the total pressure at a virtual location x0, it does not necessarily
equal the pressure that would be exerted on a physical wall placed
at that position. As the introduction of a new object into the system
will further modify the polar order field, and effectively the
pressure at that location. This subtlety arises as swim pressure
reflects behavior across a finite spatial domain.

The above framework connects the spatial profiles of density
and polarization to their corresponding pressure components
in active systems. A summary of key expressions and their
periodic counterparts is provided in Table 2.

Results & discussion

Next, we compare these results with simulations of the 1D-ABP
model in periodic and sedimentation geometries. As a first
check of our theoretical framework, we verify the prediction of
eqn (28) for the pressure difference between the two walls, Dp =
�FgN. To test this relation, we simulate the sedimenting 1D-
ABP system under two gravitational forces, Fg = �0.01 (open
symbols) and Fg = �0.05 (closed symbols), across a broad range
of Péclet numbers. The wall pressures are computed by time-

averaging the forces exerted on the walls, and we plot in Fig. 3
the bottom and top wall pressures, as well as their difference,
normalized by the theoretical value |FgN|. Across all conditions,
the normalized pressure difference remains close to unity, in
excellent agreement with our theoretical prediction.

At low Péclet numbers, particles are more susceptible to
gravitational forces, leading to accumulation near the bottom
wall and negligible pressure at the top boundary. As Pe
increases, particles gain sufficient persistence to explore more

Table 2 Comparison of pressure component expressions in active sedimentation and periodic systems. The table summarizes how the total, swim, and
collisional pressure are computed in sedimenting and homogeneous active Brownian particle (ABP) systems. In the sedimentation system, pressure
components are derived from spatial profiles of number density and polar order via a mechanical force balance. In the periodic system, pressure is
computed from virial-like expressions involving particle positions and forces

Sedimentation system Periodic system

Total pressure Pðx0Þ ¼ Fg

Ð x0
1rðxÞdx P = rhxFneti = rhxFci + rhxFai

Swim pressure Psðx0Þ ¼ rðx0Þ vðx0ÞFaðx0Þh itR ¼ �gUa

Ð x0
1mðxÞdx Ps = rhxFai = rhvFaitR = rghv2itR

Collisional pressure
Pcðx0Þ ¼ gUa

ðx0
1
mðxÞdxþ Fg

ðx0
1
rðxÞdx

Pcðx0Þ ¼ � Psðx0Þ þ Fg

ðx0
1
rðxÞdx

Pc ¼ r xFch i ¼ r
P
io j

xijFij

* +

Fig. 3 Normalized wall pressures in the sedimenting 1D-ABP system as a
function of Péclet number. The bottom wall pressure (blue circles), top
wall pressure (red triangles), pressure difference between the bottom and
top walls from the simulation virials (beige squares), and the pressure
difference between the top and bottom wall from the force balance (green
pentagons) are shown for two gravitational forces: Fg = �0.05 (filled
markers) and Fg = �0.01 (unfilled markers). All quantities are normalized
by the theoretical prediction |FgN|. The normalized pressure difference
remains close to unity across all conditions, confirming the force balance
prediction. At high Péclet numbers, particles reach the top wall more
frequently, resulting in a measurable pressure at the upper boundary. At
large Pe, the minor variations are not physically meaningful and arise from
statistical uncertainty due to the particles reorienting more slowly and
slower sampling of distinct configurations.
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of the system, resulting in a growing top wall pressure. This
accumulation is more pronounced for the weaker gravitational
force (Fg = �0.01), where the run length better competes with
gravity and redistributes particles toward the upper boundary.
For the stronger gravitational force, the top wall pressure
increases only at the highest Péclet numbers considered.

As an additional numerical check, we also compute the
pressure difference from the measured density and polarization
profiles via the integrated force balance:

Dpfb ¼ �gUa

ð1
�1

mðxÞdx� Fg

ð1
�1

rðxÞdx: (38)

As shown in Fig. 3 by the pentagonal symbols, this alter-
native approach provides an independent check and shows
excellent agreement with the wall pressure measurements.

To illustrate how the EoS can be determined from sedimen-
tation data, we examine in detail a representative case in Fig. 4.
We focus on the 1D-ABP model at fixed activity (Pe = 2) and
consider two gravitational forces, Fg = �0.01 and Fg = �0.05,
chosen to highlight how varying sedimentation profiles yield
local pressure information. This example serves to demonstrate
the whole procedure used throughout the study.

Fig. 4a shows the steady-state number density r(x) and polar
order m(x), computed from simulations using regularly spaced
histogram bins of size (1.0sp) and post-processed using a
Savitzky–Golay filter (window length 21, polynomial order 2)
to smooth the profile. For both values of Fg, r(x) decays
monotonically with height, while stronger gravity leads to a
sharp sedimentation layer near the bottom wall. As expected,
the density profile becomes broader for weaker gravitational
forces, reflecting the enhanced persistence of active particles.

The inset displays the polar order m(x), which integrates to
zero within numerical precision, consistent with eqn (24). In
both cases, particles near the bottom wall align with the sur-
face, yielding negative m(x). At weaker gravity, the polar order
profile shows a pronounced dip near the wall (reaching �0.03),
gradually becomes positive, and at longer distances decays to

zero. For clarity, we have cropped this significant negative spike
in polar order in Fig. 4a to better visualize the entire polar order
profile. In contrast, for stronger gravity, m(x) is nearly zero at
the wall due to crowding, becomes negative just above it, and
transitions sharply to positive at the edge of the sedimentation
layer. These contrasting profiles underscore how sedimentation
strength controls structural and orientational organization in
active systems.

Fig. 4b shows the spatially resolved collisional pressure Pc(x),
computed from eqn (29) and normalized by |FgN|. At the bottom
wall, Pc(x) converges to the expected mechanical pressure, vali-
dating consistency with the force balance. The pressure decays
monotonically with height, mirroring the density profile, as
expected for a system governed by short-range repulsive interac-
tions. The inset shows the corresponding local swim pressure
Ps(x), obtained from eqn (33). This quantity exhibits nonmono-
tonic behavior: it increases with height, peaks near the crossover in
polar order, and then decays to zero at the top wall.

Theoretically, Ps(x) can be interpreted as the cumulative
integral of the polar order or as a local polarization flux. This
duality highlights the unique nature of the swim pressure—it
reflects both global orientational structure and local particle
dynamics. In the integral view, the value of Ps(x) at a given point
depends nonlocally on the polar order across the system. In the
flux-based interpretation, Ps(x) becomes a local quantity,
expressed via eqn (33) as r(x)hv(x)Fa(x)itR, where the correlation
hv(x)Fa(x)i captures suppression of motion due to collisions.
While the swim pressure grows linearly with local density, this
increase is tempered by the reduction in effective speed. As a
result, Ps(x) reaches a maximum in intermediate-density
regions where both density and activity are appreciable.

Using the expressions summarized in Table 2, Fig. 4c directly
compares pressure components extracted from sedimentation
profiles with those measured in homogeneous periodic simula-
tions. Curves represent sedimentation-derived values, and
points indicate periodic system results. We find excellent
agreement across all pressure components, demonstrating that

Fig. 4 Spatial profiles and pressure components for the 1D-ABP system at fixed Péclet number Pe = 2 and two gravitational forces Fg =�0.01 (solid blue)
and Fg = �0.05 (dashed green). (a) Density profiles r(x), with inset showing the corresponding polar order m(x). (b) Collisional pressure Pc(x), normalized
by |FgN|, with inset showing the swim pressure Ps(x). (c) Reduced total pressure P, swim pressure Ps, and collisional pressure Pc as functions of density r,
comparing sedimentation-derived values (lines) with measurements in periodic systems (symbols).
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the sedimentation profile encodes the same EoS as that mea-
sured in bulk systems. Importantly, both gravitational
strengths give sedimentation profiles and calculated pressures
consistent with those computed in the periodic system. However,
for the weaker gravitational force, the accessible density range is
narrower due to limited stratification. For the stronger field,
minor deviations emerge at high density, likely reflecting the
breakdown of the LDA near the wall and sedimentation layer.

These results highlight a key practical consideration: reco-
vering the EoS from sedimentation requires balancing compet-
ing effects. If Fg is too weak, the density profile is nearly
uniform, yielding limited pressure variation. If Fg is too strong,
sharp density gradients can violate the LDA and introduce
higher-order stress contributions. While such effects could be
treated by including gradient corrections,47,102–104 we focus on
regimes where the LDA is valid. We also restrict our analysis to
conditions where top wall accumulation is negligible, ensuring
the maximum density range is accessible. These considerations
guide our choice of Pe and Fg values throughout the study.

More concretely, we can introduce the sedimentation length
as a helpful quantity in tuning the gravitational strength Fg. In
passive systems, the sedimentation length is given by cg = kBT/
Fg. For active Brownian particles, we define an analogous
length ca = gUa

2tR/Fg, where the numerator plays the role of
an effective thermal energy. When the sedimentation length is
small, gravity dominates and leads to sharp density stratifica-
tion and accumulation near the bottom wall. When the sedi-
mentation length is large, either thermal or active forces
dominate, and the density profile becomes nearly flat. To
extract the equation of state effectively, it is necessary to operate
in an intermediate ca regime. In our simulations, we observe
that the condition ca 4 10s provides sufficient stratification to
recover the equation of state over a broad range of densities
and satisfies the LDA, giving consistency with pressure mea-
surements in the periodic system.

We now conclude by applying the sedimentation-based
approach to extract the pressure EoS across a broad range of
Péclet numbers. Fig. 5 shows the reduced swim pressure Ps,
collisional pressure Pc, and total pressure P = Ps + Pc as
functions of density r, each computed from sedimentation
profiles using the previously outlined procedure and compared
against values measured in periodic simulations. Curves repre-
sent sedimentation-derived values, while symbols denote direct
measurements in homogeneous periodic systems.

We vary the gravitational force depending on activity to
balance sedimentation profile resolution with the assumptions
underlying the local density approximation (LDA). For small
Péclet numbers (Pe o 0.5), a weaker gravitational field (Fg =
�0.01) avoids substantial bottom wall accumulation and pro-
vides a broad range of accessible densities (solid lines). At
higher activity levels (Pe Z 0.5), where the increased persis-
tence of particle motion leads to a broader density profile and
greater accumulation near the top wall, a stronger gravitational
field (Fg = �0.05) is used to ensure sufficient stratification
(dashed lines). Across all activity levels, we observe excellent
agreement between sedimentation-derived and periodic simu-
lation results.

Conclusions

In this study, we outline a theoretical and computational
framework for determining an active suspension’s pressure
equation of state (EoS) from its steady-state sedimentation
profile. Focusing on the 1D active Brownian particle (1D-ABP)
model with purely repulsive interactions, we demonstrated that
the total pressure at any height can be recovered from the local
number density and polar order profiles via a mechanical force
balance. This approach accurately reproduces EoS results
obtained from simulations with periodic boundary conditions.

Fig. 5 Mechanical equation of state for the 1D-ABP system across a range of Péclet numbers. Panels show the (a) reduced swim pressure Ps, (b)
collisional pressure Pc, and (c) total pressure P = Ps + Pc as functions of density r. Lines denote values obtained from sedimentation profiles using
eqn (29) and (33) for two gravitational forces Fg = �0.01 (solid) and Fg = �0.05 (dashed), while symbols indicate corresponding values measured in
homogeneous periodic simulations. For each Pe, an appropriate gravitational strength Fg was chosen to ensure well-resolved profiles while preserving
the validity of the local density approximation. Good agreement is observed across all activity levels, confirming the accuracy of the sedimentation-based
approach. The dotted black lines indicate the EoS for the equilibrium Tonks gas, which is the Pe - 0 limit of the 1D-ABP model.
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A central outcome is the explicit connection between sedimen-
tation data and the different pressure components in active
systems. The key insight is that the swim pressure, while often
framed as a local quantity, enters the mechanical force balance
through the integrated polar order, and its behavior is more
consistent with a body force density.

Looking forward, this framework provides a foundation for
extending sedimentation-based techniques to more complex
systems. The methodology we developed should apply generally
to ABPs in any spatial dimension, provided the appropriate
polarization and density fields can be resolved. However, what
becomes more complex in higher dimensional systems is the
phase behavior. In these cases, phase separation can occur,
either through motility-induced phase separation at high activ-
ity or through order-to-disorder transitions at high packing
fractions. It is an interesting question to explore how these
effects manifest in the sedimentation profile.

Moreover, the framework is bidirectional: if the EoS is
known, as is the case for the 1D-ABP model [eqn (18)–(20)],
solving the force balance can predict the density profile. The
details of this approach will be discussed in a future study.
Conversely, if the density and polarization profiles are known,
the EoS can be obtained through simple integration, as done in
this work. This duality highlights the robustness and flexibility
of the sedimentation approach. A natural next step is consider-
ing systems with more complex interactions, such as attractive
forces or anisotropic particles, where phase separation and
interfacial effects play a more prominent role. In particular, it
may be possible to extract the binodal of motility-induced
phase separation (MIPS) from sedimentation profiles, as has
been done for passive systems undergoing liquid–gas
coexistence.

Another promising direction is generalizing this framework
to systems with torque-generating interactions, such as those
mediated by hydrodynamic coupling, anisotropic interparticle
interactions, or shape anisotropy. In these cases, the more
complicated orientational dynamics will likely require a gen-
eralization of the polar order conservation law [eqn (30)].
Incorporating such effects will bring this approach closer to
experimental realizations, which often exhibit richer behavior
than the ABP model. Finally, we note that the force driving the
formation of density gradients need not be gravitational. Exter-
nal electric or magnetic fields, optical gradients, or phoretic
forces could be used in place of gravity, expanding potential
experimental implementations.105–110
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