
rsc.li/soft-matter-journal

Soft Matter

rsc.li/soft-matter-journal

ISSN 1744-6848

PAPER
Karsten Baumgarten and Brian P. Tighe 
Viscous forces and bulk viscoelasticity near jamming

Volume 13
Number 45
7 December 2017
Pages 8341-8662

Soft Matter

This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, 
before technical editing, formatting and proof reading. Using this free 
service, authors can make their results available to the community, in 
citable form, before we publish the edited article. We will replace this 
Accepted Manuscript with the edited and formatted Advance Article as 
soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes to the 
text and/or graphics, which may alter content. The journal’s standard 
Terms & Conditions and the Ethical guidelines still apply. In no event 
shall the Royal Society of Chemistry be held responsible for any errors 
or omissions in this Accepted Manuscript or any consequences arising 
from the use of any information it contains. 

Accepted Manuscript

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  T. Welker and R.

Alert, Soft Matter, 2025, DOI: 10.1039/D5SM00627A.

http://rsc.li/soft-matter-journal
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
https://doi.org/10.1039/d5sm00627a
https://pubs.rsc.org/en/journals/journal/SM
http://crossmark.crossref.org/dialog/?doi=10.1039/D5SM00627A&domain=pdf&date_stamp=2025-08-15


Lattice-dependent orientational order in active crystals
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Via mechanisms not accessible at equilibrium, self-propelled particles can form phases with positional order,
such as crystals, and with orientational order, such as polar flocks. However, the interplay between these two
types of order remains relatively unexplored. Here, we address this point by studying crystals of active particles
that turn either towards or away from each other, which can be experimentally realised with phoretic or Janus
colloids or with elastically-coupled walker robots. We show that, depending on how these interactions vary with
interparticle distance, the particles align along directions determined by the underlying crystalline lattice. To
explain the results, we map the orientational dynamics of the active crystal onto a lattice of spins that interact
via (anti-)ferromagnetic alignment with each other plus nematic alignment with the lattice directions. Our find-
ings indicate that orientational and positional order can be strongly coupled in active crystals, thus suggesting
strategies to control orientational order by engineering the underlying crystalline lattice.

In active matter, microscopic constituents inject mechani-
cal energy, thus driving the system out of equilibrium. As a
result, active particles can self-organize in ways not accessi-
ble at equilibrium. In particular, the field has focused on how
positional and orientational order can emerge1–7.

Orientational order, such as the polar order found in flocks,
can arise from direct alignment interactions between the ori-
entations of self-propelled particles, as originally demon-
strated in the Vicsek model8. More recent work showed that
flocking can also emerge when active particles attract each
other9, align their orientation with their velocity7,10,11 or, al-
ternatively, when particles turn away from one another12–14.

Regarding positional order, self-propelled particles have
been found to crystallise via either motility-induced phase
separation15–20, attractive interactions9,21–25, or simply at den-
sities approaching close packing26–32. Recent work also
showed that, in confinement, self-propelled particles can form
Wigner crystals that emerge through repulsive interactions,
which keep the particles at a distance13,14,33–36. Particles in
active crystals were also found to orient and move collec-
tively as a flock, thus displaying not just positional but also
orientational order9,13,14,29,37–41. Beyond such flocking crys-
tals, the interplay between positional and orientational order
in active matter has been recently explored in the XY model
with vision-cone interactions42–45, in crystals of self-aligning
walker robots39,40, and in crystallites of Quincke rollers25.

Here, we address this question by studying crystals of self-
propelled particles that turn either towards or away from each
other. These interactions, which emerge for example in metal-
dielectric Janus colloids13,46, couple the polarity of one par-
ticle to the orientation of the bond with a neighboring one.
Hence, such polarity-bond interactions produce a crosstalk be-
tween positional and orientational order. We show that, on a
lattice, polarity-bond interactions yield either effective align-
ment or anti-alignment between particle polarities, like in the

∗ t.a.welker@sms.ed.ac.uk
† ralert@pks.mpg.de

XY model. In addition, they also produce nematic alignment
of the particle polarities and the lattice axes. We first study the
interplay between these two effects for particles on a chain.
We find that the particles can achieve either local ferro- or
antiferromagnetic order, either along or perpendicular to the
chain. We then consider a square lattice and find that the par-
ticles can orient locally along the lattice axes and/or form do-
mains of polar order, depending on the distance dependence
of the underlying interactions. On the triangular lattice, the
polarity-bond interactions can be frustrated. Overall, our find-
ings show that, through polarity-bond interactions, the orien-
tational order of active crystals can depend strongly on the
lattice structure. Thus, our work suggests strategies to obtain
desired states of orientational order in active crystals by engi-
neering specific particle interactions and crystalline lattices.

Active crystals with polarity-bond interactions
We consider active particles on a fixed crystalline lattice.

Neighboring lattice sites i and j are separated by the vec-
tor r

(0)
ij = a(cosφij , sinφij), where a is the lattice constant

and φij define the lattice angles (Fig. 1a). The particles are
bound to lattice sites by elastic forces −k∆ri, with elastic
constant k and displacement ∆ri (Fig. 1a). These elastic
forces correspond to the harmonic approximation of any force
that confines the particles to their lattice sites. In addition,
the particles self-propel at speed v0 along their orientation
n̂i = (cos θi, sin θi).

The particles interact through turn-towards or turn-away
torques given by

Γji = Γ0f(|rij |) n̂i × r̂ij , (1)

which arise in self-aligning active particles7, as well as from
electrostatic interactions in Janus particles with a metallic
(dark) and a dielectric (light) hemisphere13,46 (Fig. 1b). The
torque Γji exerted by particle j on particle i, with amplitude
Γ0 and a general distance-dependence given by f(r) > 0
(Fig. 1c), tends to turn particle i either towards (Γ0 > 0) or
away from (Γ0 < 0) the distance vector rij = rj − ri =
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FIG. 1 Active crystal with polarity-bond interactions. a,
Schematic of an active crystal made of self-propelled particles
bound to lattice sites. The green arrows indicate distance vectors.
The purple arrows indicate the self-propulsion force ξtv0n̂i and the
elastic restoring force −k∆ri, whose balance sets the equilibrium
displacement of a particle from its lattice site. b, Polarity-bond
interactions are torques, defined in Eq. (1), whereby particles turn
either towards or away from others. c, Examples of distance
dependences f(r) of the interaction torques for different systems,
with their corresponding dimensionless parameter Ω ≡ af ′(a).

|rij | r̂ij connecting it with particle j. We define Γ0 as the
torque amplitude at a distance given by the lattice constant,
such that f(a) = 1. All together, the particles follow the
overdamped Langevin equations

d

dt
ri = v0n̂i −

k

ξt
∆ri +

√
2Dt η

t
i , (2)

d

dt
θi =

1

ξr

∑
j 6=i

Γji +
√

2Dr η
r
i , (3)

where ξt and ξr are the translational and rotational friction
coefficients, andDt andDr are the translational and rotational
diffusivities associated with the corresponding Gaussian white
noises ηt

i and ηri . Here, we indicated the torque as a scalar
quantity as it only has a component along the ẑ axis.

Self-propulsion displaces particles away from the lattice
sites. Particles reach a displacement ∆ri = lni, with dis-
placement length l = ξtv0/k, in a time scale τe = ξt/k set
by the elastic restoring force (Fig. 1a). As in recent work40,
we assume that this elastic relaxation time is much smaller
than the time scale of the angle evolution: τe � τθ = ξr/Γ0.
Under this approximation, particle positions adiabatically fol-
low the slower orientation dynamics. Ignoring translational

noise, which is negligible in front of rotational noise for Janus
particles13,46, particle positions are given by

ri(t) = r
(0)
i + ∆ri(t) = r

(0)
i + ln̂i(t), (4)

where r
(0)
i is the position of the lattice site of particle i.

Active crystals as spin lattices
Under the approximation of fast elastic relaxation, particle

positions can be eliminated in favor of the orientations; hence,
the active crystal reduces to a spin lattice. To this end, we
insert the positions of Eq. (4) in Eq. (1) and obtain:

Γ̃ji = Γ̃0
f(|rij |)
|rij |

n̂i ×
[
r
(0)
ij +ln̂j

]
. (5)

Here, we made the torque dimensionless by rescaling time as
t̃ = Drt. As a result, the (signed) dimensionless torque ampli-
tude Γ̃0 ≡ Γ0/(Drξr) becomes the only parameter of the sys-
tem. In Eq. (5), the original polarity-bond interaction n̂i× r̂ij
between the particles decomposes into two effects: (i) turn-
ing either towards or away from the neighbouring lattice site,
n̂i × r

(0)
ij , and (ii) either alignment or anti-alignment with the

neighbour’s orientation, n̂i × n̂j .
Assuming nearest-neighbor interactions, and that the dis-

placement l is much smaller than the lattice constant a, we
expand the radial dependence in powers of l/a as (see Section
S1 of the Supplementary Material)

f(|rij |)
|rij |

≈ 1

a

[
1 + (Ω− 1)

r
(0)
ij · l(n̂j − n̂i)

a2

]
. (6)

Here, we defined the dimensionless distance-dependence pa-
rameter Ω ≡ af ′(a), which quantifies how the interaction
torque depends on distance. It is negative (positive) for
torques that decay (grow) with distance (Fig. 1c). Introduc-
ing Eq. (6) in Eq. (5), we obtain

Γ̃ji = Γ̃0

{[
1

a
+
l

a
(Ω− 1)

r
(0)
ij · (n̂j − n̂i)

a2

]
n̂i × r

(0)
ij

+
l

a
n̂i × n̂j

}
(7)

to first order in l/a. The first two terms represent the orienting
towards neighbouring lattice sites, at the zeroth and first order
of the l/a expansion. The third term describes the effective
neighbour alignment or antialignment.

We now sum over nearest neighbours to obtain the torque
on particle i:

Γ̃i =
∑
j∈〈i,j〉

Γ̃ji = Γ̃0
l

a

∑
j∈〈i,j〉

[
Ω + 1

2
sin(θj − θi)

+
Ω− 1

2
[− sin 2(φij − θi) + sin(2φij − θj − θi)]

]
. (8)
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θi = 0

θi = π/2

θi = π
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FIG. 2 Polarity-bond interactions on a lattice. On a lattice
(dashed axis), and given a reference particle j (gray), the original
interaction torques yield three contributions (Eq. (8)): alignment or
anti-alignment with the neighbour’s orientation ∝ sin(θj − θi) (a),
with the lattice axes ∝ sin 2(φij − θi) (b), and with the neighbour’s
mirror image ∝ sin(2φij − θj − θi) (c). Green (red) particles
indicate the orientations favoured when the prefactor of the
corresponding term in Eq. (8) is positive (negative), which depends
on the sign of the interaction torques, Γ0/|Γ0|, and the
distance-dependence parameter Ω.

Here, the first term of Eq. (7) has cancelled because the lattice
vectors r

(0)
ij add up to zero for a regular lattice. Thus, all the

remaining contributions are of order l/a. Hence, this geomet-
ric factor sets the magnitude of the torques on a lattice together
with the dimensionless torque magnitude Γ̃0. Moreover, we
expressed all the contributions in terms of particle orientations
θi and lattice angles φij (Fig. 1a, Section S2 of the Supple-
mentary Material). The first term in Eq. (8) corresponds to an
alignment or anti-alignment torque∝ sin(θj − θi) like that of
the XY model with ferro- or anti-ferromagnetic interactions
(Fig. 2a). The second term produces nematic alignment of
a particle i with the lattice axes, given by φij , which effec-
tively behave as an external nematic field acting on the spins
(Fig. 2b). Finally, the third term produces alignment or anti-
alignment of particle i with the mirror image of the neighbor-
ing particle j; the lattice axis connecting them, encoded in the
angle φij , acts as the mirror plane (Fig. 2c).

The sign of each of these terms depends on the value of
Ω, which is determined by the distance dependence f(r) of
the interaction torques (Fig. 1c). For metal-dielectric Janus
colloids13,46, their electrostatic dipole-dipole interactions give
f(r) = a4/r4, which gives Ω(a) = −4. For particles
reorienting in the chemical concentration field produced by
others14, we have f(r) = a2/r2, which gives Ω = −2. Sim-
ilarly, systems where torques arise from short-ranged repul-
sive interactions will have Ω < 0. Other possible cases are
topological interactions, which are distance-independent, and
hence have Ω = 0. Such topological interactions could ei-
ther be programmed in robots or arise naturally in animals
that turn towards or away from their nearest neighbors regard-
less of their distance. Yet another option is torques due to
elastic forces11, for which f(r) = (r − `)/(a− `), and hence
Ω = 1/(1 − `/a) can be either positive or negative depend-
ing on the ratio between the spring’s rest length ` and the lat-
tice constant a. Elastic forces were proposed to model the
soft interactions between cells10,33,47, and they were realised
in crystals made of hexbugs connected by springs39. Over-
all, different systems realise different values of the distance-
dependence parameter Ω (Fig. 1c). Hence, below we explore
its role and we find that it controls the type and strength of

orientational order in our active crystals.
Interestingly, the torque in Eq. (8) can be derived from an

effective energy H , such that the dynamics of the particle ori-
entations θi read

dθi

dt̃
= −∂H

∂θi
+
√

2ηr
i, (9)

and

H = Γ̃0
l

a

∑
〈i,j〉

[
Ω + 1

2
HXY
ij +

Ω− 1

2

(
HLA
ij +HMA

ij

)]
.

(10)
This effective energy has contributions due to an XY-type
alignment HXY

ij = − cos(θj − θi), lattice alignment HLA
ij =

[cos 2(φij − θi) + cos 2(φij − θj)] /2, and mirror alignment
HMA
ij = − cos(2φij − θi − θj) (Fig. 2). Whereas the

distance-dependence parameter Ω controls the sign and rel-
ative strength of these different contributions as discussed
above, the turn-towards (Γ̃0 > 0) or turn-away (Γ̃0 < 0)
character of the interaction torques controls the global sign of
the effective energy function. Therefore, switching between
turn-towards and turn-away torques13,46 causes a complete in-
version of the energy landscape, whereby stable equilibrium
points become unstable and viceversa. Such a switch is known
as a landscape-inversion phase transition48, which is of mixed
order49 and displays unique phase-ordering processes50.

One-dimensional chain
To study the emerging orientational order in active crys-

tals with polarity-bond interactions, we start by considering
a one-dimensional chain with periodic boundary conditions
(Fig. 3a). We perform Brownian dynamics simulations of
Eqs. (3) and (8) with N = 105 particles using the Euler
method with a time step dt̃ = 0.001/(|Γ̃0|l/a). From the
simulations, we characterize the emergence of nematic order
as a function of the dimensionless parameters Γ̃0 and Ω of
the torque interactions (Fig. 3b). In Section S3 of the Supple-
mentary Material we show that N = 105 is sufficiently large
to avoid finite-size effects, and that the time evolution of the
nematic order is not sensitive to different realisations of the
random orientations in the initial condition.

On a chain, each particle has two neighbours with lat-
tice angles φij = 0, π. In this case, the effective energy
Eq. (10) reduces to that of an anisotropic XY model for spins
n̂i = (cos θi, sin θi) in a nematic field which aligns them ei-
ther parallel or perpendicular to the chain axis (see Section S4
of the Supplementary Material):

H = Γ̃0
l

a

∑
i

[
−Ωnxi n

x
i+1 − n

y
i n

y
i+1 +

Ω− 1

2
cos(2θi)

]
.

(11)
Here, the superscripts x and y indicate spatial compo-
nents. The distance-dependence parameter Ω controls both
the anisotropy of the interactions, reflected in the first two
terms, as well as the alignment with the chain axis, encoded
in the last term.

Despite the presence of effective alignment interactions,
the chain does not exhibit global polar order; the polar or-
der parameter P = 〈|

∑
i n̂i(t)|〉t /N vanishes (dashed lines
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FIG. 3 States of particles on a chain. a, Schematic of a chain of
active particles. b, Nematic order S as a function of the
dimensionless parameters of the torque interactions: the
distance-dependence parameter Ω and the torque amplitude Γ̃0. c,d,
Polar and nematic order parameters as a function of Ω for turn-away
(c, Γ̃0l/a = −10) and turn-towards (d, Γ̃0l/a = 10) torques.
Colour shadings indicate different states, shown in snapshots in e-k.

in Figs. 3c and 3d). The situation is reminiscent of the XY
model in 1d, for which the Hohenberg-Mermin-Wagner theo-
rem forbids the breaking of the continuous rotation symmetry,
and hence the emergence of long-range polar order51–53. Here,
however, the theorem does not apply because the anisotropy
of the interactions as well as the lattice alignment in Eq. (11)
already break the continuous rotational symmetry.

To rationalise the absence of polar order in our model, we
adapt Peierls’ argument for the lack of ferromagnetic order in
the 1d Ising model53–55. We can extend this argument to our
case because the effective energy has the discrete symmetry
θi → θi + π. Hence, we consider an excitation in the form of
a domain of π-flipped spins, such that the system configura-
tion looks like . . .↗↙ . . .↙↗ . . .Because of the symmetry
of the effective energy function, the domain bulk costs no ex-
tra energy; the only energy penalty comes from the domain
walls, whose relative contribution decreases with increasing

system size N . However, the number of ways to place the do-
main walls, which determines the system’s entropy, increases
with system size. In the thermodynamic limit N → ∞, and
for any non-zero temperature (here noise strength Dr > 0),
this entropic contribution wins and prevents the emergence of
polar order. This argument does not rule out the existence of
local polar order, as seen in Fig. 3k. On large scales, however,
no polar order persists.

Yet, our active chains are not always disordered. They can
display global nematic order (Fig. 3b). We quantify it through
the scalar nematic order parameter S = 〈|

∑
j e
i2θj |〉t/N ,

which is the largest eigenvalue of the nematic order-parameter
tensor Qαβ = 〈2nαi (t)nβi (t) − δαβ〉i,t, where α and β are
indices for spatial components. In our system, nematic or-
der arises from the lattice-alignment contribution in the last
term of Eq. (11), which acts as an external nematic field with
strength controlled by the distance-dependence parameter Ω.
For Ω = 1, the lattice-alignment contribution vanishes. In this
case, the effective energy Eq. (11) corresponds to that of the
XY model, for which the Hohenberg-Mermin-Wagner theo-
rem forbids global order. Accordingly, we obtain states with
no global nematic order (black horizontal stripe in Fig. 3b) but
with local order, either ferromagnetic or anti-ferromagnetic
(Figs. 3f and 3j).

For other values of Ω, there can be global nematic order
(Fig. 3b). For small torque amplitudes Γ0, fluctuations allow
the system to sample different configurations. For large torque
amplitudes Γ0, the interactions favour specific configurations
(Figs. 3e to 3k), which we describe and label with arrow sym-
bols below.

For turn-away interactions (Γ0 < 0), we find two states
(Fig. 3c): anti-aligned perpendicular to the chain (Fig. 3e, ↑↓)
and anti-aligned along the chain (Fig. 3g, →←), in addition
to the state with only local anti-ferromagnetic order for Ω = 1
(Fig. 3f, ↗↙). Respectively, for turn-towards interactions
(Γ0 > 0), we find three states (Fig. 3d): anti-aligned along
the chain (Fig. 3h, →←), aligned perpendicular to the chain
(Fig. 3i, ↑↑), and aligned along the chain (Fig. 3k, ←←), in
addition to the state with only local ferromagnetic order for
Ω = 1 (Fig. 3j,↗↗). We note that any of the aligned states
described here displays only local polar order. In the follow-
ing, we explain the emergence of these states by analyzing the
equilibrium configurations of two spins.

Two-particle configurations
To understand the states on the chain, we study the equi-

librium configurations of two particles on a lattice, described
as coupled spins θ1, θ2 governed by the effective energy in
Eq. (11). Each point in the θ1, θ2-plane corresponds to a spin
configuration as shown in Fig. 4a. We obtain their effective
energy from Eq. (11) and show it in Fig. 4b. For turn-away
(turn-towards) interactions, the ground state is given by the
minimum (maximum) of H/Γ̃0.

Beyond the ground state, since the angle dynamics in
Eq. (9) is equivalent to a system of interacting Brownian par-
ticles, the probability density follows the Boltzmann distri-
bution p(θ1, θ2) ∝ e−H(θ1,θ2). The turquoise (orange) con-
tour lines in Fig. 4b enclose regions with 90% of the prob-
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a b

c

Turn-away Γ0 < 0

Turn-towards Γ0 > 0

Ω = 1

Ω = -1

Ω = 2

Ω = 0.4
4

-4

E
n
e
rg

y
 H

/(
Γ 0

l/
a
)

Distance-dependence parameter Ω 

FIG. 4 Equilibrium states for two particles. a, Arrow
representations of the two-particle states in the θ1θ2 plane. b,
Effective energy H for different values of Ω. Light (dark) areas are
energetically favourable for turn-towards (turn-away) torques,
corresponding to Γ̃0 > 0 (Γ̃0 < 0). The turquoise (orange) contours
enclose regions with 90% of the probability p(θ1, θ2) ∝ e−H for
Γ0 = 10a/l (Γ0 = −10a/l). c, Most probable two-particle states
for Γ̃0 = ±10a/l, which explain the observations made from the
simulations in Fig. 3.

ability for turn-towards (turn-away) torques at Γ̃0l/a = 10

(Γ̃0l/a = −10). Using Fig. 4a as a reference, we identify the
states corresponding to these high-probability regions. The re-
sults, shown in Fig. 4c, match with the states found in our sim-
ulations (Fig. 3). Thus, the equilibrium behavior of two par-
ticles explains the variety of states found for the many-body
system.

Note that, for Ω = 1, the effective energy reduces to that
of the XY model, which is rotationally invariant, and hence
the minimum becomes degenerate. Accordingly, the probabil-
ity for turn-towards (turn-away) torques concentrates around
the ferromagnetic θ2 = θ1 (anti-ferromagnetic θ2 = θ1 + π)
ground state, without any preferential alignment with the
chain axis (Fig. 4b, Ω = 1). For turn-away interactions, the
ground states are non-degenerate for Ω 6= 1: They are the
↑↓ configuration for Ω < 1 and →← for Ω > 1. For turn-
towards interactions, for Ω < 0, the ground state is also the
→← configuration. For Ω ≥ 0, the ground state is degenerate,
given by any ferromagnetic configuration θ2 = θ1 (Fig. 4b,
turquoise on the three right-most panels). However, this de-
generacy is broken once fluctuations are taken into account,
as they allow the particles to explore the shape of the effec-
tive energy around the minimum. Analyzing the probability
p(θ1, θ2) ∝ e−H(θ1,θ2) reveals the most likely configurations:
↑↑ for 0 < Ω < 1, and←← for Ω > 1, as shown in Fig. 4c,
which match those in Fig. 3.

Lattice-dependent order in two dimensions
To illustrate that the connection between lattice struc-

ture and orientational order extends to two dimensions, we
now consider a square and a triangular lattice, respectively
with lattice angles φij = nπ

2 and φij = nπ
3 , where

n = 0, 1, 2, . . .. For both lattices, the lattice-alignment term

θi

θ→

θ↑

Ω = -0.5 Ω = 0 Ω = 0.5

a

c

b

FIG. 5 Ordering on a square lattice. a, b, Snapshots of
500× 500 spins (a) and close-up views of 10× 10 spins (b) for
turn-towards interactions with Γ̃0l/a = 50 and different
distance-dependence parameters Ω = −0.5, 0, 0.5. Color represents
particle orientation. The insets in a show the angular distribution. c,
Effective energy H between a particle oriented along the x axis and
two neighbors: one along the x axis with orientation θ→, and one
along the y axis with orientation θ↑ (see schematic). The turquoise
contours enclose regions with 90% of the probability
p(θ→, θ↑) ∝ e−H .

∝
∑
〈ij〉 cos 2(φij − θi) of the effective energy in Eq. (10)

vanishes, because particles tend to (anti-)align with two per-
pendicular or three symmetric axes. This allows us to study
the competition between the neighbour-alignment and mirror-
alignment terms in Eq. (10), tuned by the distance-dependence
parameter Ω.

Square lattice — On the square lattice, there is a map-
ping between any given configuration with turn-away inter-
actions (Γ0 < 0) and another one with turn-towards interac-
tions (Γ0 > 0), as shown in Section S5 of the Supplementary
Material. Therefore, we focus on the turn-towards case with
Γ̃0l/a = 50 and perform simulations of 500× 500 spins with
a time step dt = 0.0005 for a time t = 5000 from an initial
condition with random orientations.

To explore the role of the distance-dependence parameter,
we consider the values Ω = −0.5, 0, 0.5, for which Figs. 5a
and 5b show snapshots at large and small scales. The am-
plitude of neighbour and mirror alignment is proportional to
|Ω + 1| and |Ω− 1|, respectively. For Ω = 0.5, neighbor XY
alignment is stronger. Consequently, the system forms po-
lar domains and topological defects, similar to the XY model.
However, the weak contribution of mirror alignment creates a
preference to orient along the lattice, as reflected in the orien-
tational distribution function shown in the inset. For Ω = 0,
the neighbor alignment and mirror alignment contributions
have equal strengths. In this case, particles orient along one
lattice axis, forming a state with nematic order consisting of
oppositely-pointing stripes of different widths. For Ω = −0.5,
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mirror alignment dominates, and the particles are anti-aligned
along the direction of orientation and aligned perpendicular to
it. This arrangement results in regular stripes with alternating
orientation.

To understand these patterns, we consider particle with a
fixed orientation along the x direction (θ = 0) and we study
the effective interaction energy Eq. (10) for varying orienta-
tions of the neighbour in the direction of orientation, θ→, and
of the neighbour perpendicular to it, θ↑. For Ω ∈ (−1, 1) the
neigbour alignment term tends to align both θ→ and θ↑ with
the reference particle, while the mirror alignment term tends
to anti-align θ→ and align θ↑ with θ = 0. Figure 5c shows
the interaction energy H , with contour lines enclosing 90%
of the probability p(θ→, θ↑) ∝ e−H(θ→,θ↑). For Ω = −0.5,
mirror alignment prevails, creating anti-alignment along the
orientation direction and alignment perpendicular to it. This
is consistent with the aligned stripes of alternating direction
seen on large scales (Fig. 5a, left). For Ω = 0.5, neighbour
alignment is stronger, resulting in aligned regions (Fig. 5a,
right). For Ω = 0, both interaction terms tend to align θ↑ with
the reference particle. In contrast, the alignment and misalign-
ment effects on θ→ cancel, such that the interaction does not
set the orientation θ→. This is consistent with our observation
of stripes that are strongly correlated perpendicular to the par-
ticle orientation, but that randomly alternate in the direction
of orientation. In all cases, the configurations predicted from
this 3-particle picture based on the interaction energy agree
with the simulation results.

Triangular lattice — We now consider a triangular lattice
and perform simulations for both turn-away and turn-towards
torques (Γ̃0l/a = ±50) of 500 × 500 spins with a time step
dt = 0.0005 for a time t = 1000 starting from an initial
condition with random orientations (Fig. 6).

We start with the well-known case of the XY model, which
we retrieve by setting Ω = 1 (see Eq. (10)). In this case, the
energy is rotation-invariant and the particles do not align with
the lattice, as shown by the orientational distributions in the
insets in Figs. 6a and 6d. For turn-towards torques (Γ0 > 0),
the particles experience ferromagnetic XY interactions, and
hence they develop local polar order (Fig. 6d). For turn-away
torques (Γ0 < 0), the XY interactions are antiferromagnetic.
In a triangular lattice, not all particle pairs can be simulta-
neously antiparallel (Fig. 6b), which is known as geometric
frustration. As a result, the system reaches states like the one
shown in Fig. 6a, which emerge as a compromise between
achieving some anti-alignment between particles while avoid-
ing alignment, as sketched in Fig. 6c.

For Ω 6= 1, the effective energy Eq. (10) breaks rota-
tional invariance, and the particles orient relative to the lattice
(Figs. 6e and 6h). To showcase the effects of the lattice, we
focus on Ω = −1, for which only the mirror-alignment term
in Eq. (10) is present. For turn-away torques, Fig. 6f shows
that satisfying the mirror-alignment interactions for the central
particle, again, results in unfavourable interactions between
the neighbours. To avoid them, the system reaches a com-
promise state consisting of alternating aligned stripes, shown
in Fig. 6e and sketched in Fig. 6g. For turn-towards torques,
the interactions are also frustrated (Fig. 6h). Thus, mirror-

Tu
rn

-t
o
w

a
rd

s 
Γ 0

 =
 5

0
Tu

rn
-a

w
a
y
 Γ

0
 =

 -
5

0

Ω = 1
XY model

Ω = -1
Mirror alignment 

a e

hd

b c f g

FIG. 6 Ordering and frustration on a triangular lattice. a,d,e,h,
Close-up snapshots of simulations of 500× 500 particles on a
triangular lattice. Particle orientations are shown in color as in
Fig. 5. The insets show the distribution of particle orientations. a,d,
The case with Ω = 1 corresponds to the XY model, with either
antiferromagnetic (Γ0 < 0) or ferromagnetic (Γ0 > 0) interactions.
b,c, Schematics of frustrated interactions. b, For turn-away torques,
satisfying the antiferromagnetic interactions of a central particle
(green bonds) results in unfavourable interactions between its
neighbours (red bonds). c, The system then reaches a compromise
state (turquoise links). e,h, The case with Ω = −1 corresponds to
only mirror-alignment interactions, and hence the particles align
relative to the lattice. f, For turn-away torques, satisfying the
mirror-alignment interactions of a central particle (green bonds)
results in unfavourable interactions between neighbours (red bonds).
g, The system then finds a frustrated compromise state. h, For
Ω = −1, frustration is also present for turn-towards torques.

alignment interactions are frustrated by the triangular lattice
for both signs of the interaction.

For Ω 6= ±1, an interplay between neighbour and mir-
ror alignment results in generally anisotropic and frustrated
states. Particles tend to align relative to the lattice, but due to
frustration, the resulting states can no longer be predicted by
minimising the interaction energy of two particles as in previ-
ous sections.

Overall, by extending our analysis of the one-dimensional
chain, these results show that lattice-dependent orientational
order can also arise in two-dimensional lattices. In addition,
we found that the polarity-bond interactions between our par-
ticles can be frustrated in the triangular lattice. An inter-
esting question for future work is whether our system can
exhibit long-range polar order or not, as discussed for non-
reciprocal XY models42–45. Another direction is to consider
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three-dimensional lattices.

Discussion and outlook
In summary, we studied crystals of active particles that turn

either towards or away from one another. Because these inter-
actions, which we call polarity-bond interactions, couple the
orientation of a particle with the position of another, they es-
tablish a link between positional and orientational order. We
showed that, when particle positions equilibrate fast compared
to their orientations, the orientations can be described as spins
that evolve according to an energy. In this energy, the original
polarity-bond interactions give rise to both conventional align-
ing terms like those of the XY model but also unconventional
terms that couple the particle orientations to the lattice direc-
tions. This energy allowed us to predict the variety of states
that we found in direct Brownian dynamics simulations. Thus,
our work contributes to ongoing efforts to establish a Hamilto-
nian description for systems with non-reciprocal interactions
which, like our turn-towards or turn-away torques (Eq. (1)),
do not obey Newton’s law of action and reaction56.

Recent work on active solids showed that the interplay
between positional and orientational dynamics gives rise to
activity-driven oscillations termed collective actuation7,39,57.
Here, we explored a different regime by focusing on the limit
in which particle positions equilibrate fast compared to their
orientations40. In this regime, our results show that active
crystals can display several states with orientational order,
with particles aligned in a variety of ways with respect to the
lattice directions. The precise state that is favoured depends
on whether the interaction torques are turn-towards or turn-
away, as well as how they vary with distance.

Thus, our findings reveal that polarity-bond interactions en-
able one to control the orientational order of active crystals
through the lattice structure. Experimentally, such control
could be achieved in systems of either metal-dielectric Janus
colloids13,46,58, which interact electrostatically through turn-
towards or turn-away torques, or macroscopic robots, which
can be programmed to do so. Under confinement, active Janus
colloids form crystals at high densities due to their repulsive

interactions13. These repulsive interactions, when approxi-
mated for small displacements of the particles around their
lattice sites, would give rise to the elastic forces considered
in our model. Alternatively, the particles can be placed in
engineered lattices made either with grooved substrates59–61

or with periodic optical potentials generated with interfering
lasers62–64. In such lattices, both the structure and the lat-
tice constant can be controlled. In our model, these changes
would affect the lattice angles and the value of the distance-
dependence parameter Ω, which would then impact the orien-
tational order of the active crystal.

From a theoretical standpoint, our findings introduce the
notion of lattice-dependent orientational order, which de-
scribes states in which rotational symmetry is broken through
a coupling to the lattice structure. By revealing that the lat-
tice structure can impact the orientational order in active crys-
tals, our work complements previous studies of active solids,
which mainly focused on how activity distorts or even melts
their crystalline structure29,30,65. Our work also complements
recent studies on the impact of spatial anisotropy, such as the
one imposed by a lattice, on flocks44,45,66. More generally, our
findings call for further developments of general continuum
theories of active solids25,67–70: A challenge for future work
is to generalise them to incorporate information about the lat-
tice structure which, as we have found, can affect orientational
order.
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