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Emergence and evolution of a particulate network
during gelation and coarsening of
attractive colloids

Paniz Haghighi,a Mohammad Nabizadeha and Safa Jamali *ab

The process of gelation in attractive colloids involves formation of an interconnected and percolated

network, followed by its coarsening and maturation. In this study, we analyze the formation and

evolution of this particulate network and introduce deterministic quantitative measures to evaluate the

key transition points. The rate of change in the number of colloidal clusters before and after percolation

can be directly used to identify gelation as a continuous second order phase transition. Simultaneously

the diameter of the particle network exhibits a distinguishable maxima, marking the precise moment of

percolation transition. However, local measures of the structure such as coordination number do not

reflect on the percolation. Alternatively, accumulative number of unique particle contacts can be used

to indicate the long time coarsening of the particulate structure. Global structural measures such as

Voronoi volume distribution and its changes over time can also be used to distinctly mark these two

regimes. Finding a consistent behavior across varying attraction strength levels and volume fractions of

colloids, we propose that percolation and coarsening of the particulate gels can be viewed as two

distinct transitions with clearly distinguishable structural demarcations.

Introduction

Colloidal gels, a class of soft glassy materials, are ubiquitous in
natural and industrial settings alike with applications in bio-
technology, pharmaceuticals, cosmetics, and food technology.1–10

In its general form, gelation of colloidal particles involves a
transition from a liquid-like dispersion state to a soft solid-like
percolated state. Nonetheless, this also means that a gel may
be defined by either mechanical (liquid vs. solid) or structural
(dispersed vs. percolated) criteria, depending on whether the empha-
sis is placed on the material’s rheological behavior or its network
connectivity. From a mechanical standpoint, the sol–gel transition
corresponds to the divergence of the fluid’s viscosity and/or the
emergence of a measurable elastic modulus larger than the fluid’s
viscous response.11–15 This clear macroscopic demarcation of gelation
is commonly referred to as Winter–Chambon criterion.11 However, in
the case of polymer–colloid mixtures and weak depletion interac-
tions, the rheological characterization of the resulting gel structure is
known to be extremely challenging due to the very weak elastic
modulus of the overall structure and its corresponding signal.16–20

From a purely structural viewpoint, the gelation transition is
characterized by a dramatic slowdown in particle dynamics and

the formation of a space-spanning particulate network.12,21–25

The particulate network can form through a second-order
phase transition,26 in which particle-level bonds grow into
clusters12,27,28 and eventually result in percolation of the parti-
culate structure spanning the entire system,29–31 followed by
long-term structure coarsening of the structure.21,32 Other
studies have considered gelation an arrested phase instability,
in which the system undergoes spontaneous phase separation,
forming regions rich and poor in colloids. This progression is
stopped by attractive glass transition occurring in the colloid-
rich region.33 In thermo-reversible adhesive hard-sphere sys-
tems, gelation starts with a homogeneous percolation
process34,35 in which clusters driven by attractive forces span
the entire system and mark the onset of gelation. This is
supported by the observation that the experimentally deter-
mined gelation boundary closely aligns with the theoretically
predicted dynamic percolation line.36

What is clear is that the macroscopic mechanics of gels are
directly governed by their particulate network structures. From
a mesoscopic perspective, recent developments suggest that the
elasticity of the gel structure originates from the jamming
transition of clusters.37 This transition can be viewed as the
formation of a glassy mesostructure of clusters38 or space-
filling soft particle glasses in a jammed structure.28 The latter
is consistent with descriptions of the hierarchical and multi-
scale nature of the particulate network that controls the gel’s
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mechanics as well.12,39 Due to this close structure–mechanics
coupling, understanding the evolution of the structure during
and demarcating different stages of gelation can inform the
targeted design of gels with desirable properties. In this work,
we adopt a purely ‘‘structural’’ gel definition in which a gel is
defined as any particulate network that spans the system size.
Based on this definition, we do not measure/consider a
mechanical gel definition, acknowledging that rheological/
mechanical gel features may or may not strictly coincide with
the structural transitions.

In addition to the main characteristics that define a gel, the
intricate details of gelation kinetics, particularly closer to the
sol–gel phase boundary, are also important. What is known is
that colloidal gelation itself can follow different kinetics
depending on the nature of the interaction between the parti-
cles, as well as state variables. In depletion gels, spinodal
decomposition, depending on the state variables, including
the volume fraction of the particles, as well as the range and
strength of interactions between the particles,22,24,33 primarily
controls how and if a gel is formed. The structure and rate of
spanning of the particle network are also influenced by differ-
ent factors. It is well understood that gelation occurs through
different mechanisms depending on the volume fraction of
colloids. For intermediate volume fractions, gelation is
initiated by the growth and subsequent percolation of fractal
clusters. Conversely, for dense/crowded systems at higher
volume fractions, gelation is generally induced by arrested
phase separation marked by the formation of robust correla-
tions between clusters.40 The complexity of gelation is further
affected by the strength of attraction between the particles. The
attraction strengths affect the rate at which particles intermit-
tently bond with and detach from their neighbors, which
consequently affects the percolation of the space-spanning
network. While very high attraction strengths can drive the
system out of equilibrium, very weak attractions often lead to
phase separation due to depletion interactions, resulting in the
coexistence of liquid and crystal phases.35,41

Here, and building upon the non-equilibrium continuous
phase transition view of the colloidal gelation, we present a
comprehensive set of computational studies spanning a wide
range of volume fractions and strengths of short-range attrac-
tions with the goal of characterizing the network formation and
evolution during this transition. Our goal is to introduce
quantifying measurements that successfully pinpoint the per-
colation point of the largest cluster and consequently the sol–
gel transition point, as well as the coarsening of the structure
after percolation. To predict the initial critical point in the
structure transition, we utilize the percolation theory and the
non-equilibrium continuous phase transition, which involves
predicting the existence of a critical point and a power-law
cluster-size distribution to define the sol–gel phase transition
point. These are accompanied by power-law scaling consistent
with the percolation theory as well as experimental observa-
tions of Zaccone et al.37 Once this transition is clearly identified
and the kinetics are established, we identify different measures
of the colloidal particles’ dynamics as well as the particulate

network that marks this transition. At the last stage of the
structure transition process, we study the coarsening of this
network and discuss metrics that clearly identify the coarsening
transition as a distinct phase. Ultimately, our study suggests
that percolation and coarsening can be clearly distinguished by
two quantifying measurements, providing a novel understand-
ing of structural evolutions and different stages of gelation.

Methods

To correctly model the interactions between particles while
considering the essential hydrodynamics of the system with
large numbers of particles, we use a dissipative particle
dynamics (DPD) approach.25 DPD is a mesoscale simulation
technique based on molecular dynamics which was initially
introduced by Hoogerbrugge and Koelman for the simulation
of colloidal suspensions.42 DPD considered hydrodynamic
interactions, which is crucial for colloidal gels where fluid flow
affects particle motion and aggregation.25,28,43–46 The equation
of motion of a DPD particle is written as:

Fi ¼ mi
dvi

dt
¼ S FC

ij þ FD
ij þ FR

ij þ FH
ij þ FM

ij

� �
(1)

The solvent particles interact only through FC
ij, FD

ij , and FR
ij

with other solvent and colloidal particles, representing the
pairwise conservative, dissipative and random forces respectively:

FR
ij = sijwij(rij)YijDt�1/2eij (2)

FD
ij = gij[wij(rij)]

2(vij�eij)eij (3)

FC
ij = aijwij(rij)eij (4)

Random force, eqn (2), is the source of thermal energy and
Brownian motion in the system based on a random function of
zero mean and unity variance, Yij, and strength of sij. This
thermal noise is then dissipated by the viscous resistance of the
fluid, which are denoted as the dissipative forces eqn (3), that
act against the relative motion of particles vij = vi � vj, with a
magnitude of gij. The simulation time step is denoted by Dt, and
the unit interparticle distance vector is eij. In this formalism, gij

and sij are coupled [through the fluctuation–dissipation theo-
rem], defining the dimensionless temperature of the system as

sij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gijkBT

p
. The conservative forces with a magnitude para-

meter aij that solely depend on the chemical identity of the
particles give a DPD particle its pressure, eqn (4). All forces are
controlled by a weight function that goes to zero as interparticle
distance increases wij = (1 � rij/rc). Therefore, these forces
become inactive when the interparticle distance exceeds a
cutoff distance rc.

For colloid–colloid interactions, the conservative forces are
absent, but dissipative and random forces act in the same
manner as explained above. Since in DPD, when the distance
between two colloids are smaller than a single solvent particle,
hydrodynamics break down, an additional lubrication term,
FH, is added to preserve the full hydrodynamics of the system:

FH
ij = mH

ij (vij�eij)eij (5)
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In eqn (5), the lubrication force is calculated from the pair drag
term mij = 3pZ0a2/2hij where a is the radius of the colloids, hij is
the surface–surface distance between two colloidal particles,
and Z0 is the viscosity of the suspending fluid. The short-range
attraction of the colloids is simulated by Morse potential, FM:

UMorse = U0(2e�khij � e�2khij) (6)

In eqn (6), U0 determines the strength of attraction and k sets
the range of attraction.

In our simulations, all quantities are reported in reduced
DPD units, meaning that the fundamental physical parameters
are nondimensionalized. The particle radius a is set to unity,
and the dimensionless temperature of kBT = 0.1, where kB is the
Boltzmann constant. The mass of solvent particles is set to
unity and the mass of colloidal particles is calculated as mc =
4pra3/3, where r is the number density. To match the system’s
density, The colloidal particles are simulated with a number
density of r = 3. A number density (r) of 3 is a common choice
in DPD simulations, largely due to the Groot–Warren method,47

which connects DPD parameters to real-world properties. This
value provides a stable balance between momentum transfer
and thermal noise, and has become a widely accepted conven-
tion in the field.

To implement a short-ranged, weak attraction in the Morse
potential, the range parameter k is set to 30, which corresponds
to an interaction range of approximately 0.1a. In other words,
we want the attractive force between particles to become
negligible beyond a separation of hij = 0.1a. This choice of k
ensures that the exponential terms in eqn (6) decay rapidly,
reducing the potential to about 4 percent of its original strength
at that distance. Next, to nondimensionalize time, we use the
single-particle diffusion time td calculated from our simula-
tion. We estimated td by simulating a highly diluted system,
where inter-particle interactions are negligible. The diffusion
time td is then defined as the time it takes for a particle to, on
average, displace a distance equal to its own diameter, i.e.,
MSD = (2a)2. Once colloidal gels are prepared, a network
analysis is performed on the particles. The connectivity of a
pair of colloidal particles is defined as the separation distance
at which the pairwise potential reaches zero energy.48 For our
systems, as previously discussed, this distance corresponds to
hij = 0.1a. We have performed sensitivity tests (discussed in SI)
and found that, while the exact percolation time shifts slightly
with different thresholds, the overall qualitative behavior of
percolation and structure evolution remains robust.

In this work, we analyzed the network formed by the particles
in gels with volume fractions ranging from f = 0.1 to f = 0.4 and
attraction strengths ranging from U0 = 6kBT to U0 = 22kBT. The
simulation box has a size of 60 times the colloidal particle radius
(a = 1) in all directions. Hence, the number of particles in each gel
varies with the volume fractions. For instance, at f = 0.2, the
gel contains 10 313 particles, while at f = 0.4, the gel contains
20 626 particles. These system sizes are consistent with previous
studies on colloidal gels and percolation. For instance, Del Gado
and Kob used 8000 particles, and Li et al. used systems with
10 000 particles, both capturing percolation behavior reliably.49,50

This suggests that our system size is appropriate for observing the
same phenomena. To assess finite-size effects, we also conducted
additional tests with smaller simulation boxes. As discussed in the
SI, we find that the main structural and dynamic behaviors remain
consistent provided that the simulation box is sufficiently large to
avoid effects from periodic boundaries or wall effects.

Simulations were run for a total duration of tmax = 62td, with
observables (e.g., MSD, Z, Zcu, kurtosis) evaluated at intervals of
10% of the diffusion time throughout the trajectory, which
provides about ten frames for a particle to diffuse a distance
equal to its diameter, giving us sufficient detail to track changes
in particle motion and network evolution. The analysis spans
the full time window, from initial cluster formation to late-stage
coarsening, allowing us to capture percolation and coarsening
behavior.

We compute several key measures of the structure as well as
the particle dynamics in order to fully characterize particle
assemblies. Mean squared displacement (MSD) is an ensemble
averaged measure of the displacement for the particles with
respect to a reference time, t0, and a lag time, t:

MSD(t) = h|ri(t0 + t) � ri(t0)|2i (7)

On any snapshot of the particulate structure, the Voronoi
volume for each particle and hence the overall distribution
reflect the available hydrodynamic volume available to colloids.
From the distribution histograms, we measure and track the
kurtosis of the Voronoi volumes as the fourth standardized
moment of the distributions:

Kurt(Vi) = E[(Vi � m/s)4] (8)

where Vi is the Voronoi volume, m and s are its mean and
standard deviation. and E denotes the expected value.

Results
System design

In our system, we follow the formation and growth of aggre-
gated particles, referred to as particle clusters. Particles are
considered neighbors and part of the same cluster if the sur-
face–surface separation distance between them is less than the
sum of their radii and the range in which the attractive
interactions are still significant (details provided in the Meth-
ods section). The simulations begin with fully dispersed and
randomized positioned particles. Clusters grow as more parti-
cles progressively bond with one another and form a space-
spanning network, after which the structure transition con-
tinues until the end of the coarsening. In this work, we study
the transitions during which the particulate network spans the
sample size, referred to here as the percolation transition and
also the onset of gelation. This is because, our gels are defined
purely from a structural point of view, and irrespective of their
mechanical/rheological features. To do this, we define a parti-
cle cluster strictly as a single connected component made out of
the bonded particles. Based on this definition, all clusters at
time t = 0 are of size 1 [particle], growing over time, and in most
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cases grow to be of size equal to the number of particles. This
definition directly reflects the most simply connected network
that links an assembly of particles, without introducing addi-
tional structural constraints. Other clustering approaches in
the literature target different physical attributes. For example,
Gaussian Mixture Models (GMM), as used in our previous
work28 and in other studies,51 aim to identify distinct substruc-
tures within the network based on statistical similarity rather
than global connectivity. Similarly, the l-balanced method38

captures the topology of rigid, load-bearing units within the gel,
independent of precise spatial configurations. Graph-theoretic
approaches based on isostaticity principles52 identify rigid
clusters by requiring that the particle contact number meets
or exceeds the isostatic threshold, making them useful for
studying bond breakage and rigidity transitions rather than
percolation as defined here. In contrast, our connected-component
criterion is designed specifically to determine simplest connected
network. Therefore, For the remainder of this work, all results are
measured from the analysis of the bonded structures, which are
directly calculated from the positions of the particles (Fig. 1).

In these analyses, a list of nodes and edges connecting those
nodes, where particles are represented as nodes and particle–
particle bonds as edges, is used, and the actual coordinates
or any other particle-specific information is not carried over.
Here, the same network analyses as in the work by Nabizadeh
et al.28 are employed to examine the characteristics of clusters
and inter-particle interactions during the gelation process.
All codes and algorithms can be directly accessed through
our https://rheoinformatic.com/website and https://github.
com/procfGitHub repository.

Percolation transition

Fig. 2, from left to right, shows snapshots of our system of
volume fraction f = 0.2 and attraction strength of U0 = 20kBT,
with approximately 10 000 colloidal particles during the gela-
tion process. The top row shows the particles, and the bottom
row shows particle–particle bonds at the same snapshot, color-
coded with respect to the number of particles in each cluster
(lighter colors representing smaller clusters). As clearly indi-
cated in this figure, at any point during the structure transition,
many clusters/connected components exist within the system,
starting with Ncluster = Nparticle and, in most cases, ending with
Ncluster = 1. However, it is reasonably safe to assume that the
properties of the overall system are controlled by the largest
connected component or cluster within its structure. Thus, in
order to identify the exact time of percolation transition during
gelation, we follow the largest existing cluster at each step of
the structure transition. While this approach provides a rigor-
ous and clearly defined quantitative measure of structure
evolution, it also poses a challenge, as the transition near the
point of percolation can occur rapidly. To demonstrate the
challenges in exactly identifying the percolation transition,

Fig. 1 Schematic view of the particles’ and bonds’ representation within
each cluster or connected component, to be used for the purpose of
network quantification.

Fig. 2 Snapshots of a colloidal system with a volume fraction of f = 0.20 and an attraction strength of U0 = 20kBT undergoing gelation at dimensionless
times (t/td) 1.4, 1.5, 1.8, 3.3, 56.2 from left to right, where td is the diffusion time. (Top row): Colloidal assemblies, and (bottom row): their resulting bonded
structures over time. All colloids and their bonds are color-coded with respect to the number of particles within the clusters, provided in the scale bar.
The process begins with the absence of large clusters in the initial stage and progresses to the largest cluster spanning the entire system, and ends with
the coarsening of the particulate network.
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the largest clusters in the system with a volume fraction of 0.2
and an attraction strength of U0 = 20kBT are shown in red at
times 1.3t, 1.4t, and 1.5t in Fig. 3(a)–(c), respectively. While in
Fig. 3(a), the largest cluster does not percolate across the
system size, in Fig. 3(b), it does reach the size of the system
in one direction; however, since the cluster only spans the
system size in one direction, it is not plausible to consider the
overall structure percolated. In contrast, the largest cluster in
Fig. 3(c) clearly spans the system size in all directions and thus
can be considered a fully percolated structure. This is particu-
larly noteworthy since the entire change in this transition
occurs within a fraction of the diffusion time. The size dis-
tribution of the clusters, excluding the largest cluster, in
Fig. 3(d) also shows that the size of the remaining clusters
reduces rapidly. Hence, their contributions are negligible.

In colloidal gels, percolation has been linked to power law
scaling of different measurables, including the elastic modulus,
viscosity, correlation length, and the fraction of particles within
the largest cluster.11,26,40,53 However, these studies do not
pinpoint the critical point of percolation. Instead, the critical
point is generally approximated through interpolation techni-
ques or by tracking the divergence patterns within the plots.
Here, we introduce a precise measurement to accurately iden-
tify this transition point. The most common quantitative mea-
sure of the local microstructure for a colloidal assembly is the

ensemble-averaged number of bonds that each particle makes,
referred to as the coordination number. The average coordina-
tion number as a function of time is plotted for a wide range of
particle volume fractions and at the attraction strength of U0 =
20kBT in Fig. 3(e). Evidently, the average coordination number
grows for all volume fractions studied and eventually reaches a
plateau at values of Z 4 5. Note that the highest volume
fraction of particles studied here remains below the glassy
regime. Thus, all the observed structures can be compared
without considering the possibility of forming bulk glassy
structures. On the other hand, the ensemble-averaged Z as a
function of time for different attraction strengths at a constant
volume fraction of f = 0.2, shown in Fig. 3(f), indicates that the
number of bonded neighbors per particle is primarily con-
trolled by the interaction potential. This is particularly evident
at an attraction strength of U0 = 6kBT, where the final number
of bonded neighbors is more affected by the attraction strength
than by the volume fraction. It also explains the very small
variation of the average Z values for different volume fractions
depicted in the inset of Fig. 3(e).

Next, we monitor the fraction of particles that belong to the
largest cluster in the system over time for a single attraction
strength of U0 = 20kBT, shown in Fig. 4(a). It is clear that in all
studied volume fractions of f 4 0.12, almost all particles
eventually become part of the largest cluster within the system.

Fig. 3 (a)–(c) Three different snapshots of the largest connected component within the system during gelation at times (t/td) 1.3, 1.4, and 1.5,
respectively, for a system with f = 0.2 and an attraction strength of U0 = 20kBT. (d) Cluster size distribution during gelation, excluding the largest cluster
for the same system. The cluster size represents the number of colloidal particles within each individual cluster. Changes in the ensemble-averaged
coordination number, hZi, during gelation for: (e) different volume fractions at an attraction strength of U0 = 20kBT, and (f) different attraction strengths at
the volume fractions of f = 0.2.
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However, for f r 0.10, the largest cluster within the system
remains smaller than half of the particle population, and the
system never reaches a fully percolated state in all directions.
For both average coordination number and fraction of particles
within the largest cluster, the stronger attractions, as well as
higher volume fractions of particles result in faster percolation
kinetics (Fig. 4(b)). Nonetheless, the observed trends in the
variation of f over time clearly indicate a critical percolation
time to exist.

Since both the coordination number and the fraction of
particles within the largest cluster follow similar trends over
time, and following the work of Rouwhorst et al.,26 we next
show the variations in the fraction of particles in the largest
cluster as a function of Z, the coordination number, in Fig. 4(c)
and (d). The results in Fig. 4(c) indicate that the number of
colloids within the largest cluster shows a consistent behavior
for different systems with a clear percolation transition that is
only controlled by the overall volume fraction. For lower volume
fractions, this transition occurs at higher coordination num-
bers, and for higher volume fractions, percolation happens at
smaller coordination numbers. For lower volume fractions
(f r 0.10), the system is more dilute, and percolation occurs
at or after dynamic arrest.54 Therefore, there’s minimal distinc-
tion between the onset of percolation and the end of coarsen-
ing, as shown in Fig. 4(d). In contrast, at higher volume
fractions (f Z 0.15), the system is denser, exhibiting a distinct
percolation transition. This observation aligns with findings
that volume fractions between f = 0.1 and f = 0.15 represent a
transitional regime between dilute and dense behaviors.54

Hence, for f Z 0.15, and when the system has distinct

percolation and gelation points, determining the critical coor-
dination number and the percolation point becomes challen-
ging as the exact position of this transition can be elusive.
Given these complexities, we focus on dense gels (f Z 0.15)
and find the critical coordination point for these systems.

Our approach to pinpoint the percolation transition lies
within the measurement of the cluster diameter, D, during
percolation. From a network perspective, the diameter is the
longest of the shortest paths between any two nodes within its
structure, providing a common measure of its size.55 This
concept is illustrated schematically in Fig. 4(e). To calculate
this quantity, for each combination of two nodes (particles)
within a cluster, the shortest path connecting those two nodes
is determined. Doing this iteratively and for all possible com-
binations of any two nodes within a network, the longest of all
shortest paths is then found and identified as the diameter of
the network. For instance, for a linear chain of N connected
components, the diameter of the network will always be N � 1.
Interestingly, for volume fractions corresponding to percolated
structures, the diameter of the network exhibits a sharp max-
imum when plotted against time in Fig. 4(f). Even at the lowest
volume fraction, the maximum network diameter exceeds the
system’s box size, which is 60 times the particle radius. This
observation indicates that the largest connected component
occupies a significant portion of the system at this time. The
normalized network diameter (by the maximum diameter
measured) is plotted as a function of coordination number in
Fig. 5(a), alongside the fraction of particles within the largest
cluster. Not only does the network diameter for all attraction
strengths studied (shown using color increments) show a

Fig. 4 Fraction of total particles in the largest cluster for: (a) all volume fractions and the attraction strength of U0 = 20kBT versus gelation time; (b) and
(c) volume fraction of f Z 0.15 and all attraction strength, plotted versus gelation time and versus the ensemble-averaged coordination number,
hZi, respectively; (d) volume fraction f = 0.1 and all attraction strength.(e) Schematic illustrating the diameter of a particle network, defined as the longest
among all shortest paths between pairs of particles. The highlighted line marks the two particles connected by this path.(f) Network diameter versus
gelation time for systems with f Z 0.15.
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universal behavior, but their maxima also appear to exactly
coincide with the percolation transition, regardless of the
volume fraction (Fig. 5(a) is plotted for f = 0.2). From the
position of Dmax, we accurately identify the values of Zc for
different values of f and attraction strengths. Fig. 5(b) presents
the critical coordination number Zc, for f Z 0.15 for all
attraction strengths. the changes in the critical coordination
number are mostly dependent on f, rather than the attraction
strength, which is illustrated by a trend line.

Upon approaching the critical coordination number for
percolation, Zc, the fraction of particles within the largest
cluster follows a power law equation of [fz = (Zc � Z)g], with
the exponent [g = �1.8] for all percolated systems, and com-
pletely deviates from this behavior for the systems that do not
reach a percolated state (Fig. 5(c)). This exponential behavior is
consistent with the ones from similar systems experimentally
studied by Ruowhorst and coworkers,26 and the exponents
governing the divergence show consistency with the three-
dimensional percolation theory and the exponents of the random
percolation universality class.33 As the system approaches this
critical percolation point, the diameter of the network also follows
a power law equation before [D = (Zc� Z)m] and after [D = (Z� Zc)

n]
the percolation, with exponents denoted as [m = �1.2] and [n =
�0.3], shown in Fig. 5(d)–(f). The percolation transition time (Pc1),
measured as the time at which the system reaches the Zc, is plotted
for different volume fractions and attraction strengths studied in
Fig. 6. The overall percolation time gradually decreases as the
strength of attraction is increased, indicating that the strongly
attractive systems are faster to percolate. On the other hand, the

overall scale of this transition time is entirely controlled by the
volume fraction of colloidal particles.

Given the consistency of the power law scaling across
various systems studied, we assert that the critical point
identified here is valid for both low and high volume fractions,
as well as for relatively weak to very strong attractions. Further-
more, the power-law behavior of the cluster diameter can also
be used directly as another parameter exhibiting a universal
behavior at the percolation threshold.

Structure coarsening

Thus far, our results have shown that the percolation transition
can be directly measured using the size and number of clusters

Fig. 5 (a) Normalized network diameter (by its maximum value) and the fraction of particles within the largest connected components versus the
ensemble-averaged coordination number, hZi, for all attraction strengths at f = 0.2. (b) Critical coordination number, Zc, for different attraction strengths
and volume fractions. (c) Fraction of particles within the largest connected component, f, versus the re-scaled coordination number for all volume
fractions at the attraction strength of U0 = 20kBT. The insert figure shows the same data in a power-law plot, characterized by an exponent of�1.8. (d)–(f)
The diameter of the largest cluster as a function of the re-scaled coordination number, featuring an exponent of �1.2 before (e), and �0.3 after (f) the
critical point for all volume fractions.

Fig. 6 The percolation time, Pc1, for different volume fractions and
attraction strengths.
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within a system. Nonetheless, post-percolation, the system
continues to evolve and undergo a coarsening process over
time. In this stage, particles can further rearrange and result in
denser domains with different characteristics which in turn
also affects the overall mechanics of the gels. From a rheologi-
cal perspective, a just-percolated network may not necessarily
result in an elastic modulus larger than the viscous modulus.
Therefore, it is plausible to assume that rheological identifica-
tions of gel point are more consistent with the coarsening stage
rather than the percolation. However, this also depends on
other parameters such as attraction strength and bending
elasticity of the particle bonds. At the same time, microstruc-
tural measures of the system such as the number of connected
components and the coordination number often reach a quasi-
steady plateau during coarsening and may not reflect the
continuous evolution of the structure.

Although the average number of neighbors around a particle
remains largely constant during the coarsening step, it is well
understood that the structure is not completely arrested, and
local rearrangements continue to age the overall structure.
Having access to all bonds that form and break over the entire
time of structure evolution, we introduce an alternative mea-
sure of the microstructure: the average cumulative unique
neighbors Zcu shown in Fig. 7(a). To calculate Zcu, all inter-
particle bonds throughout the simulation are tracked, and the
number of unique neighbors that a single particle bonds with
during the entire process is determined. For instance, as shown
in Fig. 7(b), if particle A remains in contact with particles B, C,
and D at time t, then ZA

cu = ZA = 3; but if after a time interval dt,
the A�C bond is broken and instead a new bond of A�E is
made, then ZA

cu = 4 and ZA = 3. Hence, the cumulative number of
unique neighbors will be reflective of the structure evolution
even if the average coordination number itself remains
unchanged. The changes of Zcu over the entire evolution time
in Fig. 7(a) indeed shows a very clear two step process. During
initial times of gelation [and well past the percolation transi-
tion marked by the vertical dashed line in the figure],
the number of unique neighbors explored by a single colloid

at any time is virtually the same for all strengths of attraction,
and is instead only controlled by the fraction of solid particles.
This is somewhat expected as the probability of particles
bonding with one another inversely correlates with the separa-
tion distance between them and hence directly with the volume
fraction of particles (population dominated). On the other
hand, once these local structures (clusters) are formed and
particles are somewhat arrested in their respective cages, the
probability of hopping out of their cage and making a new
bond becomes entirely independent of the overall volume
fraction and is instead controlled solely by the strength of
attraction between the particles (attraction dominated). What
is surprising is that the initial diffusive growth of Zcu with time
continues well past the percolation transition and the overall
arrest of the structure, suggesting that a second characteristic
time [end of coarsening], Pc2, can be defined to distinguish
between these two processes.

Our observations reveal a consistent trend in the initial
section across all levels of attraction strength. Fig. 8(a)–(c)
shows that for a given attraction strength and varying volume
fractions, the slopes of the plots before and after the second
critical point are identical, following the same overall trend.
This demarcation of the second critical transition, Pc2, can also
be defined as the transition from a population-dominated to an
attraction-dominated regime. In Fig. 7(a), the two critical
transition times (percolation and coarsening) are shown via
vertical dashed lines. One should note that for stronger attrac-
tions, and some volume fractions, the two can be very close;
however, in all of our studied systems, they can be measured at
distinctly different times.

The list (and thus the number) of unique neighbors
throughout the structure evolution is extremely challenging
(if not impossible) to obtain experimentally. Thus, we next
explore other tangible measures [from an experimental per-
spective] that can also be used to hint at this second coarsening
transition. A common measure of the system’s microstructure
is Voronoi volume tessellation, which provides a measure
of available volume to each particle within a given structure.56

Fig. 7 (a) Cumulative unique neighbors, Zcu, of particles during gelation for f = 0.20 and different attraction strengths. Both transition points,
Pc1 and Pc2, are marked using vertical lines. (b) Schematic view of changes in Zcu, in upper image at time t, with ZA

cu = ZA = 3, and at time t + dt with ZA
cu = 4

and ZA = 3.
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As such, a Voronoi volume distribution graph for a gel can be used
as a proxy to structural evolution over time. Fig. 9(a) illustrates a
typical Voronoi volume distribution for a system with a volume
fraction of f = 0.2, and an attraction strength of U0 = 20kBT at
different steps of the gelation process. Since the overall volume
(area under the curve) will remain constant for each system,
i.e. constant volume of the simulation box or experimentally
imaged window, and since the Voronoi volume distributions are
non-trivial bell-shaped curves, a detailed exploration inherently
involves quantifying the curves over time. In our study, we focus on
the changes in kurtosis of the Voronoi volume distribution curves
over time, corresponding to the distribution of data in the tails and
peaks. A schematic view of changes in kurtosis is shown in
Fig. 9(b). Typically, larger kurtosis values suggest magnified peaks
with narrower distributions, while smaller values hint at broader
distributions with fat tails.

Fig. 10(a) illustrates the changes in Voronoi volume distri-
bution’s kurtosis measures during the process of gelation for a
system with a volume fraction of f = 0.2 and different attraction
strengths, which reveal three clear regions for each attraction
strength that coincide with the two critical transition points of
the gelation process. The kurtosis first shows an initial plateau,
followed by a clear increase before the coarsening transitions.
A high value of kurtosis suggests that more particles are found
with volumes available to them corresponding to the tails and

the peak of the distribution, hinting at the formation of larger
voids as well as densely packed structures. The changes in the
kurtosis in Fig. 10(a) also exhibit a behavior reminiscent of the
cumulative unique neighbors Zcu. During the initial gelation
stage, all systems with different strengths of attraction show a
similar behavior that is: upon percolation the kurtosis begins to
grow as the particle-rich and particle-depleted regions within
the system’s structure form and evolve, solely dominated by the
diffusion of particles and rather independent of their inter-
action potential. However, once the overall coarsened structure
is formed and the dynamics begin to slow down, curves can
be differentiated based on the details of their interaction
potential.

Mean squared displacement (MSD) is another quantitative
measure of the dynamical arrest in colloidal gels which is used
to evaluate the gelation of colloidal particles as it reflects the
progressive slowing down of particle motion within the system.
Gelation process usually begins with the diffusive motion of the
particles followed by a transition to sub-diffusive behavior
during gelation and arrest of the structure, which may or may
not result in a second diffusive region reflective of the cage-
hopping and re-entrant nature of the gels at very long times.
Since the two measures introduced here, namely the kurtosis of
the Voronoi volume distribution and the unique cumulative
neighbors, Zcu, provide a very distinguishable time for each of

Fig. 8 Ensemble-averaged unique coordination number, Zcu, versus gelation time (scaled by the particle diffusion time) for different volume fractions at
the same attraction strength of: (a) U0 = 6kBT, (b) U0 = 8kBT, and (c) U0 = 20kBT.

Fig. 9 (a) Voronoi volume distribution at different times during the gelation process of a system with f = 0.2 and U0 = 20kBT. (b) Schematic depiction of
kurtosis, showing variations in data distribution at the peak and tails.
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the percolation and coarsening transitions, we next compare
those measures with the MSD of the systems. Fig. 10(b) shows
the evolution of the three measurements during the gelation
process for a representative system with a volume fraction of
f = 0.2 and an attraction strength of U0 = 20kBT. Using linear
regression, we identified the point at which the mean squared
displacement (MSD) plateaus, marking the onset of dynamical
arrest. Similarly, we applied the same method to determine the
points where the slope of the unique cumulative neighbors and
kurtosis changes, representing the second transition point and
the end of coarsening. These identified transition points allow
us to compare the three measurements at the second transition
point. Fig. 10(c) shows this comparison for f Z 0.15 across all
attraction strengths, with the values for f = 0.2 highlighted
in darker red for clearer comparison. Remarkably, not only do
Zcu and MSD align in behavior, but kurtosis also shows similar
pattern. This alignment is more evident when compared with
the other volume fractions. For systems where dynamic arrest
either has not occurred or is impeded due to very weak
attraction strength, we observe that, in addition to MSD and
Zcu, kurtosis fails to plateau. Consequently, the system doesn’t
reach the second transition point, and there is no arrest in the
system. Conversely, in systems with higher attraction, kurtosis
distinctly exhibits a plateau and follows the same trajectory as
MSD and Zcu. Notably, the moment at which kurtosis converges
with the two and plateaus almost aligns with the same moment

as Zcu entering its attraction-dominated stage and the MSD
enters sub-diffusive region. Our assertion is that changes in the
kurtosis of the Voronoi volume distribution during the gelation
process along with the cumulative unique neighbors Zcu can be
used to mark the second transition, a.k.a coarsening. Finally, in
Fig. 10(d)–(f), a schematic representation of the system’s struc-
ture is provided to clarify the comparison of the structural
differences at different stages, where the colors indicate parti-
cles belonging to the same cluster. The schematic demon-
strates that, although a space-spanning network forms at the
percolation point, the system continues to coarsen until it
reaches the second transition point. At this stage, the particles
become more aggregated and compact. Beyond this point, the
system undergoes further aging, eventually reaching the gel
point, signaling the completion of the gelation process.

Discussion and conclusions

In this work, we study the process of colloidal gelation in which
a particle network forms as a result of attraction between
individual colloids. Identifying and characterizing the critical
transitions that mark the construction and evolution of the
underlying network of connections [between individual com-
ponents] holds the key to describing the mechanics of colloidal
gels (as typical soft glassy materials). Hence, using concepts

Fig. 10 (a) Kurtosis of the Voronoi volume distribution versus time for various attraction strengths for the system with f = 0.2. (b) Comparison of the
second transition point across different measurements: mean square displacement (MSD), kurtosis, and unique neighbors (Zcu) for a system with volume
fraction f = 0.2 and attraction strength U0 = 20kBT. The plots are analyzed using linear regression, indicated by dashed lines. The point of slope change is
marked as the second transition point. (c) The second critical point measured from Zcu (circles), MSD (squares), and kurtosis (triangles) for fZ 0.15 and all
attraction strengths. Snapshots of the system with f = 0.2 and U0 = 20kBT: (d) before percolation, (e) at the percolation point, and (f) at the second
transition point and end of coarsening. colors indicate particles belonging to the same cluster.
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from percolation theory and non-equilibrium continuous
phase transition, we quantify these transitions as gels with
different state variables are formed. One key observation is that
the first critical point, Pc1, corresponding to the sol–gel transi-
tion, is marked by a clear maximum in the diameter of the
largest connected colloidal cluster. This is the point where the
largest cluster first percolates the entire system. We also found
that both the fraction of particles and the diameter of the
largest cluster exhibit a power-law relationship with the coor-
dination number. Remarkably, the scaling exponents are con-
sistent across different percolated structures with varying
volume fractions and attraction strengths. Different structural
and dynamical characteristics also suggest that the first critical
point lies within a population-controlled regime, where the
system’s behavior is predominantly influenced by the total
volume fraction of particles and, hence, by the diffusion of
individual particles. At this point, despite witnessing growth in
the largest cluster, gelation remains continuous as the bonding
between particles remains weak. This population-controlled
regime is followed by an attraction-controlled one that is
marked by the sudden change in cumulative unique neighbors
and kurtosis of the Voronoi volume distribution. This abrupt
alteration signifies the occurrence of the second critical transi-
tion, Pc2, indicating the coarsening stage of gelation. The
transition to this stage is a function of the strength of attraction
between the particles, with higher attractions causing an earlier
transition.

While the precise Pc2 values from the three measurements
differ slightly, they are in close agreement (Fig. 10(c)). More
importantly, the Pc2 obtained from Zcu and the kurtosis of
the Voronoi volume distribution, both indicating structural
arrest, closely matches the Pc2 from the MSD, which indicates
dynamical arrest. Together, these results mark the arrested
dynamics of the network, and the end of coarsening. While
this behavior shares some similarity with glass transition,
where particles are trapped in cages and escape via hopping,
there are key differences.57,58 In glassy systems at higher
volume fractions, cage hopping is very different from local
energy explorations of a particle within a gel cluster. In recent
years, a picture of gel mechanics has emerged, suggesting that
clusters of particles are in glassy regime.28,38 However, at the
particle-level, dynamics clearly deviate from ones in glassy
state. After Pc2, and depending on the strength of attraction,
particles can still explore new neighbors, though at a different
pace. But these are not due to cage hopping, as particles do not
lose their entire neighboring colloids and remain bonded
within their respective clusters.

From a mechanistic perspective, gels are formed when
rigidity, and not connectivity, is percolated. This is elegantly
demonstrated in work of Zhang et al.,59 where rigidity percola-
tion is defined as the emergence of a system-spanning rigid
network, with its occurrence determined by both volume frac-
tion and attraction strength. Of course, for the rigidity to
percolate, connectivity should be already percolated as well.
Thus, comparing the structural percolation, and mechanical
percolation, the former occurs first and is a prerequisite. Future

work on testing the concept of rigidity percolation in 3D net-
works and on our studied systems can be informative in better
understanding the structural signatures of rigidity percolation
as well.

Our results clearly indicate that the dynamics of colloidal
gelation can be considered to be a two-step process: the first
step being a second-order non-equilibrium continuous phase
transition to a percolated state, followed by a second stage that
ultimately forms the final morphology of the colloidal gel,
referred to as coarsening. These two steps are associated
with clear quantitative measures of the structure and are also
representative of two distinct mechanics. Earlier work of
Rouwhorst et al.26 suggested that for intermediate volume
fractions of particles, this second-order non-equilibrium phase
transition can be viewed analogously to classical percolation in
3D. Our findings are fully consistent with their findings, and
are universally observed over a wide range of volume fractions
and attraction strengths. This suggests that building a univer-
sal understanding of the fluid-to-solid transition in disordered
conditions may be possible through the characterization of the
collective/network kinetics during this transition.
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