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A splay-twist phase stabilized by the interaction
between the nematic and torsional fields
in nematics

I. Lelidis, *a G. Barbero bc and L. R. Evangelista cde

A free energy density for the nematic phase with two symmetry elements – the director, n, and the

vector defining the helix direction, t – can be constructed as an extension of the Frank free energy. This

formulation has already proven effective in demonstrating that the phase transition between the conven-

tional nematic phase and the twist-bend nematic phase is of second order, characterized by a finite wave

vector. In this work, we theoretically investigate the possibility that new periodic phases with finite wave

vectors may be energetically favored over uniform structures within the framework of this elastic model.

We show that splay-twist-like periodic structures naturally emerge from this theoretical approach.

Furthermore, we demonstrate that the existence of a critical wave vector, which determines the

periodicity of the non-uniform structure, depends on the elastic parameters, the sample thickness, and the

anchoring energy strengths. A key role is played by the elastic constant that couples the nematic director

to the helical axis: a distinctive feature of these materials. The splay-twist transition from the uniform

nematic phase occurs only when the magnitude of the coupling elastic constant exceeds a threshold

value. In this study, we specifically treat the case of a sample with symmetrical interfaces.

I. Introduction

Heliconical phases can arise in chiral nematic (cholesteric) or
smectic liquid crystals, particularly in the presence of strong
flexoelectric effects, applied electric fields, or specific molecular
architectures (e.g., bent-core or dimeric molecules).1–7 They are
important in soft matter physics, with potential applications in
tunable photonic devices, bistable displays, and responsive mate-
rials. The twist-bend nematic (NTB) phase is a well-known example
of such a self-assembled heliconical phase, observed in bent-core
and dimeric liquid crystal molecules. Exploring the possibility of
splay-twist or splay-bend phases in this context is particularly
interesting because these phases could arise from similar mechan-
isms of spontaneous symmetry breaking in nonchiral systems.

Since the experimental discovery of the twist-bend nematic
(TBN) phase,8–10 extensive research has been conducted in the

field of modulated nematic phases. The properties of the TBN
phase have been thoroughly investigated both experimentally11–20

and theoretically.21–36 Numerous theoretical approaches have
been proposed,21–25,33–36 and a variety of models are available
for describing the TBN phase as well as other modulated nematic
and smectic phases.37,38

Ten years ago, we proposed a generalization of the Frank
elastic energy for conventional nematics39–41 to account for
modulated nematic phases, in particular the twist-bend
nematic phase.25 This model is based on the introduction of
a torsion field that couples to the nematic director field,
enabling the emergence of modulated phases in a nematic
medium composed of achiral mesogenic molecules.

More recently, using the same elastic theory framework, we
demonstrated that tuning the elastic constant governing the
coupling between the nematic and torsion fields can destabilize
the uniform nematic phase with respect to one-dimensional
(1D) deformations of the director, which may be either periodic
or evanescent.42 In the present work, adopting the same
approach as in ref. 42, we investigate whether fluctuations of
the nematic director can destabilize the uniform phase and
promote the formation of a two-dimensional (2D) modulated
splay-twist nematic (STN) phase.

Our study is organized as follows. Section II briefly recalls
the free energy density introduced in ref. 25. Section III
presents the perturbation method, derives the second-order
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approximation of the free energy density, and formulates the
corresponding equilibrium equations. In Section IV, the pro-
blem is solved for a symmetric sample. Section V presents the
quadratic form of the free energy. In Section VI, a stability
analysis of the energy is carried out. In particular, the critical
value of the coupling constant is determined, along with the
dependence of the instability wavevector on this coupling.
Finally, Section VII is devoted to concluding remarks and future
perspectives.

II. Elastic energy density of modulated
phases

Frank elastic energy of a nematic39–41 was extended in ref. 25 to
include the case of modulated nematic phases composed of
achiral molecules. To this end, in addition to the nematic
director field n, a torsion field, represented by a unit vector t,
was introduced. It was argued that the nematic elastic energy
density can then be expressed, up to second order, in the
following form:

f ¼ f0 �
1

2
Zðn � tÞ2 þ k1ðn � tÞðr � nÞ þ k2n � ðr � nÞ

þ k3t � n� ðr � nÞ½ � þ 1

2
K11ðr � nÞ2

þ 1

2
K22 n � ðr � nÞ½ �2þ1

2
K33ðn�r� nÞ2

� K22 þ K24ð Þr � ðnr � nþ n�r� nÞ

þ m1½t � ðn�r� nÞ�2 þ n1½t � rðt � nÞ�2

þ n2½t � rðn � tÞðr � nÞ� þ n3½rðt � nÞ�2

þ n4½ðt � rÞn�2 þ n5½rðn � tÞ � ðt � rÞn�

þ n6rðn � tÞ � ðr � nÞ:

(1)

The usual Frank expression for the free energy density39–41

can be recovered if we put t = 0 in eqn (1), as can be easily
verified. In this perspective, the present energy density may be
regarded as a generalization of the Frank energy that can be
used as a theoretical framework to describe the orientational
properties of those actual and potential stable phases of liquid-
crystalline systems characterized by the elements of symmetry
t and n.

III. Perturbation & equilibrium
equations

To investigate the stability of a uniform planar orientation
against small nematic fluctuations, we consider a slab-shaped
sample of thickness d. Following the approach of ref. 42, we
introduce a Cartesian coordinate system where the x-axis
defines the planar easy axis, and the z-axis is perpendicular to
the confining surfaces, located at z = �d/2 and z = d/2. The basis
unit vectors ei, with i = x, y, z, represent the Cartesian

directions. The uniform nematic orientation under analysis is
given by n0 = ex.

Small perturbations of the nematic director are described by
the fluctuation vector u = uxex + uyey + uzez, such that the
perturbed director is expressed as n = n0 + u. Since we are
concerned with infinitesimal deviations from the planar orien-
tation, the components ui are considered small quantities. The
normalization condition |n| = 1 then imposes the constraint

ux � �
1

2
uy

2 þ uz
2

� �
: (2)

Consequently, ux is a second-order quantity in terms of the
director variations.

Additionally, we assume that our ‘‘generalized’’ nematic state
is characterized by t = ex. The surface treatment enforces an easy
axis along ex as discussed in ref. 42. Within the Rapini–Papoular
approximation, the surface energy is given by fs = �(w/2)(n�ex)2.
Expanding this expression up to second order and using eqn (2),
we obtain

fs ¼ �
w

2
þ w

2
uy

2 þ uz
2

� �
; (3)

where w denotes the anchoring energy strength of both surfaces.
That is, we restrict our investigation to the case of two surfaces
with identical anchoring direction and energy, w1 = w2 = w,
which we call symmetric boundary conditions (BCs). These
symmetric BCs also assume that splay and twist deformations
have the same anchoring energy.

In the problem we are analyzing here uy = uy(y, z) and uz =
uz(y, z), i.e., the perturbation lies in a plane normal to the
bounding surfaces. The energy density is given by

f ui; ui;j
� �

¼ f0 �
1

2
Zþ 1

2
Z uy

2 þ uz
2

� �
þ k2 uz;y � uy;z

� �
þ k1 uy;y þ uz;z

� �
þ 1

2
K11 uy;y þ uz;z
� �2þ1

2
K22 uz;y � uy;z
� �2

� 2 K22 þ K24ð Þ uy;yuz;z � uy;zuz;y
� �

;

(4)

in which ui,j = qui/qxj. Finally, the total energy per unit length is

F ¼
ð
D
f ui; ui;j
� �

dydzþ
ð
g
fsds (5)

where D is the surface of the sample perpendicular to the x-
axis, and g is its border. Hereafter, summation convention on
repeated indices is assumed when appropriate. The first varia-
tion of F is

dF ¼
ð
D

@f

@ui
� @

@xj

@f

@ui;j

� �� �
duidydz

þ
ð
g
nj
@f

@ui;j
þ @fs
@ui

� �
duids: (6)

where nj denotes the outwards geometrical normal characteriz-
ing the surface while x1 = x, x2 = y, x3 = z. The functions
minimizing eqn (5) are solutions of the partial differential
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equations43

@f

@ui
� @

@xj

@f

@ui;j

� �
¼ 0; (7)

for all points in D, and on g satisfy the following boundary
condition:

nj
@f

@ui;j
þ @fs
@ui
¼ 0: (8)

In the following we are interested in the possibility of
periodic deformation along y–z plane. In this case D is the
domain limited by a rectangle of sides l and d, and g its
contour, where l is the periodicity of the deformation to be
determined. For simplicity, we rewrite the fundamental equa-
tions above in an explicit form as follows. For i = y, z, as we
consider here, eqn (7) become

@f

@uy
� @

@y

@f

@uy;y

� 	
� @

@z

@f

@uy;z

� 	
¼ 0;

@f

@uz
� @

@y

@f

@uz;y

� 	
� @

@z

@f

@uz;z

� 	
¼ 0:

(9)

Likewise, the BCs, eqn (8), become

� @f

@uy;z
þ @fs
@uy
¼ 0 and � @f

@uz;z
þ @fs
@uz
¼ 0; (10)

at z = �d/2 (�) and z = d/2 (+).
Taking into account the free energy density, eqn (4), the

partial differential equations for uy(y, z) and uz(y, z), stated in
eqn (9), are found to be

K11uy,yy + K22uy,zz + (K11 � K22)uz,zy � Zuy = 0, (11)

K22uz,yy + K11uz,zz + (K11 � K22)uy,yz � Zuz = 0. (12)

These equations have to be solved with the BCs expressed
via eqn (10), which simply read

�{�k2 + K22uy,z + (K22 + 2K24)uz,y} + wuy = 0, (13)

�{k1 + K11uz,z + [K11 � 2(K22K24)]uy,y} + wuz = 0. (14)

IV. Modulated solutions

We look for solutions of the type

ui(y, z) = Li(z) + Mi(y, z), (15)

where, as before, i = y, z. Substituting the ansatz (15) into
eqn (11) and (12) we deduce that Li(z) are solutions of the
ordinary differential equations:

K22L
00
y � ZLy ¼ 0; (16)

K11L
00
z � ZLz ¼ 0; (17)

whereas Mi(y, z) are solutions of the partial differential
equations

K11My,yy + K22My,zz + (K11 � K22)Mz,zy � ZMy = 0, (18)

K22Mz,yy + K11Mz,zz + (K11 � K22)My,yz � ZMz = 0. (19)

In this framework, they have to be solved using the BCs

� �k2 þ K22L
0
y


 �
þ wLy ¼ 0; (20)

� k1 þ K11L
0
z

� �
þ wLz ¼ 0; (21)

and

�{K22My,z + (K22 + 2K24)Mz,y} + wMy = 0, (22)

�{K11Mz,z + [K11 � 2(K22 + K24)]}My,y) + wMz = 0, (23)

respectively. The components Ly(z) and Lz(z) of the ansatz
correspond to the case where the fluctuations components
depend only on z. This case corresponds to a 1D deformation
of the director field, which can be periodic or not, and has been
analyzed in ref. 42. Hereafter, we investigate the possibility of
periodic 2D solutions Mi(y, z), i = y, z, that satisfy the homo-
geneous bulk differential equations and BCs. To accomplish
this task, we seek solutions of the form

My(y, z) = G(z)sin(qy) and Mz(y, z) = F(z)cos(qy),
(24)

where q = 2p/l.44 Note that for q = 0, My(y, z) = 0 and Mz(y, z) =
F(z), i.e. we recover the case of 1D deformation treated in ref. 42.

Substituting eqn (24) into eqn (18) and (19), we get

K22G00(z) � (Z + q2K11)G(z) � q(K11 � K22)F0(z) = 0, (25)

K11F00(z) � (Z + q2K22)F(z) + q(K11 � K22)G0(z) = 0, (26)

for �d/2 r z r d/2, to be solved using the BCs

�{K22G0 � q(K22 + 2K24)F} + wG = 0, (27)

�{K11F0 + q[K11 � 2(K22 + K24)]G} + wF = 0. (28)

Eqn (25) and (26) form a system of linear ordinary differ-
ential equations with constant coefficients, to be solved with
the BCs eqn (27) and (28) that are also linear with constant
coefficients; therefore the solutions are of exponential form. In
addition, from the structure of these equations, it follows that
each of the functions F(z) and G(z) must be either symmetric or
antisymmetric with respect to z, with the additional constraint
that if G(z) is even, then F(z) must be odd, and vice versa. For
definiteness, we have chosen to consider this case in what
follows. Therefore, for a cell with identical interfaces, the
solutions of the linear system defined by eqn (25) and (26) take
the form

GðzÞ ¼ A1 cosh m1zð Þ þ A3 cosh m3zð Þ;

FðzÞ ¼ B1 sinh m1zð Þ þ B3 sinh m3zð Þ:
(29)

A1, A2, B1, B3 are integration constants, and m1, m3 are two
parameters to be determined. Substituting eqn (29) into
eqn (25) and (26) yields a homogeneous system of two
equations, which admits a non-trivial solution only if
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Bk = RkAk, where

R1 ¼ �
m1
q

and R3 ¼ �
q

m3
: (30)

m1 and m3 are defined using the following expressions:

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Z

K11

r
and m3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Z

K22

r
: (31)

The set of BCs, eqn (27) and (28), reduces to

{K22G0(d/2) � q(K22 + 2K24)F(d/2)} + wG(d/2) = 0,
(32)

{K11F0(d/2) + q[K11 � 2(K22 + K24)]G(d/2)} + wF(d/2) = 0,
(33)

These BCs, using the solutions eqn (29), may be put in the
matrix form as follows:

a11 a13

a31 a33

" #
�

A1

A3

" #
¼ 0; (34)

in which

a11 ¼ w cosh m1
d

2

� �
þ � K22 þ 2K24ð ÞqR1 þ K22m1½ � sinh m1

d

2

� �
;

a13 ¼ w cosh m3
d

2

� �
þ � K22 þ 2K24ð ÞqR3 þ K22m3½ � sinh m3

d

2

� �
;

a31 ¼ wR1 sinh m1
d

2

� �

þ �2 K22 þ K24ð Þqþ K11 qþ R1m1ð Þ½ � cosh m1
d

2

� �
;

a33 ¼ wR3 sinh m3
d

2

� �

þ �2 K22 þ K24ð Þqþ K11 qþ R3m3ð Þ½ � cosh m3
d

2

� �
:

(35)

Thus, nontrivial solutions can be obtained by imposing that

P ¼ det
a11 a13
a31 a33

� 	
¼ 0; (36)

Solving eqn (36) implies handling a nonlinear transcenden-
tal equation of the form:

qc = f (qc, d, w, K11, K22, K24, Z), (37)

thus exploring many possibilities in a parameter space formed
by four elastic constants, the thickness of the sample, and the
anchoring strength.44 Once a physically meaningful solution is
obtained for eqn (37), we have to analyze the sign of the
corresponding quadratic form representing the excess free
energy density promoted by the nonuniform structure repre-
sented by Mi(y, z), for i = y, z.

V. The quadratic form of energy

In the preceding section, we obtained the analytical profile of
the nematic director fluctuations.

uyðy; zÞ ¼ LyðzÞ þ GðzÞ sinðqyÞ;

uzðy; zÞ ¼ LzðzÞ þ FðzÞ cosðqyÞ;
(38)

where G(z), F(z) are given by eqn (29). Substituting these
expressions into eqn (4), the free energy density separates in
three contributions:

f = f1D + fc + f2D, (39)

where the free energy of the uniform planar state (the ground
state) was taken to be zero. f1D refers to the 1D-deformation,
specifically the Ly(z), Lz(z) components of the solutions, and its
expression is given in ref. 42. fc includes coupling terms
between the Li(z) and Mi(y, z) solutions, while f2D refers to the
2D-deformations.

Averaging the bulk free energy density over a period l = 2p/q
and considering only 2D deformations yields

f2DðzÞ ¼
1

4
Z GðzÞ2 þ FðzÞ2

 �

þ 1

4
K11 qGðzÞ þ F 0ðzÞ½ �2

þ 1

4
K22 qFðzÞ þ G0ðzÞ½ �2

� K22 þ K24ð Þq GðzÞF 0ðzÞ þ FðzÞG0ðzÞ½ �:

(40)

The bulk energy is calculated by integration of the latter
equation along the z-direction. Likewise, the surface part of the
free energy density, after averaging over y may be written as
follows:

fs ¼
1

4
w Fðd=2Þ2 þ Fð�d=2Þ2 þ Gðd=2Þ2 þ Gð�d=2Þ2

 �

: (41)

Finally, the total energy of the system is expressed as a
quadratic form:

F ¼ 1

2

X2
k¼1

X2
l¼1

MklAkAl ; (42)

in which the elements of the matrix M are formally given by

Mij ¼
@2F

@Ai@Aj
: (43)

To analyze the stability of the solutions, one must examine
the signs of the principal minors of the matrix M. The uniform
state is stable as long as these minors have positive determi-
nants, namely M1 = M11 and M2 = M11M22 � M12M21. If at least
one of them become negative, the uniform state can no longer
be considered stable.45 In such a case, the system may instead
favor a non-uniform structure which, in the scenario under
analysis, corresponds to a periodic structure characterized by a
small but nonzero wave vector q.
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VI. Stability analysis

Hereafter, we examine the stability of the solutions, consider-
ing the cases Z = 0 and Z a 0 separately.

1. g = 0

First, we treat the case of the absence of elastic coupling
between the two fields. In the special case for Z = 0, m1 = m3 =
q, R1 = R3 = �1, the elements aij are given by

a11 ¼ a13 ¼ w cosh q
d

2

� �
þ 2 K24 þ K22ð Þq sinh q

d

2

� �
;

a33 ¼ a31 ¼ �w sinh q
d

2

� �
� 2 K22 þ K24ð Þq cosh q

d

2

� �
;

(44)

and therefore P = 0 identically. The total energy per unit length,
in the case under consideration, is given by

F ¼ 1

2
A1 þ A3ð Þ2 w coshðqdÞ þ 2 K22 þ K24ð Þq sinhðqdÞ½ �;

from which it follows that the minimum of F is reached for A1 +
A3 = 0, i.e. for a non-deformed state.

2. g a 0

Before proceeding to the general case Z a 0, it is convenient to
define the reduced wavevector qr = q/q0 and the reduced
coupling elastic constant Zr = Z/Z0, where we introduced a
reference wavevector q0 = p/d and a reference coupling constant
Z0 = K11q0

2. In Fig. 1, the left panel shows the first principal

minor determinant M1, while the right panel shows M2 = det[M]
as a function of qr, for four representative values of Zr/Zc, where
Zc is the critical value of Z o 0 below which periodic solutions
emerge. The curves in Fig. 1 were calculated using the following
parameter set: K11 = 5 � 10�11 N, K22 = K11/5, K24 = 0.9K22,14,35

d = 10 mm and w = 2 � 10�5 J m�2. It is observed that M1

remains positive for all values of Zr. However, M2 becomes
negative when Zr/Zc 4 1. Notably, for Z 4 0, M2 remains
positive, indicating that the 2D-perturbations of the splay-
twist nematic phase are suppressed. Solving numerically the
equation M2 = 0, we find that the critical value of the coupling
constant is Zc = �0.165491Z0. The analysis of this case is
particularly insightful, as it permits an analytical treatment
that sheds light on the role of various parameters in the
emergence of non-uniform periodic structures, as discussed
in the following sections.

In general, M2 may have more than one zero. However, due
to the harmonic approximation used in the energy expansion,
only the longest wavelength mode of the instability is retained.
By solving the equation M2 = 0 numerically, we obtained the two
dotted curves shown in Fig. 2, which represent the variation of
qr as a function of Zr. Both solutions intersect the horizontal
axis (q = 0) at finite values of the coupling constant, denoted Zc1

and Zc2
o Zc1

. However, only the rightmost curve fulfills the
condition P = 0 that allows a non-trivial solutions for Ai, and
hence a deformed state as discussed above, eqn (36). Therefore,
the critical value of the coupling constant is given by Zc1

= Zc. In
the same figure, the solution to the condition P = 0 is shown as

Fig. 1 M1 left panel and M2 right panel, versus the reduced wavevector qr = q/q0 for a few representative values of Z as shown in the graph. For Z/Zc 4 1,
M2 change sign while M1 4 0, and the uniform nematic phase is destabilized.
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the red continuous line. The asymptotes at Zc and Zc2
also

indicated in the figure, are calculated in the next section.

3. P expansion for q - 0

The critical value Zc of Z for q - 0 can be evaluated from
eqn (36). In the limit q - 0, expanding P in power series of
q, we get

P ¼ aðZÞn1ðZÞn2ðZÞ
q

þmðZÞq; (45)

where

a Zrð Þ ¼
ffiffiffiffi
Zr
p

; (46)

n1 Zrð Þ ¼ K11q0
ffiffiffiffi
Zr
p

cosh
p
2

ffiffiffiffi
Zr
p
 �

þ w sinh
p
2

ffiffiffiffi
Zr
p
 �

; (47)

n2 Zrð Þ ¼ w cosh
p
2

ffiffiffiffiffiffiffiffiffiffiffiffi
K11

K22
Zr

r� �
þ q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K11K22Zr

p
sinh

p
2

ffiffiffiffiffiffiffiffiffiffiffiffi
K11

K22
Zr

r� �
:

(48)

For the set of elastic parameters considered in our analysis,
m(Zr) takes negative values approximately in the range �1 o
Zr o 0, as shown in Fig. 3.

Fig. 2 The reduced wave-vector qr of the instability versus Zr. The black solid points are calculated from the condition M2 = 0. The red line is calculated
from P = 0. The vertical line at Zr = �0.165491 corresponds to the minimal value, |Zc| given by eqn (52). Numerical values are as in previous simulations.
For qr - 0, Zr goes to its critical value Zc which is the weakest value of |Zr| where the uniform nematic destabilizes. The second vertical line at Zr = �0.2
would correspond to another branch of instability.

Fig. 3 Function m = m(Zr) in the range �1.009 r Zr r 0. m is plotted in units of w2.
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The condition P = 0 gives

qr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a Zrð Þ

n1 Zrð Þn2 Zrð Þ
m Zrð Þ

s
: (49)

From (49), taking into account eqn (46)–(48), it follows that q
is a real quantity for n2(Zr) r 0, vanishing for n2(Zc) = 0, i.e., for

wcosh
p
2

ffiffiffiffiffiffiffiffiffiffiffiffi
K11

K22
Zc

r� �
þq0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K11K22Zc

p
sinh

p
2

ffiffiffiffiffiffiffiffiffiffiffiffi
K11

K22
Zc

r� �
¼0: (50)

Fig. 2 shows two branches of the numerical solutions of
eqn (50). Modulated solutions appear only for Zr o Zc. In
addition, a second threshold appears at a smaller value of Zr.
Other branches also may appear at even lower values of Zr as
can be calculated from eqn (50). Rearranging the latter equa-
tion we get the equation for Zc as follows:

dw

pK22
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
K11

K22
Zc

r
tanh

p
2

ffiffiffiffiffiffiffiffiffiffiffiffi
K11

K22
Zc

r� �
: (51)

Since the instability takes place for Zc o 0, eqn (51) can be
rewritten as

dw

pK22
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K11

K22
Zcj j

r
tan

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K11

K22
Zcj j

r� �
: (52)

Eqn (52) is of some importance for this analysis since it
allows the investigation of the dependence of Zc on the anchor-
ing energy w and the thickness d of the sample. The first two
thresholds for Zr are depicted by the vertical asymptote lines in
Fig. 2.

Returning to the numerical analysis, we observe that it is
straightforward to track the evolution of this zero as a function of
qr. Indeed, Fig. 4 shows a typical plot of d = wd/K22 vs. Zc obtained
from the roots of the equation M2 = 0, represented by solid
points, which were calculated numerically by solving eqn (36).
The continuous line in Fig. 4 represents the approximate

solution given by eqn (52), in the limit q - 0. Note that as
Zc - 0 the anchoring energy w - 0 as well. Writing d as
d = d/L22, we conclude that |Zc| increases as the twist extrapola-
tion length of the interfaces, L22, becomes shorter, that is, for
stronger anchoring as expected.

The above analysis shows that, for a given liquid crystalline
material characterized by a set of elastic constants K11, K22, K24

and Z, the uniform nematic phase becomes unstable when the
magnitude of Z exceeds a critical value Zc. For a given material,
this critical coupling elastic constant, Zc, depends on the sample
thickness and on the anchoring energy. In other words, confine-
ment and surface effects can suppress splay-twist fluctuations.

The transition from the uniform nematic state to the splay-
twist nematic phase can be described within the framework of
Landau–de Gennes theory as a second order phase transition,
with the modulation wavevector q serving as the order para-
meter. The corresponding free energy density of the STN phase
can be expressed as follows:

fst ¼ fu þ
1

2
a Z� Zcð Þq2 þ 1

4
bq4 þ . . . (53)

where the elastic coupling, Z, between the two fields plays the
role of the temperature, while a, b are positive phenomenolo-
gical parameters, and fu denotes the free energy density of the
uniform nematic phase. Minimization of the free energy yields

q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a Z� Zcð Þ=b

p
. By fitting the curve qr(Zr) shown in Fig. 2,

with a function of the form q = [�a(Z � Zc)/b]b, one finds b =
0.50 and a/b = 1.31.

Finally, it is important to clarify that there is no competition
between the splay-twist and twist-bend modulations. It is now
well established that the bend elastic constant K33 remains
positive18 even in the vicinity of the twist-bend phase. Accord-
ing to our previous work25 which analyzed the emergence of the
twist-bend phase, it was shown that for K33 4 0, this phase
appears for positive values of the elastic constant Z above a
critical value ZTB, that is, Z 4 ZTB 4 0. In contrast, the splay-

Fig. 4 Dependence of the reduced anchoring energy d = wd/K22 as a function of Zr, for a fixed value of the instability wavevector qr = 10�5. Solid points
are numerical solutions of M2 = 0 while the continuous line is calculated analytically from the approximated solution eqn (52).
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twist periodic deformation predicted in the present work occurs
only for Z o Zc o 0, and therefore does not interfere with the
twist-bend phase.

VII. Concluding remarks

We explored the possibility that a nonuniform equilibrium
configuration could be energetically favored in a context invol-
ving heliconical liquid crystals.

To this end, we started from an elastic energy density
proposed as an extension of the Frank free energy for liquid-
crystalline media, in which there are essentially two fundamen-
tal symmetry elements: the director, n, a hallmark of conven-
tional liquid crystals, and the helix director, t, which appears to
be crucial for the existence of periodic structures in systems
composed of bent-core or dimer molecules. This same free
energy expression, which we proposed in recent years, has
already proven capable of describing the emergence and stabi-
lity of a periodic structure characteristic of the experimentally
observed twist-bend phase.25

Our analysis follows a simple yet thermodynamically rigor-
ous approach to investigating this possibility.44 We assumed
the existence of a uniform planar-like structure in the medium
described by this elastic model and explored the possibility that
a nonuniform structure could arise due to fluctuations of the
director in the plane perpendicular to this uniform configu-
ration. The general equations of the problem were analytically
established for a slab-shaped sample of thickness d, character-
ized by the presence of a finite anchoring energy (weak anchor-
ing) and the absence of an external field.

Within this system, everything behaves as if this new sym-
metry element, represented by the helix director t, acts as a
(intrinsic) field and plays a crucial role in the emergence of these
new structures. A periodic solution ansatz was proposed, and we
were able to demonstrate that it can be energetically favored in
the liquid-crystalline medium depending on the values of the
elastic parameters, the sample thickness, and the anchoring
energy. This occurs because the periodic solutions satisfy bound-
ary conditions such that a wave vector q assumes realistic critical
values as a function of the other macroscopic parameters
characterizing the sample, in the form of a transcendental
equation of the type q = f (q, d, w, K11, K22, K24).

In fact, a numerical analysis of the involved solutions reveals
the real possibility that a splay-twist-like phase is inherently
present in the free energy density expression we proposed and
may soon be experimentally observed.

To achieve this result, we fixed the values of the anchoring
energy, the sample thickness, and the other elastic parameters,
except for the parameter Z, a new elastic constant that acts as
the coupling strength between the director and the helix
direction. We demonstrated how this parameter plays a crucial
role in the emergence of a critical wave vector associated with
the favored periodicity in the system, i.e., the periodic structure
that modifies the sign of the quadratic form in a linearized
elastic model, causing it to transition from positive definiteness

– corresponding to the uniform planar structure – to an energy
regime where the minors of the matrix representing the quad-
ratic form become negative.

A more comprehensive analysis, which would make the
present work excessively long but could be developed as a
complementary study, should explore a broader range of elastic
parameter values, particularly those of the sample thickness
and the anchoring energy. Moreover, the general case of a non-
symmetric cell could be of interest, that is, a cell where
anchoring energy is different for the two interfaces and/or the
twist and splay anchoring energies are unequal.

This should be addressed in future work, as the study of the
emergence of such structures as a function of surface proper-
ties may be important not only for the liquid-crystalline systems
considered here but also, more broadly, for many finite-size
systems in condensed matter physics.
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