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Quantifying experimental errors in measuring
colloidal interaction potentials with
optical tweezers

José Muñetón-Dı́az, Augustin Muster, Luis S. Froufe-Pérez,
Frank Scheffold * and Chi Zhang *

We present a systematic study on the measurement of pair interaction potentials between small

particles using optical tweezers (OT), focusing on the modelling and quantification of three key

experimental errors: z-motion error, dynamic error, and static error. While these errors have been

previously acknowledged, their individual effects on such measurements had not been thoroughly

examined. We develop a framework to model these errors and validate it through controlled

experiments. By carefully tuning experimental parameters, we decouple and quantify each error source,

demonstrating that they can be independently controlled and accounted for. Our approach enables a

more precise access to the true interaction potential, reducing measurement ambiguities and improving

the accuracy of comparisons with theoretical models. As a demonstration of the framework’s

applicability, we apply our correction method to extract the depletion attraction potential from

experimentally measured data, showcasing how systematic error removal enables the retrieval of

physically meaningful interaction potentials. This work provides a robust methodology for enhancing the

accuracy of OT-based potential measurements and for studying colloidal interactions.

1 Introduction

Interaction potentials between colloidal particles are funda-
mental to understanding phase transitions, self-assembly, and
emergent properties in complex fluids, soft matter, and biolo-
gical systems.1–5 Precise measurements provide deeper insights
into the stability, phase behaviour, and structural transforma-
tions of colloidal systems, facilitating the development of theore-
tical and predictive models.6–8 Researchers have inferred
interaction potentials through various methods, including the
analysis of colloidal phase behaviour and equations of state,9,10

inversion of pair-correlation functions via liquid-state theories,11,12

and direct force measurements using techniques such as the
surface force apparatus and atomic force microscopy (AFM).13,14

However, these methods either measure interactions indirectly or
involve at least one macroscopic surface. To directly measure
interactions between two (or more) colloidal particles, researchers
have developed alternative experimental approaches, with one of
the most direct being optical tweezers (OT).15–19 In the latter
approach, two colloidal particles are trapped along a laser-
generated optical line, or alternatively in two point-traps, and

their centre-to-centre distance fluctuations provide a direct way to
determine their interaction potential.

Although OT-based measurements offer high precision,
obtaining an accurate interaction potential from experimental
data is still challenging because of unavoidable experimental
errors. The first major source of error arises from out-of-plane
(z-motion) fluctuations.20,21 Optical traps often operate in a
two-dimensional imaging plane, but particles move in three
dimensions. The limited trap stiffness leads to axial displace-
ments, which distort the measured 2D interparticle distances.
The second error source is a dynamic error, which results from
position blurring due to the finite exposure time of the camera.
Since the recorded particle positions are effectively time-
averaged over the exposure time, systematic biases emerge in
the measured particle separations.22–24 The third source of
error is a static error, which originates from localisation
uncertainty due to imaging noise and finite resolution, blurring
the extracted pair distances.23,24

Previous studies have acknowledged these sources of errors,
often treating them collectively as a single uncertainty
contribution.25,26 In our previous work,27 the influences of
dynamic error and static error were discussed. However, their
individual effects on measured potentials have not been sys-
tematically examined. This lack of clearly separating the differ-
ent contributions can obscure the role of each error type,
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leading to potential biases in the extracted interaction poten-
tials. An incomplete understanding of these contributions
limits the precision and reliability of experimental results.

In this work, we develop a systematic approach to model,
quantify, and correct the effects of experimental errors in OT-
based potential measurements. By independently tuning
experimental parameters, we isolate the influence of the
z-motion error, dynamic error, and static error, allowing their
individual contributions to be quantified. Our study provides a
clear guideline for performing accurate potential measure-
ments using optical tweezers by identifying key sources of
errors and outlining methods to mitigate their impact. The
framework we establish enables the correction of these errors,
significantly improving the precision of extracted interaction
potentials. This advancement represents a major step toward
achieving absolute potential measurements, where systematic
distortions are minimised, and the true interaction potential
can be reliably determined. To demonstrate the effectiveness of
our approach, we apply our correction method to extract the
depletion attraction potential from experimentally measured
data, showcasing how error removal enables the retrieval of
physically meaningful interaction potentials.

All measurements in this study were conducted using line
optical tweezers (LOT). However, the methods and modelling
presented are equally applicable to measurements performed
with multi-point tweezers.

2 Methods
Origin and modelling of the experimental errors

To ensure reliable extraction of interaction potentials, it is
necessary to understand and quantify different experimental
errors. In this section, we present a theoretical framework to
model the three primary sources of errors—the z-motion error,
dynamic error, and static error—before experimentally verify-
ing their contribution. The error due to z-motion arises because
the measured centre-to-centre distance from a 2D (top-down)
observation is different from the actual 3D separation – due to
the out-of-plane motion.20,21 The dynamic error originates from
the finite exposure time: the recorded ‘‘snapshot’’ is, in fact,
time averaged over the exposure time interval.22–24 Therefore,
the particle position we extract from the image is also averaged.
Finally, the static error results from the limited precision of
particle tracking, which is governed by experimental noise
when an image is recorded.23,24 Each error contribution arises
at a different stage during the experiment: the z-motion error
during the particle movement, the dynamic error during image
recording, and the static error during image analysis. To
accurately mirror these stages, our error-modelling process
follows the same order, as illustrated in Fig. 1. We begin by
considering a true interaction potential U(r) (in units of kBT) as
a function of the centre-to-centre distance in three dimensions.
We selected two example potentials to discuss the influence of
the various sources of errors: the black line in (a) represents a

hard-sphere potential, while in (b) it represents a depletion
attraction potential well of depth 4 kBT.

We model the z-motion with a Gaussian distribution func-
tion Qz(z) = N[0,sz

2], which describes the probability of the
particle being displaced by a distance z. When a particle moves

out of plane, the true 3D separation is given by r3D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

,
where r is the observed 2D distance. The observed potential is
determined by averaging over all possible axial displacements.
The probability of observing a given r is weighted using the
Boltzmann factor e�U(r):

PðrÞ ¼
ð1
�1

QzðzÞ exp� U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p� �� �
dz: (1)

where P(r) represents the 2D distribution of interparticle dis-
tances, which would be observed if particle positions were
sampled instantaneously.

Fig. 1 Modelling the influence of experimental errors on the measure-
ment of interaction potentials. We begin with an initial potential—either a
hard-sphere repulsion (a black line in a) or a typical depletion attraction (a
black line in b) of depth 4kBT. The first error introduced is due to the out-
of-plane (z-direction) motion, modelled using a Gaussian displacement
with standard deviation sz. This effect causes the potential to bend toward
shorter distances, particularly in regions of strong repulsion (ckBT). Next, a
dynamic error is added, accounting for the time-averaging during finite
camera exposure time and characterised by sD. Finally, a static error---as-
sociated with localisation uncertainty in particle tracking—is added,
described by sS. After all three sources of errors are taken into account,
the resulting potential curve (shown in green) can be directly compared to
experimental data. The parameters sz, sD, and sS serve as tunable para-
meters that quantify the influence of experimental uncertainties in the
model. In both panels, sz = 0.05R, sD = 0.01R, and sS = 0.005R, reflecting
uncertainties encountered under typical experimental conditions.
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In practice, however, each image is captured over a finite
exposure time, during which the particles undergo Brownian
motion. This results in a time-averaged recorded distance
rather than an instantaneous one. To account for this, we
model the recorded position as an average over fluctuations
that occur during the exposure time. Let us assume that at the
start of an exposure, the particle pair is at a distance r (which
corresponds to the value measured at zero exposure time).
During the exposure time, thermal motion causes their separa-
tion to fluctuate continuously. The recorded distance is the
average of this fluctuating trajectory and differs from the
starting distance by a deviation a, such that the recorded
distance is r + a. The probability of observing a given averaged
deviation a from position r is described by the distribution
QD(r,a). In the case of purely diffusive motion, a follows a
Gaussian distribution N[0,sD

2] (see the SI Material), where sD

represents the characteristic range of fluctuations during the
exposure. In the absence of interactions, these fluctuations
have no directional bias (i.e. a can take positive and negative
values) and are independent of r.

However, in the presence of an interaction potential, the
energy landscape biases the motion. Fluctuations that move the
system to lower potential energy are favoured, while those that
increase energy are suppressed. To account for this, we include
an energetic weighting into the fluctuation model. The prob-
ability of a fluctuation from r to r + a is given by:

QDðr; aÞ / exp � a2

2sD2

� �
exp �Uðrþ aÞð Þ; (2)

where U(r + a), the potential at the recorded position, mod-
ulates the probability of such a fluctuation that drifts the
particle from position r to the recorded position r + a. When
U(r) is flat, QD reduces to a pure Gaussian. In regions of strong
confinement or attraction, the Boltzmann term suppresses
motion, effectively reducing the dynamic error.

The probability of observing a recorded distance r is
obtained by summing over all possible fluctuations a, each
weighted by the probability that the particles were initially at
r � a and then experienced an average deviation of a during the
exposure time.

PdynðrÞ ¼
ð1
�1

Pðr� aÞQDðr; aÞda: (3)

In the final step, we account for the static error introduced
by localisation uncertainty, s, in particle tracking. This error
arises from factors such as image noise and it leads to an
additional blurring of the measured interparticle distances. We
model this effect by convolving the dynamically corrected
distribution Pdyn(r) with a Gaussian kernel, QS(s) = N[0,sS

2],
where sS characterises the standard deviation of the tracking
uncertainty.

PstðrÞ ¼
ð1
�1

Pdynðr� sÞQSðsÞds: (4)

This final convolution completes the modelling of experi-
mental distortions in the measured interparticle potential. The

resulting distribution can then be converted into an effective
interaction potential using the inverse Boltzmann relationship:
Umodelled(r) = �ln Pst(r). Fig. 1 illustrates, step by step, how each
experimental error modifies the measured potential, starting
from the ideal true interaction.

Experimental setup

To experimentally validate the effects of the modelled errors, we
employ a line optical tweezer (LOT) system to trap colloidal
particles. A 1064 nm fibre laser (YLR-10-LP, IPG Photonics) is
used to create the optical trap in the focal plane of a Nikon Ti2
inverted microscope. The system employs a 100� APO TIRF
objective with a numerical aperture (NA) of 1.49 to achieve tight
optical confinement. Two distinct experimental configurations
are used: an acousto-optic modulator (AOM)-based setup for
time-shared traps and a spatial light modulator (SLM)-based
setup for static traps.

In the AOM-based setup, the laser is directed through an
acousto-optic modulator (DTSXY-400-1064, AA Opto-Electronic)
before being expanded and collimated into the back aperture of
the objective. A function generator (Tektronix AFG3022C) sup-
plies a designed waveform to the AOM, causing the focal spot to
scan rapidly over a length of approximately 4 mm at a frequency
of 10 kHz, forming a Gaussian intensity profile. This scanning
frequency is much faster than the timescales of Brownian
motion, resulting in the formation of an effective time-
averaged line trap. The laser polarisation is aligned parallel to
the trap axis to minimise optical binding effects.27

In the SLM-based setup, a spatial light modulator (X10468,
Hamamatsu) is used to modulate the wavefront of the trapping
laser, creating a static line trap. A computer-generated holo-
gram is applied to the SLM to shape the beam, with additional
wavefront corrections implemented following the methods
described in ref. 18 and 28.

Polystyrene (PS) particles (Bangs Labs, USA) of nominal radii
of R = 250 � 20 nm and R = 355 � 20 nm are used in the
experiments. We select particles of small size to highlight the
influence of errors on the potential. Given our experimental
setup, using even smaller particles would result in an unstable
trap, leading to unreliable measurements. In most practical
cases, as reported in the literature, slightly larger particles are
more commonly used. We suspend the particles in a 5 mM KCl
aqueous solution. Two particles are simultaneously trapped
within the optical line trap, allowing for measurements of the
interparticle potential. High-speed sCMOS cameras (Zyla Andor
for the AOM setup and Prime 95B Teledyne Photometrics for
the SLM setup) are used to record particle positions.

Extraction of the intrinsic pair potential

The optical trap (OT) is used to position the particles, and it
also induces optical binding forces. As shown in our earlier
work27 and those of others,26,29 these optical forces can be
described quantitatively. After removing the optical forces, we
obtain what we refer to as the intrinsic potential, which is still
affected by the errors discussed here—thereby concealing the
true potential. We summarize the course of the data analysis as
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follow. The centre-to-centre distances between particles in the
LOT are determined using a tracking method that fully recon-
structs the images.27 Briefly, we first apply standard centroid
tracking30 to provide an initial guess for the particle positions.
The final, more accurate positions are then obtained by itera-
tively optimising both the particle positions and the shape
parameters to best match the reconstructed image to the
recorded intensity pattern. The probability distribution of these
distances is then converted into a raw potential using the
Boltzmann relation. This raw potential includes contributions
from the optical trap potential UOT(r), the optical binding
potential UOB(r), and the intrinsic pair potential U(r). As
described in ref. 27, UOT(r) and UOB(r) are carefully removed,
isolating the intrinsic pair potential between the particles.

It is important to note that the optical binding potential
UOB(r) varies depending on the technique used to generate the
line optical trap (LOT). Since the optical binding effects funda-
mentally arise from light scattering, the specific method by
which a line trap is created influences the resulting optical
binding potential. Time-shared LOTs, generated using acousto-
optic modulators (AOM), and holographic-static LOTs, created
using spatial light modulators (SLM), differ in their temporal
and spatial distributions of the scattered optical field, leading
to distinct optical binding interactions.

We investigate the differences in optical binding between
these two setups, with both experimental measurements and
calculations using discrete dipole approximation (DDA).31 The
DDA results show excellent agreement with experimental data,
as illustrated in Fig. S2, and their numerical stability is con-
firmed through a convergence study presented in Fig. S5.
Further details on the optical binding effects are provided in
the SI. The static LOT generates an optical binding interaction
characterised by oscillations that extend over long distances,
with a slow decay following an approximate 1/r scaling. In
contrast, the time-shared LOT produces an optical binding
potential with minimal oscillations, which decays more rapidly
as the interparticle distance increases. In both cases, the optical
binding force is most pronounced when the particles are in
close proximity. In some cases, in static LOTs, the optical
binding force can become so strong that it effectively prevents
the particles from approaching each other, posing challenges
for exploring the intrinsic pair potential in their specific
regime. Conversely, the time-shared LOT can sometimes
induce a strong attractive optical binding force, leading to
excessive pushing or even permanent binding of the particles.

The choice of the LOT technique should take into account
the particle size, material, and intrinsic interactions of interest.
As an alternative approach to LOT and multi-point optical
tweezers, blinking optical tweezers (BOT) temporarily switch
off or rapidly modulate the traps, allowing particles to interact
freely without optical binding forces or external trap
potentials.32 This reduces experimental complexity and enables
direct extraction of intrinsic pair potentials. However, the lack
of confinement in BOT may lead to larger out-of-plane fluctua-
tions, making it more challenging to accurately determine true
3D interparticle distances.

Disentangling and quantifying errors in experiments

To isolate the influence of each source of error, we designed our
experiments so that one parameter affecting a specific error
type was varied while all others were held constant. The z-
motion error is primarily affected by the depth at which the trap
is located within the sample, as optical aberrations change with
the focal plane position.33,34 The dynamic error is controlled by
adjusting the exposure time of the camera, with longer expo-
sure times leading to more pronounced time-averaging effects.
The static error is influenced by the signal-to-noise ratio (SNR)
of the recorded images, which is tuned by modifying the
illumination intensity. For each case, the particle trajectories
are recorded and analysed to quantify deviations caused by
each error type. These experiments are used to validate the
modelling process, leading to correction methods that allow us
to recover a more accurate representation of the true interpar-
ticle potential.

The z-motion error, sz, is often difficult to determine directly
in experiments. However, insights can be gained by analysing
the y-motion (lateral, perpendicular to the long axis of the line
trap), which is experimentally accessible. The z-motion is
typically slightly larger than the y-motion, with the exact
relationship depending on the particle size. It has been
reported in ref. 35 that, for particles around R B 250 nm, the
trap stiffness in the y-direction is approximately 5 to 6 times
higher than that in the z-direction. Based on this, we estimate

sz ¼
ffiffiffi
6
p

sy for the measurements shown in Fig. 2(b) and (c).
This estimation is consistent with values reported in previous
studies using a similar AOM-based setup with slightly larger
particles.21 For experiments conducted under fixed optical
trapping conditions, sz is expected to remain constant, as it
reflects the intrinsic properties of the trap. The scenario where
the effects of the z-motion error on the measured potential are
minimised depends on the minimisation of spherical aberra-
tion and a careful balance between trapping laser power and
push. It is worth noticing that when two particles are being
strongly pushed against each other by the lateral confinement
of the line trap, the trend for particles to stack on top of each
other is enhanced. This ‘‘over-pushing’’ in turn leads to an
elevated sz. In the present study, the effect of over-pushing is
not included in sz as the particles are only gently pushed.

We also briefly discuss how gravity affects the axial motion
of trapped particles. For a medium of density rm, a particle of
density rp and volume V has a gravitational length lg = kBT/(rp�
rm)Vg which measures the vertical distance over which gravita-
tional potential energy changes by an amount comparable to
the thermal energy kBT. For displacements Dz { lg, upward and
downward thermal motions are equally likely. In this regime,
the z-motion is dominated by optical trap confinement, and
gravitational effects are negligible. The gravitational lengths of
our R = 250 nm and R = 355 nm particles are lg E 121 mm and
lg E 42.3 mm, respectively. These values are orders of magni-
tude larger than the measured nanoscale z-motion error sz in
our experiments. In contrast, for much larger particles
(R 4 2 mm), and in particular for a larger buoyancy mismatch
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rp � rm, lg becomes comparable to sz, and gravity can signifi-
cantly suppress thermal z-direction fluctuations, thereby redu-
cing the axial positional uncertainty. However, before reaching
this limit, and even for high numerical aperture objectives,
scattering forces become important, exerting radiation pressure
and pushing particles along the optical beam propagation
direction.36 Beads larger than R B 2 mm are rare in precision
tweezer work. They rapidly sediment and experience dominant
scattering forces. Here, we consider only the common case
where the gradient (tweezing) forces exceed the scattering
forces and gravity can be neglected. However, if needed, such
effects could easily be included in the analysis for specific cases
where larger particles are studied.

Following the method reported in our previous work,27 the
dynamic error sD is quantified by analysing the dependency of
relative motion on a lag time. Specifically, all the frames from a
video with a certain particle distance are selected. Then, the
relative motion as a function of lag-time t is calculated as the
average change of distance with respect to the initially selected
frames. Finally, the dynamic error is calculated from the
interpolated t-dependent relative motion (see the SI).

Static errors sS for different illumination settings are
obtained experimentally by looking at the tracking variance of
a pair of ‘‘in contact’’ particles adsorbed on the coverslip.24

Since the distance does not change any longer when they are
adsorbed, the variance then reflects the tracking precision, or
the static error.

3 Results
Validation of the model

To validate our error model, we first establish a baseline
condition corresponding to the best possible experimental

settings in this set of measurements. These optimal parameters
were determined through systematic tuning of the trapping
depth, exposure time, and illumination intensity (see the SI).
The trapping depth was adjusted to minimise spherical aberra-
tion, resulting in minimised axial fluctuations. As described in
Section 2, the z-motion error is estimated from the lateral
fluctuations. Specifically, we observe that the standard devia-
tion in the y-direction is around sy = 17 nm at the optimised
depth. Considering isotropic thermal motion and a harmonic
potential, the axial localisation error is then given by

sz ¼
ffiffiffi
6
p

sy, leading to sz = 42 nm. A short exposure time of
25 ms was used to minimise the time-averaging effect, yielding a
dynamic error of sD = 5 nm. Finally, sufficient illumination was
applied to achieve a high signal-to-noise ratio in the recorded
images, resulting in a static tracking error of sS = 3 nm. These
baseline values define the reference for all subsequent mea-
surements used to validate the model. The designed experi-
ments systematically increase one source of error at a time—by
deliberately defocusing the trap to increase sz, extending the
exposure time to increase sD, or reducing illumination to
increase sS—while keeping the other parameters fixed. This
controlled approach allows us to disentangle the contributions
of each individual error source to the measured interaction
potential and directly compare them with the predictions of the
theoretical model.

Fig. 2 shows the measured potential for different experi-
mental settings, designed to disentangle the effects of different
errors on the extracted pair potential of polystyrene particles
with a nominal radius of 250 nm. The particles were dispersed
in 5 mM KCl (Debye length lD B 4.3 nm) to minimise electro-
static interactions while still balancing the van der Waals
interaction to prevent instability. Since the range of the
double-layer interaction is smaller than the resolution of our

Fig. 2 Influence of the z-motion error (a), dynamic error (b), and static error (c) on experimentally extracted pair potentials between polystyrene
particles with a radius of 250 nm. Panel (a) shows the impact of the z-motion error by varying the trapping depth in the sample from z = 0.55 mm to z =
4.4 mm. Solid lines: measured interaction potentials were modelled using a hard-sphere potential with optimal settings of sD = 5 nm and sS = 3 nm, and
we find sz values of 76, 46, 42, 50, and 58 nm (top to bottom in the legend). Panels (b) and (c) present measurements taken at an optimal depth of 2.2 mm
and a z-motion error of sz = 42 nm. In (b), the dynamic error is varied by changing the camera exposure time (25, 250, and 2500 ms) while maintaining the
signal-to-noise ratio across measurements by adjusting the illumination intensity. The static error is fixed at sS = 3 nm, and the corresponding dynamic
errors are sD = 5, 8, and 12 nm, respectively. In (c), the static error is varied by tuning the illumination intensity to achieve different signal-to-noise ratios
(SNRs ranging from 120 to 13, as indicated in the legend), while keeping the exposure time fixed at 25 ms (sD = 5 nm), and the corresponding static errors
are sS = 3, 5, 10, and 20 nm, respectively. In all panels, the solid lines represent model fits using the hard-sphere potential, incorporating the relevant
experimental errors. In panel (a), the best-fit particle radius is 261 nm, while in panels (b) and (c), it is 254 nm.
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setup, we model the interaction using an ideal hard-sphere
potential for simplicity. In practice, we leave the particle radius
as a fitting parameter to account for possible size variations. As
shown in Fig. 2, the fitted radii in all three panels are slightly
larger than the nominal value, which could be due to screening
effects or simply arise from polydispersity.

The effect of the z-motion error was examined by changing
the trapping depth within the sample, as shown in Fig. 2(a).
Since spherical aberration varies with the focal plane
position,33,34 adjusting the trapping depth modifies the extent
of the out-of-plane motion. Experiments were performed with
different trapping depths, resulting in different z-motion. The
value of sz is fitted to be 76 nm, 46 nm, 42 nm (optimal position
at depth z = 2.2 mm), 50 nm, and 58 nm, respectively, as moving
the trapping depth from very close to the coverslip surface to
4.4 mm into the sample. All measurements of this group were
conducted with a fixed exposure time of 25 ms (dynamic error
sD = 5 nm) and with sufficient illumination (static error
sS = 3 nm). This set of experiments serves two purposes: first,
to quantify the effect of the z-motion error on the extracted
potential; and second, to determine the optimal experimental
conditions that minimise this error. The results indicate that
when spherical aberration is minimised by carefully choosing
the trapping depth, z-motion fluctuations are significantly
reduced, allowing a more accurate potential measurement to
be obtained. This is the case for the potentials plotted with
green and orange colours in Fig. 2(a).

The measurements in Fig. 2(b) and (c) were performed at the
optimised depth, where the z-motion error was estimated to be
approximately sz = 42 nm, as detailed in the beginning of this
section. Fig. 2(b) explores the influence of the dynamic error on
the measured potential. The dynamic error arises from time-
averaging due to the finite exposure time, which systematically
shifts the extracted pair potential. To quantify this effect, we
recorded measurements with exposure times of 25 ms, 250 ms,
and 2500 ms. The SNR of the recorded images was maintained
by adjusting illumination intensity accordingly. The corres-
ponding dynamic errors were sD = 5, 8, and 12 nm, while the
static error was fixed at sS = 3 nm. The results indicate that
increasing exposure time does not significantly alter the overall
shape of the potential but causes a slight shift in the apparent
particle size. This shift occurs because longer exposure times
bias the recorded particle separation towards larger distances
(in the case of repulsive interaction) due to the averaging effect
over fluctuating positions. For attractive potentials, the
dynamic error has a different influence: it smears the attraction
potential, making it appear shallower, as shown in Fig. 1(b).

Fig. 2(c) examines the role of the static error, which is
associated with localisation uncertainty due to finite tracking
precision. This error depends primarily on the SNR of the
recorded images, which was systematically varied by tuning
illumination intensity. The experiments were conducted with a
fixed exposure time of 25 ms to ensure that the dynamic error
remained constant (sD = 5 nm). Four different illumination
intensities were used, corresponding to SNRs of 120, 40, 20 and
13 (static errors of sS = 3, 5, 10, and 20 nm). The results confirm

that a higher static error leads to a broader and softer apparent
interaction potential, as expected. The experimental data in
Fig. 2(b) and (c) are well-matched with ideal hard-sphere
interaction models that incorporate the corresponding error
contributions.

Correction of the errors

With the validation of the error model, we now turn to estab-
lishing a correction framework that allows for the extraction of
accurate interaction potentials from experimental data affected
by these errors. The approach to correction depends on
whether the functional form of the potential is known or not.

When the form of the potential is unknown, the problem
becomes more general and falls into the category of inverse
problems. Extracting the true potential in this case requires
regularisation techniques to prevent overfitting and ensure
stability in the solution.37,38 More advanced methods, such as
machine learning approaches including neural networks, have
also been proposed to tackle inverse problems in experimental
physics.39,40 However, the solution of inverse problems is
beyond the scope of this work. Here, we focus on demonstrat-
ing an effective correction method for the case where the
potential form is known and leave the general inverse problem
for future studies. Nonetheless, we would like to emphasize
that a systematic variation of the contributions from different
error sources, as demonstrated in this work, could provide key
input data for performing a stable inversion.

In cases where the form of the potential is known, the
correction can be performed by applying the error models to
the true potential and tuning the adjustable parameters so that
the blurred true potential matches the measured data. This
allows us to reconstruct the true interaction potential by
systematically removing the distortions. We demonstrate this
approach with the well-known case of depletion attraction.

Depletion interactions arise in colloidal suspensions due to
the exclusion of smaller particles from the space between larger
ones, leading to an effective attraction. The Asakura-Oosawa
(AO) model41 describes this interaction with a well-defined
potential form, making it an ideal case study for validating
our error correction framework. According to the AO model, the
depletion potential UAO(h) between two colloidal particles of
radius R in a suspension of non-adsorbing depletant of dia-
meter dm, in the case of dm { R, is given by:

UAOðhÞ ¼
1; h � 0;

�1
2
pnRðdm � hÞ2; 0o h � dm;

0; h4 dm:

8><
>: (5)

Where n represents the number density of the depletant, and
h = r � R is the surface–surface distance of the large particles.
The AO model considers the depletant (small) particles to
behave like an ideal gas, and therefore, it is most accurate
when applied to low to moderate depletant densities.

To validate our correction method, we measured the deple-
tion potential between two trapped polystyrene particles of
radius R = 355 nm in the presence of a non-adsorbing micelle
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solution. The depletion interaction measurements were per-
formed under optimised conditions to minimise experimental
errors. The measurements were conducted in a PBS 1X buffer to
maintain a stable pH of 7.4. In this buffer, the Debye length is
approximately lD E 0.7 nm.42 As the depletant, we used
Pluronic F108 copolymer micelles to induce short-range attrac-
tive interactions, performing measurements at two different
F108 concentrations, 1 mM and 2 mM. As reported in ref. 43,
the critical micelle concentration (CMC) of F108 is temperature-
dependent. Our experiments were conducted at T = 35 1C,
where the CMC is approximately 0.15 mM. The surfactant
concentration was chosen sufficiently low to ensure that liquid
structuring effects in the micellar solution remain negligible.
Concerning the latter, the contact potential deepens to a
leading order as (1 + 0.2f).44 Since we remain within f r
0.12, this contribution remains negligibly small—see also the
SI in our ref. 27.

Taking the AO model, eqn (5), and numerically accounting
for the different sources of experimental uncertainty according
to eqn (1)–(4), we obtain a version of the AO model blurred by
experimental errors. This blurred model is directly compared to
the experimentally measured interaction potentials shown in
Fig. 3, where the shaded areas represent the range of plausible
interaction potentials. In this analysis, the colloidal particle
radius R, the micelle diameter dm, and the micelle number
density n are the relevant parameters. The particle radius is set
to R = 360 nm to achieve the best agreement, slightly larger than
the nominal value of 355 nm, a difference which may arise from
polydispersity. The micelle diameter is fixed at dm = 20 nm, as
determined independently by dynamic light scattering (DLS,

NanoLab 3D, LS Instruments, Switzerland). The micelle num-
ber density n is derived from the aggregation number, chosen
to be 40 � 4, following the literature†.43,45 An aggregation
number of 40 yields n values of 12.8 � 103 mm�3 (volume
fraction f = 5.4%) for 1 mM and 27.8 � 103 mm�3 (f = 11.7%)
for 2 mM. As shown in Fig. 3, the experiments fall very well
within the prediction by eqn (5).

The dashed lines in Fig. 3 represent the unblurred AO
potential, plotted using the same parameters as the solid lines.
It is evident that, without accounting for experimental errors, a
quantitative interpretation of the measured potential is not
possible. The discrepancy between the unblurred AO model
and the experimental data highlights the necessity of incorpor-
ating experimental uncertainties into the theoretical frame-
work. By applying the error correction model, we effectively
reconstruct the true interaction potential, demonstrating the
robustness of our approach.

4 Discussion and conclusions

In this work, we have systematically studied experimental
errors in the measurement of pair interaction potentials using
line optical tweezers (LOT). Through controlled experiments,
we validated a model that accounts for three primary sources of
errors: z-motion error, dynamic error, and static error. Each of
these errors contributes to distorting, shifting and broadening
the extracted potential in distinct ways. Understanding these
effects allows for a systematic correction approach, improving
the reliability of experimentally extracted potentials.

With this validated error model, we established a correction
framework that enables the accurate extraction of true inter-
action potentials from experimental data. We demonstrated the
effectiveness of this approach using a depletion interaction
showcase, where the experimentally measured potential,
affected by systematic errors, was corrected to recover the
underlying Asakura-Oosawa (AO) depletion potential. By sys-
tematically removing the effects of experimental distortions, we
showed that precise reconstruction of interaction potentials is
possible.

Overall, this study provides a practical guideline for per-
forming precise potential measurements using optical tweezers
and represents a significant step toward achieving absolute
potential measurements in soft matter systems. By system-
atically identifying and correcting key sources of errors, our
framework enhances the reliability of experimental data,
enabling more precise comparisons with theoretical models
and simulations. Future work may extend this methodology to
explore data-driven, model-free approaches for extracting inter-
action potentials from experimental measurements.

Fig. 3 Measured depletion interaction potential U(r) between polystyrene
colloids (R C 355 nm, nominal size) in Pluronic F108 solutions (1 mM and
2 mM) prepared in PBS 1X at T = 35 1C. Symbols represent experimental
data. Shaded areas show the numerically modelled potentials using the
Asakura Oosawa (AO) framework, incorporating experimental errors: sz =
42 nm, sD = 5 nm, and sS = 3 nm. The AO model parameters include a
polystyrene particle radius set to R = 360 nm for best agreement with
experiments (slightly larger than the nominal mean 355 nm), a micelle
diameter of dm = 20 nm determined by DLS, and a micelle aggregation
number chosen in the range of 40 � 4. Dashed lines show the unblurred
AO model for comparison, plotting with an aggregation number of 40.
This value results in micelle number densities n of 12.8 � 103 mm�3 for
1 mM and 27.8 � 103 mm�3 for 2 mM.

† For F108 micelles of diameter 14, 22, and 28 nm, the aggregation numbers are
predicted to be 35, 43, and 61, respectively.
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