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Errors matter when measuring Poisson’s ratio of
nearly incompressible elastomers

Robert D. Nedoluha, Majed N. Saadawi and Christopher W. Barney *

Poisson’s ratio (n) is a materials property that quantifies the compressibility of a material. Measurements

of this property become important for soft elastomers which display nearly incompressible behavior

(n 4 0.495). Small differences in this property can lead to large differences in the stresses that develop

during hydrostatic loadings such as those observed in gaskets, o-rings, and thin films. While there are

multiple methods that can be used to quantify n, many methods were developed for compressible

materials which require less precision than nearly incompressible materials. Here an experimental survey

of three methods of characterizing n of a nearly incompressible elastomer is performed. These methods

include direct measurement via digital image correlation, indirect measurement from the bulk modulus

and Young’s modulus, and a recently proposed method of indirect measurement from the shear

modulus and Young’s modulus. Particular care is paid towards understanding how experimental errors

impact both the precision and accuracy of each method. It is found that indirectly measuring n from the

bulk modulus and Young’s modulus is the most appropriate method for distinguishing nearly

incompressible behavior from the incompressible limit (n = 0.5).

Soft solids are a class of materials where their bulk modulus is
orders of magnitudes larger than either their shear or Young’s
moduli.1 This difference results in nearly incompressible beha-
vior (n 4 0.495) as the energy penalty for changing shape is
much lower than that for changing volume. Assuming a soft
solid is incompressible (n = 0.5) is often reasonable; however,
there are loadings where this assumption breaks down. Parti-
cularly in structures involving hydrostatic loadings such as
those observed in gaskets, o-rings, and thin coatings.2–4 Small
changes in material compressibility, as quantified through
differences in Poisson’s ratio, can lead to significant differ-
ences in the stresses that develop in such geometries.4 These
small changes demand the precise characterization of Pois-
son’s ratio to accurately model the stresses that develop during
hydrostatic loadings.

While measuring the Poisson’s ratio of nearly incompressi-
ble materials is important, it is also challenging. One challenge
is that as a material approaches the incompressible limit, an
increase in the precision of the measurement technique is
needed to meaningfully characterize this property. In the
infinitesimal strain limit, Poisson’s ratio can be defined as
the negative of the ratio between the transverse and axial
strains during uniaxial extension.5 Using this definition and
assuming stretching is applied in the 1 direction gives,

evol = e1 + e2 + e3 = e1(1 � 2n), (1)

where evol is the volumetric strain, e1 is the applied strain, and n
is Poisson’s ratio. In the incompressible limit, evol = 0 and the
volumetric strain is independent of the applied strain. Eqn (1)
shows that the incompressible condition is satisfied when n =
0.5. While soft solids are often assumed to be incompressible,6

setting n = 0.5 implies an infinite energy penalty for changing
volume. This can be seen in the relationship between the bulk
modulus K and Young’s modulus E,7

K ¼ E

3ð1� 2nÞ; (2)

where K diverges as n- 0.5. For crosslinked rubbery networks,
K is often B1 GPa while E is B1 MPa.8 Using these values gives
a value of Poisson’s ratio of 0.4998%3 which is only distinguish-
able from the 0.5 limit with a measurement error of 0.0001 or
less. For compressible materials (n o 0.495), resolving n to the
fourth decimal point is unnecessary and measurements with
lower precision can be performed. This implies that nearly
incompressible materials need to be matched with measure-
ment techniques that provide sufficient resolution to character-
ize Poisson’s ratio as it approaches the limiting value of 0.5.

Methods developed to characterize n largely fall into two
categories. Direct methods include techniques where n is
directly quantified from the deformation of a material during
loading. This category includes techniques such as digital
image correlation (DIC),9–13 strain gauge analysis,14–16 and
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dilatometry.17,18 Indirect methods include techniques that infer
the value of n from the measurement of at least two elastic moduli.
This category includes techniques such as pressurization19–22 to
measure K combined with separate measurements of either
E or the shear modulus m,23–25 radially confined compression
(RCC)2,8,24–27 to measure K combined with a separate measure-
ment of E, and an emerging trend28,29 of combining measure-
ments of E and m to infer n. The methods used in this work
measure low strain values of Poisson’s ratio and have varied
sensitivity to experimental errors.

Reported values of the error for each of these methods is
displayed in Fig. 1 where 0.5 � Dn is plotted against the
measurement error Dn. This compiled literature data is sum-
marized in the SI. Note that these literature values are gathered
on materials with varied chemical compositions and should
thus have different values of n. The black line on which this
data falls represents the maximum value of n that is distin-
guishable from the incompressible limit of 0.5 as a function of
measurement error. As is apparent in Fig. 1, RCC and pressur-
ization offer the highest levels of resolution. The next most
precise method is dilatometry which occupies a large range of
2–4 decimal points of resolution. DIC follows this method with
the ability to resolve 2–3 decimal points of n. Strain gauge
analysis appears to measure n out to 2 decimal points. Finally,
the emerging trend of inferring n from measurements of E and
m can resolve 1–2 decimal points. Notably, the reported values
for inferring n from E and m have all been generated from
measurements in different setups (e.g. combining data from
tensile tests and rheology28 or tensile tests and lap shear tests29)
and have not been attempted in a single setup. Based on this, we
aim to infer n from measurements of E and m on a single sample
and compare this to the resolution of other methods for quantify-
ing n of nearly incompressible elastomers.

Achieving this aim will require selecting several different
methods to characterize n. The first method presented is DIC

during uniaxial extension as it is a highly accessible method
that is similar to strain gauge analysis. The second method
presented is to infer n from measurements of K and E. In this
work, RCC is used to measure K as previous works24,25 have
concluded that pressurization and RCC offer similar resolutions
while RCC requires less specialized instrumentation. Dilatometry
will not be performed in this work as it requires specialized
instrumentation and spans a range of precision already covered
by RCC and DIC. The final measurement method will exploit a
combined tension and torsion tester to measure E in tension and m
in torsion on a single sample. All three methods are performed on
the same commercially available rubbery crosslinked silicone
elastomer that neither flows at long time scales nor exchanges
mass with the surrounding environment. Such materials are
known to be nearly incompressible (n4 0.495)8 and are a reason-
able model for this analysis. A comparison of all three of these
methods including a discussion of the observed error associated
with each technique is presented at the end. Note that these
methods characterize the low strain elastic behavior of materials.
These findings have strong implications for characterizing the
mechanical response of gaskets, o-rings, and thin coatings.2,26,31

1 Materials and Instrumentation
1.1 Materials

Polydimethylsiloxane (PDMS) samples were formed using a
commercially available Sylgard 184 kit.32,33 Samples were
formed at a weight ratio of 10 : 1 prepolymer : curing agent.
Samples were manually mixed and then degassed under
vacuum before being poured into either 4 inch square Petri
dishes for the DIC, indentation, and RCC samples or 3 mL
disposable plastic syringe barrels with torch sealed tips for the
tension/torsion samples. The samples were subsequently cured
at 70 1C for 21 hours after which they were removed and
allowed to cool at room temperature for 5 days before any tests
were performed. Cylinder samples were removed from the
syringe barrel by first scoring the barrels with a Micro-Mark
WonderCutter S and then pulling apart the barrel until it split
in half. No visual indication of damage was observed on the
cylinder surfaces. Samples for indentation were prepared by
cutting out a square inch sample from the cured film. After
indentation, RCC samples were prepared by punching out disks
with a 5 mm diameter punch from this square inch film. A disk
from this film was used to perform the compressional DMA
described in the SI. Rectangular samples for uniaxial extension
were cut from the same film source as the indentation sample.

1.2 Uniaxial extension

Uniaxial extension measurements were performed on a CellS-
cale Biotester 5000 biaxial test machine equipped with a 23 N
load cell. Rectangular samples of approximately 25 mm by
6 mm were loaded into the setup and clamped. Once clamped,
the sample surface was sprinkled with 400 mesh graphite
powder to create an optical speckle pattern. Samples were
stretched at an extension rate of 1 mm s�1 (0.04 s�1) to a

Fig. 1 Plot showing 0.5 � Dn vs. Dn from literature data for RCC,7,8,24,25

pressurization,23–25 DIC,9,11,12 strain gauge analysis,30 dilatometry,17,30 and
inferred from E and m.28,29
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maximum extension of 10 mm. Deformation of the sample was
visualized by a built-in CMOS tube camera at a resolution of
2048 by 2048 pixels and rate of 15 frames per second. DIC
quantified the local deformations through the LabJoy software
that comes with the instrument. A 9 by 16 grid of points was
introduced on the sample frame before deformation was
imposed and the positions of the points were tracked through-
out the test. The initial dimensions of each cell were 0.676 mm
by 0.416 mm or, given that there were 33.65 pixels per mm,
22.74 pixels by 14.00 pixels. A video showing the tracking of
deformations during the test is shown in the SI. Additionally, E
is extracted from these measurements in the SI and is found to
be 2.27 � 0.18 MPa.

1.3 Indentation and radially confined compression

Indentation was performed on a TA.XTPlus Connect Texture
Analyzer equipped with a 50 N load cell. Indentation was
performed with a 2 mm diameter flat steel cylinder. Square
inch films with a thickness of B2 mm were placed on a glass
slide which was then put below the indenter. The initial
indenter position was set to 3 mm above the top of the glass
slide and a displacement rate of 0.1 mm s�1 (0.1 s�1) was used
to compress the film up to a turnaround force of 30 mN (max
displacement measured as 11 � 0.8 mm). The observed stiffness
F

d
was used to calculate E from,34

E ¼ 3

8R

F

d
; (3)

where R is the cylinder radius, F is force, and d is displacement.
The controlling software for the instrument corrected the
reported displacement for the deflection of the instrument.

RCC was performed by compressing disks in a 5 mm
diameter pellet die sourced from MSE Supplies and used as
received. Samples were punched out with a 5 mm diameter
punch (exact dimensions in SI) and loaded into the pellet die
before the pellet die was loaded onto an Instron 5567 universal
testing machine. The Instron was equipped with 100 kN
capacity compression platens and a 30 kN force capacity load
cell. Samples were tested by indenting at a rate of 1 mm s�1

(0.0005 s�1) to a turnaround force of 4000 N, which translates to

a max pressure of B0.2 GPa. An instrument stiffness of
31.6 MN m�1 was measured in a run without a sample loaded
into the die and this value was used to correct the observed
displacement.

1.4 Tension and torsion of cylinders

An Admet eXpert 8602 axial-torsion testing machine equipped
with a biaxial load cell with a 444.8 N force capacity and 11.3 N m
torque capacity was used to perform tension and torsion on a
single sample. This instrument is designed to translate in the
axial direction and rotate to apply tension and/or torsion to a
sample. The instrument is strain-controlled with the load and
torque cell placed on the opposite side of the sample from the
biaxial actuator. Fiducial markers were drawn on the surface of
the 8.8 mm diameter cylinder samples before loading them
into the drill chuck clamps. Samples had a height of B30 mm
with exact dimensions shown in the SI. Samples were subjected
to axial extension at a rate of 1 mm s�1 (0.03 s�1) up to a
turnaround displacement of 5 mm before returning to the
original position at a displacement of 0 mm. Once returned
to the original position, the cylinder was twisted clockwise at a
rate of 11 s�1 (0.0013 s�1 when radially averaged) to a turn-
around angle of 451 before returning to the original position.
Visualization of the test was provided by a Dino-Lite Edge Plus
AM4117MZTW digital microscope (tube camera) with a resolu-
tion of 1280 by 960 pixels at 30 fps. An example video showing a
typical testing protocol is shown in the SI.

2 n Measured via digital image
correlation

DIC is a measurement technique that uses the optical contrast
provided by a speckle pattern to track local deformations
during a test. DIC analysis was performed on rectangular strips
that were extended uniaxially using the LabJoy software that
comes integrated with the instrument. An example of this is
shown in Fig. 2a where a grid of points is shown in the
undeformed and deformed states. Here, the color of this grid
indicates the strain value where blue is e1 = 0 and red is e1 = 0.3.
These local deformations can be used to calculate the local

Fig. 2 (a) Images showing the stretching of rectangular strip with DIC overlay. (b) Plot of �e2
e1

vs. e1 used in the DIC ratio method. (c) Log–log plot of (l2)�1

vs. l1 used in the DIC scaling method.
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strains ei and stretches li that are needed to estimate n. Note
that the stretches and strains are related as li = 1 + ei.
n can be estimated from the DIC data through one of two

different methods. The first method takes advantage of the
small strain definition of n where,

n ¼ �e2
e1
; (4)

when the 2 direction is the transverse direction and the 1
direction is the stretching direction during uniaxial extension.
The calculation of n from this direct ratio definition is shown in

Fig. 2b where �e2
e1

is plotted against e1. This ratio was directly

calculated and averaged across all grid points with the error
bars being calculated as the standard deviation of this distribu-
tion as has been done by others.9 Notably the error bars are
large in the low strain regime where the displacements are
similar in scale to the errors from DIC. The inset plot shows

that, consistent with prior observations,29 �e2
e1

decreases as e1

increases. This reduction results from a failure of the small
strain definition of n, not from an increase in the compressi-

bility of the material. As shown in the SI,�e2
e1

should decrease at

large strains for an incompressible material. Given the large
errors that occur below e = 0.05, the value of n was calculated as
the intercept from a linear extrapolation of the larger strain
data. This fitting protocol from the direct ratio definition gives
n = 0.48 � 0.02 when averaged across five samples.

A second method for measuring n from DIC data uses a
larger strain definition30 where,

n ¼ �@ ln l2ð Þ
@ ln l1ð Þ

¼
@ ln l2ð Þ�1
� �
@ ln l1ð Þ

: (5)

This definition of n quantifies the scaling between l2 and l1

instead of a direct ratio of strains. Eqn (5) suggests that n can be
measured as the slope on a plot of (l2)�1 vs. l1 when plotted on
a logarithmic scale. An example of such a plot is shown in
Fig. 2c where the slope is fit from l1 = 1 to l1 = 1.15. Repeating
this analysis across five samples gives n = 0.493 � 0.005.

Notably, the direct ratio method results in an uncertainty
value of Dn = 0.02 which is larger than the uncertainty value
Dn = 0.005 observed with the scaling method. These uncertainty
values set the number of significant figures with which n
should be reported. As is apparent from these values, the direct
ratio method can quantify n to two significant figures while the
scaling method can report n to three significant figures. This is
consistent with the literature data in Fig. 1 which showed that
reported DIC values of n for nearly incompressible elastomers
span a range of 2–3 significant figures. Ultimately, the differ-
ence in resolution between the two methods suggests that the
scaling method is better at quantifying n of nearly incompres-
sible elastomers.

3 n inferred from bulk and Young’s
modulus

An indirect approach for measuring n is to infer its value from
the measurement of two separate moduli. In this section, n is
inferred from measurements of E and K by rearranging eqn (2)
to get,

n ¼ 1

2
� E

6K
: (6)

Note that while E is used here in combination with K an
analogous calculation could be performed by combining m with
K. The key part for inferring n from these moduli is that they
quantify different behavior for a material and therefore have
different physical origins. E and m characterize a material’s
resistance to changing shape and, in nearly incompressible
elastomers, relate to the entropic penalty of stretching chains in
a network.35,36 On the other hand, K characterizes a material’s
resistance to changing volume and relates to the molecular
interactions.37,38 The different physical origin of these moduli
is what makes them orders of magnitude apart.

Indentation was used to measure E as described in Section
1.3 and gave an estimate of E = 2.27� 0.08 MPa. Note that E can
be measured in different ways and indentation was selected
here, instead of another method such as uniaxial extension, as

Fig. 3 (a) Image of the RCC setup. (b) Plot of displacement vs. time where displacement is zeroed to initial contact with the pellet die. (c) Plot of force vs.
displacement for an example run where the slope on the corrected curve in the fully compacted regime is used to measure bulk modulus.
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it is non-destructive and can be performed on the film used to
punch out RCC disks. RCC was used to measure K and an
image of the pellet die loaded into the compression setup is
shown in Fig. 3a. A plot of the imposed displacement vs. time is
shown in Fig. 3b. Note that the raw data reported by the Instron
has been corrected for the deflection of the instrument by
measuring the stiffness of the setup without a sample loaded
into the pellet die. This stiffness was found to be 31.6 MN m�1

and the displacement was corrected by taking the raw displace-
ment and subtracting the force divided by the instrument
stiffness.

An example plot of force vs. displacement is shown in Fig. 3c
for both the raw data and corrected data. Positive forces on this
graph are compressive. Note that hydrostatic compression does
not occur until full compaction of the material in the die. Once
full compaction occurs K can be calculated as,7,8

@sz
@ez
¼ 3Kð1� nÞ

1þ n � K; (7)

where sz and ez are the nominal stress and strain in the axial
direction, respectively. The slope is taken near the maximum
displacement to get the hydrostatic stiffness in the fully com-
pacted regime. Note that this slope approaches K as n- 0.5. As
derived fully in the SI, the exact version of eqn (7) was used to
calculate n,

E
sz
ez

¼ ð1� 2nÞð1þ nÞ
ð1� nÞ ; (8)

where
sz
ez

is the slope of the stress vs. strain curve. This

measurement gave K = 4.2 � 0.3 GPa averaged across five

samples. When combined with E, the measurements of K give
n = 0.49991 � 0.00001 averaged across five samples. This value
shows that, consistent with the literature data in Fig. 1, RCC
can provide an incredibly precise measurement of n out to five
significant figures.

The error associated with inferring n from E and K can be
understood by propagating the uncertainty from the moduli
measurements. Derived fully in the SI, doing this yields,39

Dn ¼ E

6K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE
E

� �2

þ DK
K

� �2
s

: (9)

Here it is apparent that any errors in measuring these two

moduli are scaled by
E

6K
. Since E and K have different physical

origins and are orders of magnitude apart, very precise mea-
surements of n can be inferred from this method. For example,
eqn (9) predicts that the measurements in this work result in Dn
= 0.00002 which is in good agreement with the value calculated
directly from the distribution of n values. Based on this, it is
clear that inferring n from E and K provides a much more
precise measurement than either of the DIC methods presented
previously.

4 n inferred from shear and Young’s
modulus

Another approach for measuring n is to infer its value from
measurements of E and m. Performing such measurements
have recently been proposed as a method to meaningfully
quantify n of nearly incompressible elastomers.28,29 This

Fig. 4 (a) Images of the 8.8 mm diameter cylinder at different time points during the test. (b) Plot of the imposed displacement vs. time. (c) Plot of the
measured stress vs. stretch where the slope in the low stretch regime gives E. (d) Plot of the imposed angle vs. time. (e) Plot of torque vs. angle that is used
to measure the torsional stiffness.
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proposed analysis derives from the fact that n can be calculated
from any two moduli,

n ¼ E

2m
� 1; (10)

which is analogous to eqn (6) used in the previous section. A key
difference here is that both E and m characterize a material’s
resistance to changing shape and similarly derive from the
entropic penalty of stretching chains in a rubbery polymer net-
work. This means that these moduli are not separated by orders of
magnitude as was the case when using K in the previous section.

In this work, inferring n from E and m is given its best chance of
working by performing both moduli measurements on the same
sample instead of combining measurements from different setups
as was done in previous works.28,29 Here that is accomplished by
using a combined tension and torsion tester to first stretch the
samples and then twist the samples. Note that the uniaxial exten-
sion measurements used here to characterize E are distinct from
the indentation measurements used in the previous section.
Images of this testing protocol can be seen in Fig. 4a. Plots showing
displacement vs. time and angle vs. time are shown in Fig. 4b and
d, respectively. These plots show that first the sample is subjected
to uniaxial extension before unloading. E is measured as the low
strain slope on the loading curve as can be seen on a plot of stress
vs. stretch in Fig. 4d. These measurements give E = 2.47� 0.14 MPa
across five samples. This E value shows reasonable agreement with
the value of E = 2.27 � 0.08 MPa measured via indentation.

After the tension is removed from the sample it is twisted to
apply torsion. m is measured as,40

m ¼Mz

y
2L

pR4
; (11)

where Mz is the moment about the z axis, y is the applied angle
of rotation, L is the length of the cylinder, and R is the radius of

the cylinder. The torsional stiffness
Mz

y
is measured from a plot

of torque vs. angle as shown in Fig. 4e and gives m = 0.79 � 0.07
MPa measured across five samples.

Note that the values of n were not calculated from the
averaged moduli values. Instead each sample’s measurement
of E and m was used to directly calculate an estimate of n as can
only be done when both measurements are performed on the
same sample. Doing this, gives n = 0.56 � 0.09 when n is then
averaged across five samples. The observation that Dn = 0.09 is
consistent with the literature reported values shown in Fig. 1.

Table 1 contains a summary of the observed values of n for
all of the methods presented in this work. This data is plotted
in the SI. This data suggests that inferring n from m and E is the
worst possible method while inferring it from K and E is the
best possible method. This difference in precision between the
two methods can be understood by propagating the error,39 as
shown fully in the SI, from the moduli measurements to get,

Dn ¼ E

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE
E

� �2

þ Dm
m

� �2
s

: (12)

This shows that the propagated error from the measurement of

these moduli is scaled by
E

2m
. Given that

E

m
¼ 3 when n = 0.5, the

error that propagates from the measurement of m and E will
increase by a factor of 1.5 through this method. This in stark
contrast to the previous section where the propagated error was
reduced by orders of magnitude. This implies that reasonable
measurements of m and E can result in large errors for n. For
example, plugging the values in this section into eqn (12) gives
Dn = 0.16. While there appears to be less error when Dn is
directly calculated from a distribution of n this is only possible
when performing measurements on a single sample as is done
in this work. Regardless, the fact that this method only gives
one decimal point of resolution means that the value of
Poisson’s ratio for nearly incompressible elastomers cannot
be meaningfully inferred from measurements of m and E.

5 Impact of cumulative errors

Discussion in the previous sections largely focused on the preci-
sion with which n can be estimated via different methods. This
section is focused on the accuracy of each method of estimating n.
The importance of this discussion can be seen in Table 1 where
the observed Dn values are all reasonably consistent with the error
propagation arguments presented previously. However, such
arguments fail to explain why the mean values for each method
do not appear to be the same value reported out to different
significant figures. For example, a researcher using the direct ratio
DIC method may, upon observing that n = 0.48, reasonably decide
that much of the discussion in the previous sections does not
apply to their system as a measured value of n = 0.48 suggests the
material is well into the compressible regime. Were n = 0.48 an
accurate value it could be combined with a value of E = 2.47 MPa
in eqn (2) to predict that K = 20.6 MPa whereas RCC measure-
ments show that K = 4.2 GPa for this material. With these
observations in mind, it is important to question how sensitive
the mean reported value of n is to experimental errors.

The first step towards addressing this question comes in
remarking on the fact that every experimental measurement is
associated with some amount of error. This variability results in
a distribution of values that are measured. While replicates are
typically run in lab, measurements only sample a subset of this
distribution of values. The hope is that the reported mean and
standard deviation of this sampling is representative of the
‘‘true’’ value of the measured property. This means that the
sensitivity of a measured value of n to experimental errors can
be quantified by assuming a ‘‘true’’ value of n. For example,
assuming the ‘‘true’’ value of n is the incompressible value of

Table 1 Values of n calculated from the four methods reported in this
work. Each reported value represents a measurement on five samples

Method n

DIC (ratio) 0.48 � 0.02
DIC (scaling) 0.493 � 0.005
Inferred from K and E 0.49991 � 0.00001
Inferred from m and E 0.56 � 0.09
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0.5 gives,

nratio ¼ �
e2
e1
¼ 0:5

100þ C

100

� �
; (13)

for the ratio DIC method where C is the cumulative error of the

measurement in %. In other words, the
100þ C

100
term quantifies

how far the observed value of n is from the ‘‘true’’ value of 0.5
for a given error level. C represents the cumulative error that
results from combining the individual errors of the measured
values of e1 and e2. A similar analysis can be performed for the
scaling DIC method and gives,

nscaling ¼ �
@ lnðl2Þ
@ lnðl1Þ

¼ 0:5
100

100þ C

� �
: (14)

Both equations are plotted in Fig. 5 and show that small measure-
ment errors can result in significant differences in the mean value
of n. For example, to see n = 0.48 from the DIC ratio method only
requires C E �4%. Similarly, the value of n = 0.493 observed in
the DIC scaling method would only require C E 1.5%. This shows
that cumulative errors below 5% can have significant impact on
the observed value of n. Further it can be seen in Fig. 5, that it only
takes a cumulative error of about 10% to report values of n = 0.45.
Seeing as DIC methods are essentially equivalent to the strain
gauge methods commonly used in the classical literature, this
analysis has wide-ranging implications for the reported values of n
for materials that should be nearly incompressible, yet are
observed to be in the compressible regime.28–30,41,42

This analysis can be further extended to the indirect calcula-

tion methods. If a true value of n = 0.5 is assumed then
E

m
¼ 3

which gives,

napparent ¼
E

2m
� 1 ¼ 3

2

100þ C

100

� �
� 1: (15)

A cumulative error analysis that assumes a ‘‘true’’ value of

n = 0.5 is incompatible with eqn (6). Instead a cumulative error
analysis is performed by assuming that E = 1 MPa and K = 1 GPa
are ‘‘true’’ values for the moduli which gives,

napparent ¼
1

2
� E

6K
¼ 1

2
� 1

6000

100þ C

100

� �
: (16)

Both of these equations are plotted in Fig. 6. This plot shows
that the observed value of n = 0.56 for inferring from m and E
would only require C E 4%. Further, it can be seen on this plot
that this method is the most susceptible method to cumulative
error. Notably, it only takes a cumulative error of 10% to see an
apparent value of n = 0.35 which likely explains some of the
more extreme values reported in the literature.28 On the other
hand, a cumulative error of 100% only decreases the apparent
value of n to 0.49965 when inferring it from measurements of K
and E. This demonstrates that inferring n from measurements
of K and E is a superior method for nearly incompressible
materials that demand both high accuracy and high precision.
All other methods presented in this work lack the precision and
accuracy to meaningfully distinguish values of n in the nearly
incompressible regime (n 4 0.495) from the incompressible
limit of n = 0.5. Further, future researchers attempting to
measure n for nearly incompressible materials need to carefully
consider the impact that cumulative errors have on their
measurement of Poisson’s ratio.

6 Conclusions

An experimental comparison of three methods of characteriz-
ing Poisson’s ratio of nearly incompressible elastomers was
performed. Arguments quantifying how experimental errors
impact both the precision and accuracy of the measurement
were presented. Of the methods tested, inferring n from a
measurement of the bulk modulus and Young’s modulus was
found to perform the best. This performance resulted from the

Fig. 5 Plot showing how cumulative error can shift the apparent value of
n when using DIC methods.

Fig. 6 Plot showing how cumulative error can shift the apparent value of
n when inferring it from moduli measurements.
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different physical origins of each modulus making them orders
of magnitude apart. This difference ends up scaling down any
experimental errors. Further it was found that DIC and inferring
n from measurements of the shear and Young’s modulus lacked
the resolution to meaningfully distinguish values of n from the
incompressible limit of 0.5. Notably, the discussion of the
impact of cumulative errors has practical implications for future
measurements of n4 0.495 in the nearly incompressible regime.
These findings are relevant to understanding the mechanical
response of rubbery materials under hydrostatic loadings.
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