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Brownian diffusion in non-harmonic potentials
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Brownian motion in confined systems is widespread in soft matter physics, biophysics, statistical physics
and related fields. In most of these systems, a Brownian particle cannot freely diffuse in the space but is
confined by a potential well in a limited range of positions. When performing data analysis, typically the
harmonic assumption is made, assuming that in the regions explored by the particle during its dynamics,
the confining potential is fairly well described by a harmonic potential. This is however not valid a priori.
In this work, it is shown how the diffusion coefficient and the potential width obtained through standard
analysis underlying a harmonic approximation are affected by increasing errors when moving away from
the conditions under which harmonic approximation is legitimate. These observations motivate the
research of a more general method for properly obtaining the diffusion coefficient for a particle
diffusing in a generic potential well. Here, a method is proposed that allows retrieving the correct
diffusion coefficient by comparing the original data and ad hoc simulations without any a priori

rsc.li/soft-matter-journal knowledge of the potential.

Introduction

The measurement of the mean squared displacement (MSD) of
a Brownian particle is a useful tool to address the particle
diffusivity and the viscous properties of a fluid at thermal
energy scales. For a free particle, indeed, the slope of the
MSD versus the lag-time 7 gives directly the diffusion coefficient
of the particle and ultimately the viscosity of the fluid in which
the particle is moving. Such a technique has been largely used
to find the viscosity in simple and complex fluids" and to probe
the flow boundary conditions close to confining walls.” In the
case of anisotropic particles, Brownian motion also allows to
simply address the coupling between orientational and transla-
tional degrees of freedom.> Unfortunately in most relevant
situations, this simple method cannot be easily employed, as
the particle is not free but has a dynamics confined by external
fields. In this case, extracting the linear regime proportional to
the diffusion coefficient is not always straightforward and lean
on the experimentally accessible timescales. The examples of
such situations include the movement of particles confined in
an optical trap,” by steric walls,” in the magnetic field® and by
DLVO interactions.””® Caged dynamics can also be observed in
out-of-equilibrium crowded complex systems, as in the case of
foams'®'" and confluent cell monolayers."”>™* In all these
systems, the MSD increases at short time scales, while for
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longer timescales, it plateaus. The plateau is the signature of
the presence of a confinement. In this situation, extracting the
particle diffusivityt by the linear best fit of the MSD at short
time scales can be tricky, as the linear part of the MSD is not
always accessible for typical experimental sampling rates.'>>?
The typical solution for this problem is to fit the full MSD with
an analytical fit function considering both the effect of the
potential and the thermal diffusivity. Such an expression is
available for harmonic potentials,>** but is missing for a
generic potential. These last cases are typically treated with
an effective harmonic potential by assuming that the generic
potential does not deviate too much from the harmonic one in
the range of positions explored by the Brownian particle.
Consequently, the MSD expression for a harmonic potential
is typically used also for non-harmonic confinements.* How-
ever, to what extent this assumption can be considered valid
has not been investigated.

In the present work, we propose a method to disentangle the
viscous dominated behavior at short time scales from the
potential dominated one at large time scales for a Brownian
particle in a generic non-harmonic potential. We focus on two
examples of potentials whose non-harmonic terms are tuned by
control parameters. We computionally generate particle Brow-
nian displacements and MSD in a fluid with given viscosity and
external potential. The diffusion coefficient and plateau values,

T Here and in the following we only consider thermal passive systems, where
particle diffusivity is properly defined. This can be in principle generalized to out-
of-equilibrium systems where an effective diffusivity can be defined, but a case-
by-case assessment must be carried out.

Soft Matter


https://orcid.org/0000-0002-9159-0952
https://orcid.org/0000-0003-4762-3806
http://crossmark.crossref.org/dialog/?doi=10.1039/d5sm00475f&domain=pdf&date_stamp=2025-08-12
https://rsc.li/soft-matter-journal
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00475f
https://pubs.rsc.org/en/journals/journal/SM

Open Access Article. Published on 24 July 2025. Downloaded on 8/22/2025 8:36:11 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

retrieved from the best fit of the full MSD assuming a harmonic
potential, are then compared with the nominal ones to quantify
the error underlying the harmonic assumption during the
analysis. Building up on these results, a general method for
obtaining the appropriate diffusion coefficient independent of
the specific expression of the confining potential is proposed.
It must be noted that in some real systems - especially in
biological ones - anomalous diffusion is present.'®'%?728 The
present work focuses on the simpler case of normal diffusion,
but the proposed method can be extended to a wider plethora
of phenomena, upon a proper adaptation of the simulation.

Methods

In typical diffusion experiments, the information on the
dynamics is accessed through the MSD analysis. For a given
trajectory and considering a given lag time 7, the displacement
occurring along the direction x at time ¢ during the interval 7 is
Ax(t,7) = x(t + ©) — x(¢). The MSD at lag time 7 is then given by
the time average (Ax(t,7)%),.

Noting U(x) as the conservative potential acting on the
particle and /2kgTEW (1) as the stochastic force, where W(¢)
is the white noise, the Langevin equation is written as:

mv = F(x) — & ++\/2kgTEW (1), (1)
where m is the mass of the particle, v is its velocity along x,
kgT

Flx)=dU(x)/dxand ¢ =

the diffusion coefficient. In the overdamped limit, typical in
soft matter systems, eqn (1) results in

Ev=F(x)+\2kgTEW (1), 2)

At first, the case of a harmonic potential U(x) = maw,*(x — xo)*/2
is considered, where x, and , are the equilibrium position and the
characteristic frequency of the harmonic potential, respectively. In
this case, an analytical expression for the MSD can be found***°

2kgT
<Ax(l,f)2>¢: Bz

is the drag coefficient, with D being

as:

[1 — e Wut (cosh T + & sinh (I)T):| 5 (3)
mayy o

where w, = &/2m and & = \/w,> — w¢*.

When oy « ,, the MSD results in the simpler expression:

_a}ozr
(Ax(1,7)?) = 2ke T (1 —e 2) (4)

mawe?

Eqn (4) is commonly employed as the fitting function of the
MSD in order to obtain the drag coefficient of particles con-
fined in harmonic potentials, as for example in an optical
trap.?® Please note that in the limit of t — 0, eqn (4) reduces
to (Ax(t,7)?), = 2D, as for a free Brownian motion. Meanwhile at
large time lag © — o0, (Ax(t,7)?); reaches a plateau value given

1
by the equipartion theorem: Ema)oZ(Ax(z, 1)?),= kg T.

For general potentials, there is usually no analytical expres-
sions for the MSD and numerical simulations are required. In
order to fit an MSD in a generic potential, we first need to
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numerically generate the MSD data. To this scope, we general-
ized the procedure of Volpe and Volpe®° developed for harmo-
nic potentials. From eqn (2) a finite differential equation can be
obtained in the form of:

X; = X;—| +¥61+ HZkBTTSlW,‘, (5)

where the discrete index i runs from 1 to the trajectory length N
and d¢ is the time interval used as the simulation step. w; is a
Gaussian random number with zero mean and unit variance.}
The underlying assumption is that the force F acting on the
colloid does not change significantly over the time ranging
from discrete time points i — 1 and i. In order to satisfy this
condition, the simulation time step 8¢ must be chosen suffi-
ciently small. Eqn (5) is then used to simulate a trajectory of
N points. From the obtained particle positions x; at times id¢,
the discrete squared displacement at time 7 = nd¢ is calculated
as Ax;,” = (xun, — x))° and then averaged over all the N — n
points to obtain the MSD (Ax; ,*)y_n-

In order to be as general as possible, the physical quantities
have been made non-dimensional by normalizing over the
timestep 6t and the lengthscale / as follows: U = U/kgT,
x' = x/¢, D' = (D8t)/¢%, and }, = hy,/{. For notational simplicity
from here on, we redefine the non-dimensioned quantities
without the prime: U’ - U, x’ - x, D' —» D and /), — hy,.

The force F(x;) in eqn (5) is given by the x-derivative of a
conservative potential U. In the present work, two sets of non-
harmonic potentials have been chosen - one symmetric and the
other non-symmetric with respect to their minimum at x = x,.
A useful parameter to systematically study the effect of non-
harmonicity upon the simulated MSD is the half width of the
potential &, at a value Uy = 1 (kgT in dimensioned units).

By defining

x_ =x(U=Ug x < 0) (6)
x. =x({U= Uy, x > 0) (7)
the half-width at U = Uy is given by:
Xy X

ho= ®

At first, it is considered the case of a symmetric potential. To
this end, a polynomial with even exponents is taken having

the form:
2 np 2j+2
X 0 X
(1—p) (hwi) +n*p E 1 (le) :| 9)
J=

where p is an non-harmonicity parameter ranging from 0 to 1
that establishes the relative weight of the non-harmonic terms
compared to the harmonic one: for p = 0 the potential is
harmonic, while for p = 1 the harmonic term is missing. Also,
in eqn (9), n, is an integer number indicating the number of
even exponents larger than 2 considered in the polynomial

U(X) =Uy

+ For the reason why W({) can be discretized as w;/\/3t, see Volpe and Volpe*® and
Oksendal®' dissertations.

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Non-harmonic (a) and asymmetric (b) potentials as defined in the
text for different values of p and «, respectively, as a function of the non-
dimensioned space coordinate x.

series. In the present work, n;, is systematically chosen equal to
9 (corresponding to a polynomial degree 20), as no significant
changes in the results have been observed for higher values of
np,. The spatial dependence is chosen so that x, = 0, U(0) = 0 and
the half potential width at U = Uy is equal to h,.

In Fig. 1a are shown examples of the considered non-
harmonic potentials for different values of p.

Although considering higher order symmetric terms is the
first logical step for exploring the effect of non-harmonic
potentials, in most real cases, the potential is also non-
symmetric. For such types of potential, one can define an
asymmetric parameter o« in order to quantify the degree of
asymmetry:

o (10)

[0 = x) = (x4 = x0)
| Ty,

o is zero for symmetric potential wells and increases for
increasing asymmetry between the left and the right sides of
the potential with respect to the equilibrium position.

A typical example of a non-symmetric potential in colloidal
dynamics experiments is the combination of van der Waals
(or DLVO) and gravitational potentials. This is the case of a

This journal is © The Royal Society of Chemistry 2025
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colloid sedimented near a wall or an interface.” A simplified
version of such potential can be obtained adding an hyperbolic
repulsive term (van der Waals) to a linear term (gravity), in the
form of:

Ux) =

+B(x—xq)+C

11
e (11)
defined for x > x4. Such potential allows the independent
tuning of A, and o while keeping simple the algebras. By
imposing the minimum of U at x = 0 and U(0) = 0, the
expression becomes:
A
X — X4

U(x) = + B(x —xq) —2VAB (12)
with x4 = —y/4/B. By making explicit &, and o according to
their definition in eqn (8) and (10), respectively, A and B
result in:

1 1
A= hw Ud (0(73 - zO(il + EO{) (13)
Uy
B=— 14
hyo (14)

Examples of the asymmetric potentials obtained with the
expression in 11 are reported in Fig. 1b for o ranging from
0.02 to 1.9.

Results

Using the simulation procedure described in the previous
section, about 1.6 x 10° Brownian independent trajectories
(each one made of 2 x 10°h, points) have been simulated
using the potential functions given in eqn (9) and (12). Simula-
tions have been made for different values of potential well
width Ay, non-harmonic parameter p and potential asymmetry
o. It must be noted that for avoiding divergence at x = x4 in
simulations with the asymmetric potential, the left-side of U(x)
was approximated for U > 5 with the tangent to the potential at
U=5.

The simulation parameters and other relevant quantities are
reported in Table 1.

For each generated trajectory, the MSD was then computed
and fitted with the analytical MSD expression for a harmonic
potential (eqn (4)) to obtain the diffusion coefficient Dg; and the
plateau value hg,>. For the MSD, only one point every 2000-,,
was considered. Thus, the MSD time step is dtysp = 2000-/,,0t.
This is made to reduce the computational time and to be closer
to the sampling rate of real experiments, where the linear
part of the confined MSD typically does not exceed the first

Table 1 Summary of the simulation parameters and other relevant
quantities

D=1.76 Uy =
hy =1 n,=9
p € [0,1] o € [0,2]

n. points per simulation 2 x 10°h,,
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Fig. 2 Values of ey, (@ and b) and ep (c and d) as a function of h,, obtained
by fitting trajectories simulated from eqgn (9). In the shown data, p is equal
to 107> (a and ¢) and to 1 (b and d). Points are averages over 35 different
simulations, while the error bars indicate the standard deviation and the
standard deviation of the mean.

2-3 experimental points. The obtained Dy, and hg. are then
compared with the simulation inputs D and A, in order to
assess the validity of the harmonic approximation in the MSD
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analysis. For the sake of comparison, the relative errors ep =
(Dgi¢ — D)/D in the diffusion coefficient and ey, = (hg. — hy)/hy in
the potential width related to the MSD plateau have then be
computed.

Please note that such a comparison is independent of the
chosen value of the input diffusion coefficient in the limit of
relatively slow diffusion when the force can safely be assumed
constant between two successive time steps.

As an output of the analysis, it was also noticed that the
discrepancies are also independent of the value of £, as it can
be seen in Fig. 2. Simulations have been performed for different
values of A, in the range 0.25-25. In Fig. 2, ep and e, are
reported as a function of A, for different values of p for
simulations using the symmetric non-harmonic potential.
Points are the averages over different simulations, while the
error bars indicate the standard deviation and the standard
deviation of the mean. Within a given potential and for a given
control parameter p, they are all equal within the statistical
incertitude. Similar results are obtained for the asymmetric
potential for each considered value of «. Consequently, in the
following discussion, we focus on the dependence of ep and ey,
on p and o.

In Fig. 3a-c are shown the main results relative to the
simulations within the non-harmonic symmetric potential
described by eqn (9). In Fig. 3a are shown the MSDs obtained
for h,, = 1 for increasing values of the non-harmonic parameter
p. As expected, for low values of p the MSD is close to the one

a MSD for h_ =1.00 C
o w b 0 0.02
10 DI Ramam A wem At
1e-05 S
0.0001 % " 0
0.001 }// 0.05
0.01 -0.02
I 01 -0.1
= 1
2 X harm. ol & -0.04
=
-0.15
0.05 Z
101 -0.06
0.045 02 -0.08
1 1.1 1.2
-0.25 -0.1
0 1 2 3
10 10 10 10 1074 1072 100 107 1072 10°
7t \sp P P
d MSD for h=1.00 e f
- 0.02
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b e // 0.6 0
0 : V4 =
10 1 KXXKRK X
15 - -0.02
X harm. :
< -0.04
2 0.2 -0.06
0.05
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T/dtMSD o o
Fig. 3 (a and d) Normalized mean squared displacement obtained from different simulations using the unharmonic (a) and asymmetric (d) potentials.

Different colors represent different values of p (a) and « (d) according to the legend. On the x-axis it is reported that the delay time scaled over
dtmsp = 2000-h,,dt (here, h,, = 1). Values of ey, (b and e) and ep (c and f) as a function of p (b and c) and « (e and f) obtained from simulations using the non-
harmonic and asymmetric potentials, respectively. Each black curve is the average over 35 different simulations. The shadow region represent the

standard deviation of the mean.
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expected for a particle moving within a harmonic potential
(black crosses). As p increases, both the plateau values and the
diffusion coefficients decrease. This trend can be better visua-
lized in Fig. 3b and c, where e}, and ep, are respectively reported
as a function of p. The black lines are averages over
35 simulations, while the gray shadow region represents the
corresponding standard deviation of the mean. The MSD fit
undervalues the diffusion coefficient up to 8% as p increases
from 0 to 1. It may be surprising that the slope of the MSD
changes with p if the input D is the same for all simulations,
but it must be pointed out that in the present data, the linear
regime of the MSD holds only for very low values of t/dtysp. For
larger time scales, the effect of the potential is strong enough to
affect the slope of the MSD (ie., the dynamics is already
subdiffusive). This is the case for the intermediate region of
the curve shown in the inset of Fig. 3a. The deviation of Dg;
from D is therefore originated by the wrong assumption of a
harmonic potential underlying eqn (4) used for the fit.

Concerning the potential width, it can be seen in Fig. 3b that
the MSD plateaus at lower values when p increases, in spite of
the fact that all the potentials have been built with the same
half-width A, at kgT. For the upper limit of p, this discrepancy
exceeds 20%.

The MSD’s plateau value represents the square of the
maximum displacement the particle explores on average inside
the potential well. In order to rationalize why for the same
potential width the presence of non-harmonic symmetric terms
reduces A, it is possible to resort to a simple qualitative
argument. As can be seen in eqn (5), the instantaneous dis-
placement of the particle depends on the resultant force given
by the sum of the stochastic force plus the conservative one. If
the simulated particle at a given time step is located in a
position x, in the following simulation step, it can move further
away from the equilibrium position only if the stochastic noise
is larger than the absolute value of the conservative force in that
point. In this view, the limit of the displacements is therefore
given by the comparison between F(x) and the width of the
stochastic term distribution. In other words, for a given sto-
chastic noise, the maximum displacement from the minimum
depends on the local slope of the potential. This has been
qualitatively tested by computing for a non-harmonic potential
the distance Ax between the position of the potential minimum
and the point where the slope of the potential is the same as
one of the harmonic potential at kzT (Ax = A, in the harmonic
case). In Fig. 4a, the relative difference between Ax and #,, has
been plotted versus p. There it can be seen that indeed the trend
with p is similar to the one of e;,. For increasing p, therefore, the
distance from the equilibrium that the particle can reach before
reaching an overwhelming recall force decreases, thus resulting
in a lower plateau value in the MSD, as observed in Fig. 3b.

The slow increase that can be seen in ey, for p approaching 1
can be understood considering the limit case of a box potential.
There, the potential is zero in the range (—hy, A,,) and becomes
infinite for x < —A,, or x > h. The particle is therefore expected
to diffuse as a free particle in the range —hA,, < x < h,, and the
MSD should plateau at Aw? as in the harmonic case.

This journal is © The Royal Society of Chemistry 2025
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Fig. 4 Relative difference between Ax and h,, computed as a function of
p (a) and « (b) using eqn (9) and (11), respectively. Here Ax is defined as the
average distance (left and right) from the potential minimum to
the coordinate where the slope of the potential is equal to the slope of
the harmonic potential at kgT.

Consequently, we expect that by approaching the box potential
at the largest values of p, the difference e}, with respect to the
harmonic case has to reduce as observed in Fig. 3b.

The results of the simulations with the asymmetric potential
can be seen in Fig. 3d-f. As for the non-harmonic potential, in
Fig. 3d, some examples of the MSD are reported, in this case for
increasing «. Good agreement is found between the MSD
simulated at low « and the one for the harmonic potential
(black crosses). As « increases, both the fitted diffusion coeffi-
cient and plateau value deviate from those of the harmonic
potential, but with some differences in the trend. Contrary to
the case of the non-harmonic potential, now hg, is system-
atically larger than the potential width (Fig. 3e), signaling that
by increasing the asymmetry, the particle thermally explores a
larger region of the potential. As for the non-harmonic
potential, the sign of the deviation is the same as that of the
relative difference between Ax and h, as a function of o, as
shown in Fig. 4b, thus highlighting a similar mechanism. In
this case, Ax is always larger than 4. As o increases, indeed, the
coordinate on the right-side of the potential where the slope
reaches that of the parabolic potential at kg7 moves away from
the equilibrium position faster than how the corresponding
coordinate on the left-side approaches the equilibrium.

Concerning the diffusion coefficient, e, decreases as the
potential deviates from the harmonic case for low values of o. In
this region, the trend is therefore the same as for the non-
harmonic potential: an underestimation of the real diffusion
coefficient. The amount of the deviation is greater but compar-
able to the one of the non-harmonic case.

In general, the deviation of the diffusion coefficient in the
case of a non harmonic potential may therefore be significant
and potential-dependent, thus making questionable the use of
a harmonic potential to fit the MSD data. This raises the
question as how to properly extract a diffusion coefficient from
experimental data of Browinian diffusion of a confined particle
in the most general case, when the analytical expression for the
MSD is missing.

In the following discussion, a method is proposed to over-
come such difficulties which is based on the combination of
experimental data analysis and ad hoc simulations, named the
iterated simulation (IS) method.
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The iterated simulation (IS) method for retrieving diffusivity in
a generic confinement

To illustrate the proposed method, here a simulated trajectory
x(¢) has been chosen with known potential Uy(x) and diffusion
coefficient Dy. The chosen potential is asymmetric. In the
following discussion, such simulation will be referred to as
the original dataset, playing the role of experimental data from
which we want to extract the diffusion coefficient. Conse-
quently, both the potential and the diffusion coefficient have
to be recovered only knowing the trajectories of the original
dataset and then compared with Ui(x) and Dy to test the
efficiency of the proposed method.

From the particle positions x, a probability distribution p(x)
is calculated, as shown in Fig. 5a. From the probability
distribution, the confining potential is retrieved using the
Boltzmann equation:”*?

U(x) = —kBTlnM—o— U,

p(x0) (15)

where x, is the equilibrium position that corresponds to the
x — coordinate of the p(x) maximum and U, is the value of the
potential in x,. After a proper smoothing of the potential,
performed with a moving average, the corresponding force
can be evaluated as F(x) = (Uyray — Ux_ax)/2dt, where dx is the
bin size.

In Fig. 5b-e are shown potential profiles obtained from the
probability distributions shown in Fig. 5a. Green dashed lines
represent the analytical function of the potential given as an
input to numerically calculate the trajectories used in the p(x),
as shown in Fig. 5a. A good agreement can be observed between
the input potential and the one obtained from the statistical
analysis of the original datasets, except for the higher values of
x due to the scarce statistics.

The force obtained from the probability distribution is then
used to replace the analytical expression for the force in eqn (5)
and used to simulate a series j of simulations xj(7) having the
same timestep of x(¢) and different diffusion coefficients D,
varying within a reasonable range of values.

0 2 4 6

5 10
X

Fig. 5 Simulated datasets used for testing the IS method. In the simula-
tions, a (from red to blue): 0.002, 0.8,1.2,1.7. hy, = 1 nm (0.5). D = 1.76. (a)
Normalized histogram of the positions for each trajectory. (b—e) Potentials
obtained from (a) using the Boltzmann relation (continuous lines) com-
pared with the potential used for the dataset simulation (green dashed
lines) for increasing asymmetry.
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Fig. 6 Sketch summarizing the procedure to measure the diffusion
coefficient for a particle diffusing in a generic confinement potential, as
described in the text.

In order to retrieve the input diffusion coefficient D, we fit
the MSD of the original dataset x(¢) with eqn (4), thus obtaining
Dy, as in standard analyses. Similarly, each MSD obtained from
the set of simulations xj(¢) for different D;, is fitted with the
same expression, obtaining a different value of Df; for each D;,,.

The correct diffusion coefficient is found when both fits
return the same value of the diffusion coefficient in the range of
the error bars. Practically, because of the randomly generated
white noise and the finite number of points per simulation,
simulations performed with identical parameters yield differ-
ent MSDs. To gain in stability, a number of simulations are
thus generated for a given Dy, and fitted with eqn (4) until the
standard deviation of the obtained values of the diffusion
coefficient stabilizes at a given value op,. The average Df, for a
given Dj, is then compared with Dg, obtained by fitting the
original dataset. When Df, = Dy, the corresponding Dy, is
taken as the effective diffusion coefficient D, resulting from
the IS method. A summary of the IS method is shown in Fig. 6.

In order to test the efficiency of the IS method, some
examples are reported in Fig. 7 for different values of o. Each
plot refers to one of the datasets shown in Fig. 5. Among all the
possible simulations, for each o the original dataset has been
chosen so that they have a discrepancy between Dy and Dg;
corresponding to the average one as depicted in Fig. 3. Each
blue point is the average Dy, made over 500 independent
simulations with a given D;,. The continuous and the dashed
blue lines are respectively the linear fit of the different Df; and
the input D;,,. Once again, the discrepancy can be seen between
the input and the fitted diffusion coefficients, negligible for
small o« but increasing for larger values of the asymmetry
parameter. Similarly, red continuous and dashed lines repre-
sent the fitted Dg, and the diffusion coefficients Dy used to
build the original dataset. In the same figures, it is also
illustrated how D, is defined: the coordinate where the linear
fit of Df, intersects Dg. For helping with the comparison
between Dy, Dy, and D, lines transfer the intersect coordi-
nate on the y-axis (green line). It can be seen that for low values
of o, both D¢, and Do, coincide with Dy. For increasing values
of the asymmetry, Dg;; underestimates more and more Dy, while
Doy shows a better estimation of Dy. The corresponding
numerical values are reported in Table 2: for the reported cases,
the maximum deviation of the obtained diffusion coefficient
from the value used to build the trajectory is of the order of 2%,
while the error made with the standard fit of the MSDs is

This journal is © The Royal Society of Chemistry 2025
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a b

Fig. 7 Results of the process for obtaining Doyt using the simulation
procedure described in the text. The original datasets are simulations
made using the potential in eqn (11) with o equal to 0.002 (a), 0.8 (b), 1.2
(c) and 17 (d). Blue points represent the D, obtained averaging the
diffusion coefficient fitted over 500 simulations. Error bars represent the
standard deviation op. The continuous and the dashed blue lines are the
linear fit of the scattered points and D;,, respectively. The continuous and
dashed red lines refer to the original dataset and represent Dg; and Dy,
respectively. The green continuous lines represent Dg.

Table 2 Comparison of the diffusion coefficients obtained using MSD
fitting and IS methods with the ones used to build the data for different
values of a. The numbers correspond to the data shown in Fig. 7. In the
columns, Dgy and Do are reported as the obtained diffusion coefficients
and their percentage deviations from Dy

o Dy D¢ Doyt

0.002 1.76 1.76, 0% 1.76, 0%
0.8 1.76 1.66, —6% 1.73, —2%
1.2 1.76 1.62, —8% 1.74, —1%
1.7 1.76 1.59, —10% 1.78, 1%

systematic and reaches up to 10%. The IS method used here on
simulated data sets can thus be reliably employed for measur-
ing the diffusion coefficient of experimental data for particles
diffusing within a generic potential.

Although this method is applied here to the one-
dimensional case, a generalization to the multidimensional
case - 2D and 3D, also considering rotational degrees of free-
dom - is possible. A thorough examination of these cases is
beyond the scope of this paper. In this section, we will provide a

This journal is © The Royal Society of Chemistry 2025
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concise overview of the primary features of the transition to the
multi-dimensional case. The extension to a multidimensional
case results in an increase in the number of differential
equations and the introduction of coupling terms bet-
ween them. The coupling terms may arise from the non-
separability of the potential and from the roto-translational
coupling. In order to generalize the IS method, the potential
must first be obtained as for the 1D case, from the multi-
dimensional histogram of positions. It is then possible to
recover the different components of the force by means of
space derivatives of the given potential. Subsequently, the set of
coupled differential equations (one for each degree of freedom)
can be obtained by utilizing the recovered force. The coupling
between different degrees of freedom (e.g. roto-translation)
should be eventually taken into account. The differential equa-
tions can then be used for implementing numerical simula-
tions. Finally, the MSDs can be obtained from each degree of
freedom from the original and simulated datasets and com-
pared, as previously described, in order to get the diffusivity
value for each degree of freedom.

Conclusions

The present work has pointed out the limitation of the MSD
fitting method for retrieving the potential well width and the
diffusion coefficient for Brownian trajectories confined in non-
harmonic potentials. Two types of potentials have been con-
sidered: a symmetric but non-harmonic one and an asymmetric
one. By comparing the parameters used to build an input
numerical trajectory with the best-fit outputs of the MSD
obtained from simulations, it has been shown how the com-
monly assumed equivalence between the MSD plateau value
and the potential square width at U = kgT breaks down for
nonharmonic potentials. In addition, an incorrect value of the
diffusion coefficient is also found. Building up on this, the
simulation framework has been used to devise a method able to
correctly evaluate the diffusion coefficient without any a priori
knowledge of the confining potential. The method is based on
the comparison of the MSD of the relevant dataset with ad hoc
simulations. This method can be used to check if the effect of
non-harmonicity is relevant in specific cases and to increase the
precision of the obtained diffusion coefficient by removing the
systematic error introduced by non-harmonicity. This approach
is particularly valued for situations where a precise measure-
ment of the diffusion coefficient is important.> Moreover, it can
in principle be generalized to the 2D or 3D case, provided that
attention is paid in adding the proper coupling terms to the
differential equations that will replace eqn (5). The present
work focused on tracking-based methods for quantifying the
dynamics. However, other techniques can also be used to
estimate the MSD of a single particle or an ensemble of
particles (e.g., FCS,** DWS,** and DDM?*). In principle, the
proposed IS methodology could be applied in conjunction with
experimental techniques that do not rely on single-particle
trajectory reconstruction. However, with tracking-free methods,
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the direct access to the potential measurement is lost. Alter-
native ways for accessing (or knowing) the potential would
therefore be needed. Provided this, and for symmetric poten-
tials (radial in the 2D case), the presented analysis can be
extended to tracking-free methods.

Even though the relevant cases of anomalous diffusion have
not been considered in the present work, the same working
principle can per se be adapted to such rich systems. For this,
simulations should, however, be adapted case by case for
modeling super- or sub-diffusive behaviors. The present work
only considers the passive case. The possibility of generalizing
the same arguments and method to the active case depends on
whether it is allowed to consider the activity as an effective
temperature. This can be verified when the active motion is
isotropic, sufficiently homogeneous in time and space, and
with a persistent length smaller than the size of the well.*®

Recently, the IS method has been applied to the study of the
viscous drag of spherical®® and ellipsoidal** colloids in the
vicinity of an air-water interface, where the superposition of a
gravity potential and DLVO interactions results in an asym-
metric non-harmonic potential.” There, the method has made
it possible to verify the validity of the harmonic approximation
in the studied cases. We believe that the proposed methodology
is not only limited to the colloidal field but can potentially be
employed in any confined Brownian dynamics when a precise
evaluation of diffusivity is required.
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