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Oscillatory flow improves hydrodynamic ordering
of soft suspensions in rectangular channelsf

Paul C. Millett

A computational study is presented that examines the hydrodynamic ordering of soft-particle
suspensions within rectangular channels undergoing both steady and oscillatory flow. In these
conditions, particles assemble into one-dimensional train-like configurations aligned in the flow
direction. The results indicate that oscillatory flow facilitates a significant improvement in the ordering
process, particularly for the assembly of multiple side-by-side trains within the channel. Several key
parameters are systematically varied, including the Wolmersley number (Wo) representing the oscillatory
frequency, the capillary number (Ca) representing the particle deformability, and the particle volume
fraction (¢). It is found that optimal ordering occurs for a particular range of Wo number, and that this
range is dependent on Ca. Finally, polydisperse suspensions are also considered, whereby dispersity in
the particle size is varied. The simulations reveal that oscillatory flow is more robust (relative to steady
flow) for ordering polydisperse suspensions into side-by-side train structures. This study provides an
alternative strategy for reliably ordering biological cells, vesicles, droplets, or other deformable particles

rsc.li/soft-matter-journal

1. Introduction

Significant hydrodynamic interactions can arise in particle
suspensions flowing within closed channels, particularly when
the cross-sectional dimensions of the channel are less than
~100a (a representing the particle radius). The hydrodynamic
interactions arise from the flow disturbances that occur due to
the relative motion of each particle with respect to the sur-
rounding fluid. These flow disturbances are altered in complex
ways due to many factors including the presence of other
particles, the presence of the walls, the inertia of the fluid,
the deformability of the particles, and the cross-sectional
dimensions of the channel.

In certain combinations of the above parameters, the hydro-
dynamic interactions can lead to collective ordering of the
particles. For the case of rigid particles, collective ordering only
occurs at moderate-to-high values of Reynolds number (Re)."””
In cylindrical channels, rigid particles have been observed
to assemble into trains with uniform axial spacings along the
flow direction." The trains are located at the Segré-Silberberg
annulus, or roughly 0.6R depending on the flowrate (R being
the channel radius). In rectangular channels, the channel size
and aspect ratio strongly influence the train location and
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into train-like configurations without the use of flow-focusing fluidic channel features.

arrangement.*>® For channels of larger widths (greater than

~10a), single-file trains form near the wall centers (particularly
the wall of greater length). However, if the channel width is
small enough (less than ~10a), staggered particle trains
develop with particles residing on alternating locations on
either side of the channel. The spacing between particles in
trains is most strongly governed by the particle Reynolds
number.’ The underlying mechanism of this train assembly
is a confinement-induced reversing flow field near the
sidewalls.* However, it is important to point out that in these
rigid-particle suspensions, not all particles belong to trains (the
ordering is not very consistent), and defects are common.

On the other hand, deformable particles exhibit a much
higher propensity for collective ordering in confined flow."*™"”
Janssen et al.'> demonstrated that suspended droplets flowing
between two infinite parallel plates assemble into 1D trains
aligned in the flow direction (the plates separated by 2.4a). They
showed that the hydrodynamic interactions arise from the
combination of dipolar and quadrupolar flow disturbance
fields, the latter caused by the flow-induced deformation of
the droplets. It appears that these aligning interactions are
universal to particle type (droplet, red blood cell, vesicle,
capsule, etc.), given that the particles are soft enough to
undergo flow-induced deformation, with a sufficient degree
of confinement. For example, experimental studies have shown
that red blood cells also assemble into 1D train structures in
Poiseuille flow conditions."®" In a recent paper by the current
author,?® a parametric study using computer simulations was

Soft Matter, 2025, 21, 5503-5514 | 5503


https://orcid.org/0000-0002-9887-3162
http://crossmark.crossref.org/dialog/?doi=10.1039/d5sm00422e&domain=pdf&date_stamp=2025-06-18
https://doi.org/10.1039/d5sm00422e
https://doi.org/10.1039/d5sm00422e
https://rsc.li/soft-matter-journal
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sm00422e
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM021027

Open Access Article. Published on 06 June 2025. Downloaded on 10/18/2025 11:24:22 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

performed for elastic fluid-filled capsules flowing between
infinite parallel plates. An assessment of how the degree of
ordering is dependent on the particle deformability, the chan-
nel height, as well as the polydispersity of the particles (includ-
ing dispersity in both size and deformability) was made. In
particular, it was found that an optimal channel height of
hla ~ 5/3 (h representing the half-height of the channel) exists
for ordering, when the particle volume fraction is fixed at 10%.
This optimality of #/a exists due to a balance between two
factors as h/a is decreased: (1) the increasing hydrodynamic
interactions that occur with increasing confinement, and
(2) the decreasing planar density of particles on the channel
half-plane when the particle volume fraction is held fixed.
However, even with optimal conditions for ordering, the parti-
cle configurations still contained defects in the form of train
splitting and merging (i.e. dislocations) as well as some mis-
aligned particles.

Due to the fact that this ordering is a time-dependent process, it
requires extended channel lengths on the order of 10°-10%a.
Incorporating such channel lengths in a microfluidic device can
complicate the design layout, as well as incur a substantial energy
cost to produce the necessary pressure difference to drive flow
(also a concern when increasing Re in inertial microfluidic
devices). One strategy to circumvent these challenges is to use
unsteady pulsatile flows," in which a transient pressure difference
is applied across the channel. Very recent studies have demon-
strated that unsteady harmonic flows can be tremendously
effective in reducing clogging, enhancing mixing and particle
separation, and improving microdroplet pinch-off and
control.?>2® The special case of oscillatory flow (i.e. zero mean
flow rate) is particularly intriguing due to the potential to
achieve a desired flow-induced particle distribution in arbitra-
rily short channels. It has been shown that for rigid particles in
dilute concentrations, oscillatory flow alters the inertial focus-
ing in a complex manner that depends on particle inertia and
the oscillatory frequency.***' For deformable particles in dilute
concentrations, the rate of inertial focusing can be accelerated
with certain pulsatile flow frequencies.*>?

However, the effect of unsteady flows on hydrodynamic
ordering in confined soft suspensions is unknown. Here,
three-dimensional simulations are presented that demonstrate
that oscillatory flow facilitates a significant improvement in
hydrodynamic ordering of soft particles in rectangular chan-
nels, relative to steady flow conditions. It is found that certain
ranges of oscillatory flow frequency are optimal for ordering an
initially random suspension into one with multiple side-by-side
train structures aligned in the flow direction. This study also
compares ordering between steady and oscillatory flows with
varying particle volume fraction. At low particle volume frac-
tions, it is found that both oscillatory and steady flow condi-
tions can order a suspension into a single train located at the
channel centerline. However, at higher volume fractions, only
oscillatory flow was observed to be capable of ordering a
suspension into multiple side-by-side trains. Lastly, it is found
that oscillatory flow, compared with steady flow, is more robust
at ordering suspensions with polydispersity in particle size.

5504 | Soft Matter, 2025, 21, 5503-5514

View Article Online

Soft Matter

2. Methods

In this study, the immersed boundary method (IBM), coupled
with the lattice-Boltzmann method (LBM), is used to simulate a
suspension of soft particles flowing through confined rectan-
gular channels. A full description of the model can be found in
recent papers by this author,?>** however the pertinent details
are given below.

The soft particles are fluid-filled capsules with an infinite-
simally thin hyperelastic membrane. The membrane is discre-
tized into a triangular mesh with 1280 faces and 642 nodes by
subdividing the faces of an icosahedron and projecting the
nodes onto a sphere with radius a, corresponding to the resting
radius of a capsule. The fluid inside the capsule is assumed to
have the same viscosity and density as that of the outside fluid.
The Skalak model®” is used to describe the in-plane shear and
area-dilation deformation energy of the membrane, with g
and k, representing the shear and area-dilation moduli, respec-
tively. An out-of-plane bending energy model and a volume
conservation model are included as well, as described in ref. 34.

The LBM discretizes the flow field with a uniform, three-
dimensional lattice (here, the D3Q19 stencil is used) on which
discrete particle distribution functions fi(x,f) are stored and
updated through time. As shown in Fig. 1a, the direction of flow
is aligned with the x-axis, and it is driven by a uniform body
force density, F2, which is equivalent to a pressure gradient Ap
in the flow direction. Channel walls are perpendicular to the
y- and z-directions, which are modeled as no-slip surfaces
using half-way bounce-back boundary conditions.?® The cross-
sectional dimensions of the channel are defined by w and %
corresponding to the half-width and half-height of the channel,
respectively. The number of lattice sites used in the LBM
to discretize the channel is N, x Ny, x N, (with N, = 2w and
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Fig. 1 (a) Schematic of simulation domain. The cross-sectional channel
dimensions are 2w x 2h, and flow is in the x-direction. (b) Oscillatory flow
is realized using a harmonic pressure gradient Ap (equivalent to the body
force density F2) in the x-direction with an amplitude 8p and time period T.
For all oscillatory flow simulations herein, the dp value is chosen such that
Remax = 1.

oscillatory flow
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N, = 2h). In the simulations below, two lattice dimensions are
considered: 1000 x 66 x 18 and 1000 x 88 x 18. The spacing
between adjacent lattice sites is designated by Ax and is equal
in each direction. The time step size is designated by At. As is
customary, the LBM simulations utilize reduced length and
time scales with Ax =1 and At = 1. The fluid density is p = 1 and
the fluid kinematic viscosity is v = ¢,*(t — At/2) = 1/6, assuming
1 Ax
JAAC
7 = 1. In addition, the channel cross-sectional width and height
are non-dimensionalized by dividing by the resting particle
radius (w/a and h/a). Here, a = 6Ax, so the two channel widths
considered in this study are w/a = 5.5 and w/a = 7.33. The
channel height is fixed at #/a = 1.5 for all simulations.

The key dimensionless parameters in this study are the
Reynolds number (Re) defining the flow inertia in the channel,
the capillary number (Ca) defining the particle deformability,
and the Wolmersley number (Wo) defining the oscillatory flow
frequency. The Reynolds number is defined as:*°

cs = is the lattice speed of sound and the relaxation time

Umax L
Re = - (1

where #,.x is the maximum velocity in the channel centerline,
L is a characteristic length scale set equal to D,/2 where D, is
the hydraulic diameter of the rectangular channel, and v is the
kinematic viscosity of the bare fluid. It is noted that Re is the
channel Reynolds number for the bare fluid (rather than
the effective Re of the suspension). For a given value of Re,
the x-direction body force F2 can be calculated using the
analytical solution for u,,, given in Appendix A of the author’s
previous work (see eqn (A6) in ref. 34). The capillary number is
defined as:*°

_ Pllimaxa

Ce ,
4 L

(2)
where p is the fluid density and xs is the in-plane shear
modulus of the particle membrane. For a given value of Ca,
the membrane shear modulus xg can be calculated directly
using eqn (2).

In simulations with oscillatory flow, the body force applied
to the fluid is multiplied by a time-dependent sinusoidal
function: F2 = F2sin(2nt/T) = Fisin(wt), where ¢ is simulation
time and F2, T and o define the amplitude, oscillation period,
and angular frequency of one oscillatory cycle, respectively.
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Paper

Note that the amplitude FZ is equivalent to 8p shown in Fig. 1b.
In all simulations herein, the amplitude of the body force
density is chosen such that Rep,. = £1. The Wolmersley
number is defined as:**

wl?

el 3)

v

Wo =

Finally, the particle volume fraction is defined as ¢ = NV,/
V. x 100% where N is the number of particles in the channel, V,
is the volume of one particle (with a spherical shape at rest with
a = 6Ax), and V, is the volume of the channel.

Each simulation begins with a random distribution of
particles within the channel. As time progresses, the hydro-
dynamic interactions due to both the confinement and flow-
induced particle deformation lead to the ordering of particles
into 1D train assemblies. Two dimensionless order parameters
are utilized to characterize the degree of order in the system,
and its dependency on the flow and particle properties. The
first order parameter &, represents the fraction of particles
belonging to a train. The criteria for determining if a particle
belongs to a train is the same as the author’s recent work.>®
Briefly, a particle belongs to a train if it has two neighbors
(one in front and one in back) that are within a cutoff radius of
3.5a and within an angular range of +15° relative to the flow
direction. Additionally, a particle belongs to a train if it has one
neighboring particle in this same relative position and that
neighbor belongs to a train (this second criteria accounts for
particles at the head or tail of a train). A train consists of three
or more particles. Fig. 2 shows an example simulation whereby
capsules are colored according to the train in which they reside.

A second order parameter £, is introduced here which
represents the average train length in the suspension relative
to the channel length. The length of any particular train is
calculated by summing the distance between sequential neigh-
boring particles in the same train beginning at the tail of the
train. Compared to @, £, provides a much more sensitive
calibration of the train development. When £, = 0, the average
train length is zero (and, hence, there are no trains in the
channel). When £, =1, every train in the channel extends
across the entire channel length. Recall that the domain is
periodic in the flow direction (the x-direction), therefore when
L; =1 each train wraps around back onto itself, effectively
making its length infinite.
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Fig. 2 Throughout each simulation, particle positions are analyzed to determine which particles belong to a train. Top-down views are shown (of the xy-
plane) of both the initial state and the final state at the end of the simulation with steady flow and particle volume fraction of ¢ = 7.62%. In the bottom
image, particles in the same train are assigned the same unique color. In this figure, particles not in a train are colored light-grey, as indicated in the close-
up view on the right (corresponding to the region circled by the dashed red line).
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As discussed above, two channel cross sectional dimensions
are considered: (i) w/a = 5.5, h/a = 1.5, and (ii) w/a = 7.33,
h/a = 1.5. This channel height &/a closely corresponds to the
optimal confinement for particle ordering.’® The channel
widths are comparable to those used by Iss et al'® for red
blood cell ordering. For channel widths of w/a = 5.5, each
simulation is run for 2 x 10° LBM time steps. For the slightly
wider channel widths of w/a = 7.33, each simulation is run for
3 x 10° LBM time steps. Time is non-dimensionalized by
dividing by the advection time, defined as the time required
for a particle at the channel centerline to travel a distance a:

= Umax
r= t<7>. (4)

For steady-flow conditions, umayx is constant and for Re = 1,
wla = 5.5, and h/a = 1.5 corresponds to a value of uy,x = 0.0118
Ax/At in LBM units. For the wider channels (w/a = 7.33), émax =
0.0112 Ax/At in LBM units. For oscillatory flows, eqn (4) uses
Umax at the peak of a cycle, and because Reyax = 1, the upay
values given above remain valid.

3. Results

3.1. Steady flows

Before results of oscillatory flow are examined, it is important
to understand the hydrodynamic ordering behavior in steady
flow conditions. As discussed in the Introduction, given suffi-
cient particle deformability and confinement, soft-particle sus-
pensions in planar or rectangular Poiseuille flow conditions
undergo an ordering process into 1D train assemblies due to
long-range quadrupolar interactions. Recent studies'®?° have
demonstrated that these interactions depend on Re, Ca, ¢, and
the cross-sectional dimensions of the channel.

Fig. 3 provides simulation snapshots that demonstrate the
flow-induced ordering for steady flow with Re = 1, Ca = 0.3, and
cross-sectional dimensions w/a = 5.5 and h/a = 1.5. The top two
rows show a suspension with ¢ = 4.19%, including the initial

View Article Online
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state (Fig. 3a) consisting of randomly dispersed particles and
the flow-assembled state (Fig. 3b) in which all the particles have
assembled into a single-file train at the channel centerline.
Both top-down views (viewed along the z-axis) and head-on
views (viewed along the x-axis) are provided. The pairwise
interactions for this flow condition include both long-range
attraction and short-range repulsion forces, and therefore entail
an equilibrium separation distance, as shown previously by
Janssen et al. for droplets’? and Millett for elastic capsules.”
As ¢ is increased, the particle spacing in the flow direction within
the single-file train decreases. However, when ¢ is increased
beyond a certain threshold corresponding to a single-file train
with particles at the equilibrium spacing, the collective ordering
changes to arrangements of alternating single-file and double-file
trains (see Fig. 3c). For these conditions, this morphology appears
to be favored over other alternatives, e.g. staggered particle trains.
As ¢ is further increased, the length of the double-file train
regions grows relative to the length of the single-file train regions,
as can be seen when ¢ is increased to 9.14% (Fig. 3d) and then to
10.66% (Fig. 3e). Interestingly, in these channels, perfect double-
file trains were not observed in steady-flow conditions, even at
volume fractions that would facilitate two side-by-side trains with
particles arranged at the equilibrium spacing (which would occur
at ¢ ~ 10%, given an equilibrium spacing of 2.7a°°). Rather,
defects and alternating single-file and double-file trains persist for
steady flow.

The ordering is very sensitive to particle deformability, as
shown in Fig. 4. As deformability decreases (i.e., as particle
stiffness increases) the hydrodynamic interactions decrease in
strength and range, hence less collective ordering develops
through time. This can be seen by comparing the rows in
Fig. 4 (the top row corresponds to the highest deformability
Ca = 0.3 and the bottom row corresponds to the lowest
deformability Ca = 0.01). Fig. 4 also shows side views (viewed
along the y-axis) to display the degree of flow-induced deforma-
tion. For Ca = 0.01, there is essentially no hydrodynamic
ordering. This is consistent with previous studies showing that
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Fig. 3 Hydrodynamic ordering in a rectangular channel (w/a = 5.5, h/a = 1.5) with steady flow (Re = 1) and varying particle volume fraction. (a) The initial
state for ¢ = 4.19%. (b) At this volume fraction, hydrodynamic ordering leads to a singe-file train in the channel centerline. As ¢ is increased, the particles
assemble into arrangements of alternating single-file and double-file trains, as seen for (c) ¢ = 6.85%, (d) 9.14%, and (e) 10.66%. Here, Ca = 0.3 for each
image shown, and the bottom four rows show particle configurations at the end of the simulations (t = 3928).
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Fig. 4 Simulation snapshots showing particle configurations at the end of the simulations (2x 10° LBM steps or t = 3928) for steady flow (Re = 1) at
volume fraction ¢ = 10.66%. (a) The top row corresponds to the highest particle deformability (Ca = 0.3), and the particle deformability decreases (i.e.
particle stiffness increases) going from the top row to the bottom row. The bottom row (e) corresponds to the lowest deformability (Ca = 0.01), which

exhibits essentially no hydrodynamic ordering.

rigid particles do not exhibit long-range ordering at lower levels
of flow inertia.

3.2. Oscillatory flows

Next, particle ordering is investigated in oscillatory flows in
rectangular channels, again with cross-sectional dimensions
w/a=5.5 and h/a = 1.5 (identical to those shown in Fig. 3 and 4).
Fig. 5a shows the time evolution of hydrodynamic ordering for
Wo = 0.194 and Ca = 0.3, providing both top-down and side
views. At the end of the simulation, the particles have been
ordered into two perfect double-file trains. For this particle
configuration, the order parameter £, is equal to one, meaning
that the average train length is equal to the channel length. Also

shown in Fig. 5b is an equivalent system (same values of Ca,
¢, w/a, and h/a) after steady flow (Wo = 0) for the same time
duration, illustrating the qualitative difference in ordering.
Note that for this steady flow case, the order parameter £, is
less than one (due to the existence of both single-file and
double-file trains).

Moreover, for the suspension undergoing steady flow, the
net advection distance for particles is 3928a (this is roughly 23
channel lengths in the periodic flow direction). On the other
hand, for the suspension undergoing oscillatory flow, the net
advection distance is zero due to the fact that the sinusoidal
flow cycle is symmetric in the positive and negative directions.
(Note that this is not entirely true, as there are relative particle
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(a) Snapshots at progressive instances in time for ordering in oscillatory flow with Wo = 0.194, Rejnax = £1, Ca = 0.3, ¢ = 10.66%, w/a = 5.5 and

h/a = 1.5. Here, to corresponds to the initial state and ts corresponds to the final state (f = 3928) which is equivalent to 10 oscillation periods for this Wo
value. (b) The final particle configuration for an equivalent system in steady flow (Wo = 0) for the same time duration, i.e. time = ts in panel a.
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displacements associated with the time-dependent ordering
process, ie. transitioning from the initial disordered state to
the final ordered state). Nevertheless, with oscillatory flows,
improved ordering is found to occur and it can be facilitated
without exceedingly long channels. For the oscillatory flow
case, the preferred lateral spacing between trains is ~2.8a.
The ESIf contains two simulation movies of ordering in both
steady and oscillatory flow conditions.

Fig. 6 displays the dependency of £, on Wo for five different
particle deformabilities. Each data point corresponds to an
individual simulation (i.e., each simulation implemented a
single value of Wo). Throughout a simulation, £, is calculated
at periodic instances in time, and the values shown in Fig. 6 are
time-averaged over the last 5 x 10° time steps (or the last
quarter of the simulation). This was done to allow enough time
for the ordering process to occur, as the initial state is a random
distribution. The error bars correspond to the standard devia-
tion in that same span. Steady flow is represented by Wo = 0,
corresponding to an infinite oscillation period T. The datasets
in Fig. 6 reveal that £, increases to one within a particular range
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Fig. 6 Order parameter £, versus Womersley number Wo for each of the
Ca values. For each plot, the volume fraction is ¢ = 10.66%, and the
channel dimensions are w/a = 5.5 and h/a = 1.5. Insets show data values
for Wo < 0.2 with the same axes labels. Steady flow corresponds to
Wo = 0. The results suggest an optimal range of Wo for hydrodynamic
ordering for each Ca value (with the exception of Ca = 0.01 shown in panel e).
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of Wo that seems to depend slightly on Ca. Note that for the
stiffest particles (Ca = 0.01 shown in Fig. 6e), there is very little
improvement in particle ordering in oscillatory flows (at least
for these conditions), albeit the particle ordering in steady flow
is also minimal as shown in Fig. 4e. The insets in Fig. 6 provide
better detail for Wo < 0.2. Overall, the flattened peaks shown
in Fig. 6a-d indicate that there is an optimal range of Wo for
hydrodynamic ordering.

Fig. 7a displays each of the separate datasets shown in Fig. 6
on a single plot. This illustrates that the flattened peaks of £,
shift to higher ranges of Wo with decreasing Ca. Physically,
this means that stiffer particles require a higher range of Wo
(i.e., a higher frequency in the oscillatory flow) to facilitate
maximal ordering. Conversely, softer particles require a lower
range of Wo (ie., a lower frequency in the oscillatory flow)
to facilitate maximal ordering. This can be seen in the box
plot shown in Fig. 7b, displaying the optimal range of Wo
(designated as Wo*) for each of the Ca values (with the excep-
tion of Ca = 0.01 corresponding to the stiffest particles, which
did not achieve £, =1 for any oscillatory flow condition).
Finally, for each deformability value, when the Wo value
exceeds 1 (and especially when the Wo value exceeds 1.5), very
little hydrodynamic ordering is observed as indicated by the £,
values being less than 0.1. Hence, it appears hydrodynamic
ordering is improved with oscillatory flow only when Wo < 1
(however, this may change when Re,,,, is increased, something
that was not done in this study).

To show how the particle arrangements vary with increasing
Wo, Fig. 8 provides snapshots from six separate simulations for
Ca = 0.1. For steady flow (Wo = 0), an extensive degree of
hydrodynamic ordering occurs. In fact, nearly every particle
belongs to a train (the @, value is very close to 1 as shown in
Fig. 10 below). However, as discussed above, for steady flow the
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Fig. 7 (a) Each data set shown in Fig. 6 plotted together to show that the

optimal range of Wo shifts to smaller values of Wo as particle deformability
increases from Ca = 0.03 to Ca = 0.3. (b) Box plot showing the optimal
range of Wo (designated as Wo*) for Ca = [0.03, 0.05, 0.1, 0.3]. Note that
Ca = 0.01is not included in panel b due to a lack of ordering in this system.
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Fig. 8 Hydrodynamic ordering for Ca = 0.1 with increasing Wo. (a) The Ca

(b)

= 0.1 data set (also shown in Fig. 6b) with six arrows indicating the conditions

associated with the simulation snapshots shown in (b), which are taken at the end of the simulations. For Wo = 0.0 (steady flow), the particles assemble

into alternating single-file and double-file trains. For Wo = 0.19 and 0.43,

increasing Wo results in decreased ordering.

collective ordering results in both single-file and double-file
train structures, hence the £, value is rather low (£, ~ 0.2
meaning that the average train length is only about 20% of
the channel length). When Wo is increased to 0.19 as well as to
0.43, the particles assemble into two perfect double-file trains
(see the second and third rows of Fig. 8b), with both simula-
tions resulting in £, = 1.

However, further
increased, we see a diminishing level of ordering as can be
seen for the simulations of Wo = 0.71, 1.04, and 1.59 (the
fourth, fifth, and sixth rows of Fig. 8b). For these higher levels
of oscillatory frequency, it appears that there is altogether a
declining amount of hydrodynamic ordering. As seen for Wo =
1.59, the particle configuration appears to be essentially ran-
dom, indicating that very little to no hydrodynamic ordering
has occurred throughout the simulation (even though for Wo =
1.59, the suspension has undergone 666 oscillation cycles). This
can be rationalized by the fact that increasing the oscillatory
frequency results in decreasing particle advection distances within
a single half-cycle of the sinusoidal flow profile. As discussed by
Janssen et al,"” the hydrodynamic ordering process is driven
by quadrupolar flow disturbance fields generated by the flow-
induced particle deformation. Particle-particle interactions can
extend out to ~10a.”°

when the oscillatory frequency is

However, if the oscillation frequency is too
high, it is likely that these long-range flow fields do not have
sufficient time to develop. Furthermore, with increasing oscilla-
tory frequency the advection distance traveled by each particle
decreases. These two factors will drastically reduce the overall
hydrodynamic ordering throughout time.

Fig. 9 shows simulation snapshots for each particle deform-
ability at a single oscillatory frequency, Wo = 0.87. At this

This journal is © The Royal Society of Chemistry 2025

perfectly ordered double-file trains develop associated with £, = 1. Further

particular Wo number, none of the Ca values lead to perfect
ordering with £, = 1, and interestingly it is the intermediate
deformabilities (Ca = 0.03 and Ca = 0.05) that exhibit the
highest degree of order. The softest particles (Ca = 0.3) and
hardest particles (Ca = 0.01) exhibit the lowest degree of
ordering. This particular Wo number is above each of the
optimal ranges denoted by Wo* (see Fig. 7b). However, the
optimal range for Ca = 0.03 (Wo* = 0.4-0.7) is closest to Wo =
0.87, and hence the ordering is best for this deformability.
Fig. 10 displays the order parameter @, (representing the
fraction of particles belonging to a train) versus Wo for each
particle deformability. Interestingly, increasing Wo leads to
deformability-dependent trends. For the softest particles
(Ca = 0.3), &, is at or very close to one for Wo < 0.5. For
Wo > 0.5, there is a marked decrease in ¢, with increasing Wo.
For Wo = 1.58 (the highest oscillatory frequency considered
here), less than 20% of particles belong to a train, despite the
fact that these are the softest particles which are very prone to
ordering. On the other hand, for the stiffest particles (Ca = 0.01)
@, increases with Wo up to about Wo = 0.5, and then levels
off at around @, = 0.8. However, even though around 80% of
particles belong to trains for these conditions, the £, is very low
hence these train are quite short relative to the channel length.

3.3. Wider channels

The above results demonstrate that oscillatory flow can effec-
tively order a suspension of soft particles into two double-file
trains in rectangular channels with a width of w/a = 5.5, in a
superior manner relative to steady flow. The question arises:
does oscillatory flow improve ordering in wider channels?
Fig. 11a provides simulation snapshots of oscillatory ordering

Soft Matter, 2025, 21, 5503-5514 | 5509
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Fig. 10 Order parameter @, representing the fraction of particles belong-
ing to a train, versus Wo for each Ca value. For steady flow conditions
(Wo = 0), increasing Ca results in increased &,. However, increasing Wo
leads to deformability-dependent trends. For the softest particles (Ca =
0.3), there is a marked decrease in @, for Wo > 0.5. On the other hand, for
the stiffest particles (Ca = 0.01), there is a marked increase in @; with
increasing Wo.

in rectangular channels with width w/a = 7.33 (the channel
height is the same, A/a = 1.5). The volume fraction is ¢ = 12%,
the particle deformability is Ca = 0.3, and the Wolmersley
number is Wo = 0.194. The top image in Fig. 11a shows the
initial state of randomly dispersed particles, and the third
image in Fig. 11a shows the final particle configurations at
the end of the simulation (recall that for these wider channels,
the total number of LBM steps is 3 x 10° corresponding to 7 =
5600). As can be seen, under these oscillatory flow conditions
the particles are ordered into triple-file trains with perfect
order. The lateral spacing between trains is ~3.1a (very similar
to the double-file trains in Section 3.2 whereby the lateral

5510 | Soft Matter, 2025, 21, 5503-5514

spacing was ~2.8a). In Fig. 11b, an equivalent system that
has undergone steady flow (Wo = 0) is shown to provide a
comparison. In the steady flow case, the particle arrangements
consist of both double-file and triple-file trains.

For these wider channels, the £, versus Wo data are shown
for each particle deformability in Fig. 12. These plots are
similar to those given in Fig. 6. Again, we see an optimal range
of Wo for particle ordering for each deformability (except
Ca = 0.01). Here, £, = 1 corresponds to perfect triple-file trains
as shown in Fig. 11a. Compared with the narrower channels
(w/a = 5.5), the widths of the optimal Wo ranges are slightly less
for these wider channels. This can be attributed to the fact that
the confinement in the y-direction is less for these wider
channels as well as the fact that it is harder to eliminate defects
in larger crystalline systems. Furthermore, each of these data-
sets are plotting together in Fig. 13 to illustrate that again the
optimal Wo values depend on Ca. Fig. 13b shows box plots of
Wo* versus Ca, showing that Wo* decreases with increasing
particle deformability (similar to the observations for the
narrower channels shown in Fig. 7).

3.4. Varying particle volume fraction

Due to the lateral confinement of the rectangular channels, it is
intuitive that only a certain range of particle volume fractions
will facilitate the formation of perfect side-by-side train config-
urations (resulting in @, = 1 and £, = 1). This was demon-
strated earlier in Fig. 3, which showed the assembled train
structures for increasing ¢ with steady flow. To quantify the
dependency of particle volume fraction on ordering, Fig. 14
plots L, versus ¢ for a broader range of volume fractions
between 3% and 14%. Two datasets are displayed: one for
steady flow (Wo = 0) and one for oscillatory flow (Wo = 0.39).
For both datasets, the particle deformability is Ca = 0.1 and the
channel dimensions are w/a = 5.5 and h/a = 1.5.

Fig. 14 shows that at lower particle concentrations (¢ = 5.0-
6.1%), both oscillatory and steady flows result in single-file

This journal is © The Royal Society of Chemistry 2025
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(a) Progressive snapshots of hydrodynamic ordering in the wider channel (w/a = 7.33 and h/a = 1.5) with oscillatory flow leading to triple-file

trains. The conditions are Wo = 0.194, Ca = 0.3, and ¢ = 12.00% (number of particles = 210). The top image corresponds to the initial state. (b) The final

particle configuration for an equivalent system in steady flow (Wo = 0).
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Fig. 12 Similar to Fig. 6, however for the wider channels (w/a = 7.33 and
hl/a = 1.5) and ¢ = 12.00%. Here, £, = 1 corresponds to perfect triple-file
trains as shown in Fig. 11a.

trains, similar to that shown in Fig. 3b. This is perhaps to be
expected, given the fact that deformable particles tend to migrate

This journal is © The Royal Society of Chemistry 2025

10F

Fig. 13 Similar to Fig. 7, however for the wider channels (w/a = 7.33 and
h/a = 1.5) and ¢ = 12.00%. Here, £, = 1 corresponds to perfect triple-file
trains as shown in Fig. 11a.

to the channel centerline,”” thus facilitating the formation of a
single-file train along this centerline at volume fractions that
allow the particle spacing to be at, or close to, the equilibrium
spacing. When ¢ is increased to the range of 6.1-9.5%, the £,
values drop to around 0.1 for both oscillatory and steady flow.
This volume fraction range is intermediate in the sense that it
is too high to form a single-file train and too low to form
double-file trains, hence the resulting structure is the combi-
nation of single and double-file trains, similar to those shown
in Fig. 3c-e. However, for the volume fraction range of ¢ = 10—
12.2%, we see that only oscillatory flows result in perfect
double-file trains. These results suggest that oscillatory flows
facilitate improved hydrodynamic ordering for the assembly of

Soft Matter, 2025, 21, 5503-5514 | 5511
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result in perfect double-file trains.

multiple side-by-side trains within a rectangular channel, and
that oscillatory flows can accomplish this for a range of ¢ rather
than for only one specific value of ¢.

3.5. Polydisperse suspensions

Lastly, attention is turned to how polydispersity in particle
radius affects hydrodynamic ordering in both steady and
oscillatory flows. Here, a Gaussian distribution in particle
radius is assigned to the suspension, and the polydispersity is
quantified by the standard deviation in particle radius divided
by the channel half height (in other words, the standard
deviation of the ratio a/h). This standard deviation is
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Fig. 15 (a) Histogram of the distribution of reduced particle radius (a/h) in
a polydisperse suspension with a standard deviation of ¢,/, = 0.044. (b)
Order parameter L, versus o, for oscillatory flow (Wo = 0.27) and steady
flow (Wo = 0). For this data, Ca = 0.3, ¢ = 10.66%, and the channel
dimensions are w/a = 5.5 and h/a = 1.5. Note: g5, = O corresponds to a
monodisperse suspension.
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represented as g,,. Fig. 15a shows a histogram of probability
P (in percent) versus a/h for ., = 0.044. For all simulations in
this section, the mean a/A value is 0.667 (corresponding to h/a =
1.5 as was the case for all of the above results) and increasingly
wider distributions in particle radius, or larger values of o,
are considered.

Fig. 15b shows L, versus g, for both oscillatory flow (Wo =
0.27) and steady flow (Wo = 0). Note that o,/ = 0 corresponds to
a completely uniform, monodisperse suspension. For both of
these datasets, the particle deformability is Ca = 0.3, the
particle volume fraction is ¢ = 10.66%, and the channel
dimensions are w/a = 5.5 and h/a = 1.5 (note that the a used
here now corresponds to mean particle radius). For monodis-
perse suspensions with g/, = 0, the order parameter £, = 1 for
Wo = 0.27 and £, = 0.26 for Wo = 0. This is consistent with the
above results demonstrating that oscillatory flow orders parti-
cles into perfect double-file trains while steady flow does not.
Increasing polydispersity leads to a decrease in £, for both
oscillatory and steady flow conditions. However, for oscillatory
flow, the drop-off in £, does not occur until ¢, > 0.02.

Images of the final particle configurations in polydisperse
suspensions are provided in Fig. 16. For the case of oscillatory
flow (Fig. 16a), perfect double-file trains have developed for
0qn = 0.0056. Increasing ., to 0.0333 leads to some localized
defects and variability in particle spacing within the train
structures. Further increasing o,; to 0.0556 results in more
defects, however the overall semblance of the double-file train
structures remains. On the other hand, for the case of steady
flow (Fig. 16b), increasing the polydispersity of the suspension
significantly reduces the assembly of train structures, and
therefore the overall order within the system. This can be seen
particularly for the case of g, = 0.0556.

In Fig. 16, there are two lightly-shaded boxes - one for the
oscillatory flow simulation and one for the steady flow simula-
tion (both for the case of g,/ = 0.0333). Close-up views of these
regions are given in Fig. 17 including both top-down and side
views, providing better depictions of the variation in particle
size. Overall, these results suggest that oscillatory flow facili-
tates more robust particle ordering even with increasing poly-
dispersity in the particle radius.

This journal is © The Royal Society of Chemistry 2025
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Fig. 16 Simulation snapshots of final particle configurations in polydisperse suspensions for (a) oscillatory flow (Wo = 0.27) and (b) steady flow (Wo = 0).
For each case, three different values of a,,, are shown, corresponding to increasing degrees of polydispersity. Oscillatory flow is significantly better at
ordering suspensions with higher polydispersity. The lightly shaded boxes are shown in close-up views in Fig. 17.
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Fig. 17 Close-up views of the shaded boxes in Fig. 16, including top-
down and side views. These images better depict the variation in particle
size. (a) Close-up image of particle configurations for Wo = 0.27 and o/, =
0.0333. (b) Close-up image of particle configurations for Wo = 0.00 and
Oa/h = 0.0333.

4. Conclusions

Arranging particles into a single-file configuration is advanta-
geous, and in some cases necessary, for many technological
applications including cytometry, bio-assay, and bottom-up
manufacturing. Here, three-dimensional IBM/LBM simulations
were performed to investigate how hydrodynamic ordering of

This journal is © The Royal Society of Chemistry 2025

soft suspensions is altered by oscillatory flow compared to
steady flow in highly confined rectangular channels. The pri-
mary conclusions of this work are:

1. Hydrodynamic ordering is improved with oscillatory flow
relative to steady flow, with an optimal range of Wo number
that depends on the particle deformability. For softer particles
(Ca=0.3),0.1 < Wo < 0.3 is optimal for ordering. This range
increases slightly with increasing particle stiffness. For stiffer
particles (Ca = 0.03), 0.4 < Wo < 0.7 is optimal for ordering.
See Fig. 7 and 13. For all deformabilities, hydrodynamic order-
ing diminishes significantly for Wo > 1.

2. Oscillatory flow better facilitates the ordering of multiple
side-by-side trains, including double-file and triple-file trains
(depending on the cross-sectional channel dimensions and parti-
cle volume fraction). In this work, multiple side-by-side trains with
L, = 1 were not observed to form in steady flow conditions.

3. Oscillatory flow is more robust for ordering suspensions
with polydispersity in particle radius. As polydispersity increases,
the ordering of double-file trains was better preserved with
oscillatory flow relative to steady flow (see Fig. 15-17).

Although this study explored several parameters and para-
meter ranges, there are still outstanding questions on this topic that
require further investigation. In particular, here the amplitude of
the flow rate was not varied (it was fixed at Re,,, = £1). It will be
interesting to determine if increasing this amplitude will broaden or
shift the optimal Wo ranges discussed above. In addition, questions
regarding how many side-by-side trains can be assembled with
increasing channel width will be important to determine.

Data availability

The code for the IBM/LBM simulations was written by the
author and is titled “FlowCUDA.” It can be found at https://
github.com/paulmillett/FlowCUDA.
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