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Parsimonious inertial cavitation rheometry via
bubble collapse time
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The rapid and accurate characterization of soft, viscoelastic materials at high strain rates is of interest in

biological and engineering applications. Examples include assessing the extent of tissue ablation during

histotripsy procedures and developing injury criteria for the mitigation of blast injuries. The inertial

microcavitation rheometry technique (IMR, J. B. Estrada, C. Barajas, D. L. Henann, E. Johnsen and

C. Franck, J. Mech. Phys. Solids, 2018, 112, 291–317) allows for the characterization of local viscoelastic

properties at strain rates up to 108 s�1. However, IMR typically relies on bright-field videography of a

sufficiently translucent sample at Z1 million frames per second and a simulation-dependent fit

optimization process that can require hours of post-processing. Here, we present an improved IMR-

style technique, called parsimonious inertial microcavitation rheometry (pIMR), that parsimoniously

characterizes surrounding viscoelastic materials. The pIMR approach uses experimental advancements to

estimate the time to first collapse of the laser-induced cavity within approximately 20 ns and a

theoretical energy balance analysis that yields an approximate collapse time based on the material

viscoelasticity parameters. The pIMR method closely matches the accuracy of the original IMR

procedure while decreasing the computational cost from hours to seconds and potentially reducing

reliance on ultra-high-speed videography. This technique can enable nearly real-time characterization of

soft, viscoelastic hydrogels and biological materials with a numerical criterion assessing the correct

choice of model. We illustrate the efficacy of the technique on batches of tens of experiments for both

soft hydrogels and fluids.

1 Introduction

The characterization of viscoelastic soft materials undergoing
fast, finite deformations is necessary for a wide range of
applications. These include, but are not limited to, the predic-
tion of biological tissue damage due to blunt impact and blast
events,1,2 the design of acoustically-responsive scaffolds for
drug delivery,3 and the modeling of non-invasive laser-4 and

ultrasound-based surgical procedures.5–7 Notably, the United
States Food and Drug Administration (FDA) recently approved
the clinical treatment of liver cancer with histotripsy, a novel
technique that ablates diseased tissues with ultrasound-
induced cavitation.8,9 A pressing need in histotripsy is an on-
the-fly assessment of the degree of therapy completion, which
can be reflected through the mechanical response of the treated
biomaterial.10,11 However, soft materials such as hydrogels are
challenging to characterize due to their low elastic shear
modulus, which ranges from 100 Pa to 1 MPa, and the difficulties
of gripping and manipulating the specimens during experiments.
To characterize materials with high compliance and, correspond-
ingly, slow shear wave speed, traditional high-strain-rate experi-
ments, such as the Kolsky bar, must be supplemented with
pulse shaping, weak signal sensing, and/or other complicating
techniques.12 Furthermore, soft biological tissues often exhibit
spatial heterogeneity, increasing the difficulty of measuring their
material property distribution with conventional methods that
only provide a macroscale average modulus. Bio-inspired material
systems fabricated to reproduce these functional gradients are
similarly difficult to characterize.
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The aforementioned challenges necessitate a technique
to locally assess the high strain rate and finite deformation
behavior of soft materials. Crosby et al. first developed needle-
induced cavitation rheology as an approach to probe the local
elastic properties of soft materials.13,14 A cavity of air or
immiscible liquid is injected into the characterized media.
The elastic modulus is determined from the pressure and bubble
radius at the onset of mechanical instability. This quasi-static
approach has been extended in recent years to a ballistic strain-
rate regime of approximately 104 s�1 by Milner and Hutchens.15,16

Cohen and co-workers introduced the capability to cyclically
expand and relax the needle-induced cavity at controlled stretch
rates,17,18 enabling finite deformation characterization of viscoe-
lastic materials. The inertial microcavitation rheometry (IMR)
technique, introduced by Estrada et al.19 and improved by
others recently,20–22 accesses a higher range of strain rates by
using laser-induced cavitation (LIC) in soft, hydrated materials
(i.e., with shear moduli below B1 MPa). An ultra-high-speed
camera images the bubble kinematics and the viscoelastic
properties of the cavitated media are inversely characterized
according to an inertial cavitation bubble model23,24 with
refinements accounting for a two-component mixture of bubble
content with heat diffusion and mass transfer25–29 and stress
field in the surrounding media.30–33

IMR inversely characterizes viscoelasticity at strain rates
reaching 103–108 s�1 but has only been successfully applied
to characterize nearly transparent materials using ultra-high-
speed imaging (rates above 270 000 frames per second). The
reliance on the full dynamics acquired from high-speed, bright-
field videography of the cavity restricts assessment to experi-
mental systems that produce accurate bubble images, which
itself is a product of, e.g., camera sensitivity and the material
turbidity. Increasing the exposure time to combat low light
throughput works against the maximum frame rate, thus
suggesting a need for us to reduce the reliance on the transient
dynamics for the characterization of challenging optical
systems.

Furthermore, the computational cost of the forward simula-
tion, optimization, and best-fit procedure is restrictive, parti-
cularly in a potential desired end-case-usage for near on-the-fly
characterization, for example, to assess the extent of diseased
tissue removal during histotripsy. Each forward simulation
requires about ten seconds. Batch-fitting multiple experiments
simultaneously and increasing the number of model para-
meters cause an exponential increase in the required forward
simulations. Hence, we seek to construct an approximate
theoretical model that characterizes materials based on just
the most essential data drawn from multiple experiments,
i.e., maximum radius, quasi-equilibrium radius, and time to
first collapse. The potential benefit here of a computationally
inexpensive approximate model is twofold. In cases where an
approximate characterization of material viscoelasticity is suffi-
cient for predictiveness, the procedure herein represents a
rapid method substituting the accurate yet time-consuming
IMR procedure. If accuracy remains critical, this procedure
complements IMR by vastly paring down the computational

space prior to an accurate bubble-dynamics-based inverse
characterization.

This style of approximate model can also be extended to
applications in which the time to collapse is used to quantita-
tively describe some system behavior or parameters of interest.
For example, the collapse time measured for LIC in the vicinity
of agarose hydrogels was compared against the Rayleigh col-
lapse time (a simplified metric assuming the bubble is just a
void) by Sieber et al.34 to examine the effect of an elastic
boundary. Marsh et al.35 and Ohl et al.36 conducted shock-
induced cavitation experiments in water and cervix cell assays,
respectively, and approximated average velocity and pressure in
the resulting jet flow using the Rayleigh collapse time. These
types of analyses could thus be enhanced by our approximate
collapse time model accounting for material behavior and
other bubble physics.

Herein, we use the modified Rayleigh collapse time approach
to develop a strategy for the parsimonious characterization of
viscoelastic materials that can be described with up to three-
parameter models. In contrast to prior work,19 this approach
enables the use of data from multiple experiments to arrive at a
batch-fit solution. The strategy leverages high-fidelity measure-
ments of the maximum bubble radius, the long-term equilibrium
bubble radius, and the time from maximum expansion to first
bubble collapse. These quantities of interest are distinctly related
through the ultra-high-rate elastic and viscous behaviors of soft
materials. In Section 2, we present an LIC experiment setup
capable of quantifying the time of collapse to an accuracy of
approximately 20 ns. The experiments are complemented with an
energy balance analysis that approximately quantifies the effects
of material viscoelasticity and secondary factors (viz., surface
tension, bubble pressure, and dilatational wave speed) on the
time to the first bubble collapse. We then introduce the parsimo-
nious inertial microcavitation rheometry (pIMR) procedure
enabled by these experimental and theoretical advancements.
The consistency of the procedure is verified in Section 3 with
synthetic experiments. We demonstrate in Section 4 high-fidelity
viscoelastic model parameterization from tens of experiments in
viscoelastic liquids and hydrogels, with computational post-
processing that takes only seconds. In Section 5, we discuss the
implications of the results obtained and the limitations of the
proposed strategy. We provide concluding remarks in Section 6.

2 Theory and methods
2.1 Bubble dynamics model

We summarize herein the bubble dynamics model serving
as the theoretical basis of the original IMR method. A more
thorough discussion of the theory, including its underlying
assumptions and regimes of applicability, can be found in
Estrada et al.19 The IMR framework is founded on the classical
Keller–Miksis model of bubble dynamics23,24 and it has been
extensively validated for inertial cavitation in nearly-incompres-
sible, viscoelastic, soft materials ranging from polyacrylamide,19,20

agarose,37 and gelatin3,22 hydrogels to healthy and diseased

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 9

/1
3/

20
25

 4
:0

2:
10

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sm00397k


This journal is © The Royal Society of Chemistry 2025 Soft Matter, 2025, 21, 6717–6734 |  6719

human liver tissues.38 Experimental quantification of the defor-
mation field in inertially cavitating hydrogels also confirmed
the validity of the bubble dynamics model when the bubble
wall velocity is lower than 0.08 times the longitudinal wave
speed in the surrounding material.20

Briefly, the bubble dynamics model considers a spherical
bubble in an infinite surrounding material environment sub-
jected to a pressure change that causes rapid radial motion, as
depicted in Fig. 1. The material outside the cavity is viscoelastic
and approximated as nearly incompressible. At the bubble wall,
the traction due to the material stress is balanced by the
internal pressure of the bubble content and the surface tension.
We denote the equilibrium, stress-free radius of the spherical
bubble as R0 and the referential radial coordinate for a material
point in the surrounding viscoelastic medium to be r0 A
[R0, N), measured from the center of the bubble to the infinite
far field. Due to the balance of mass, the deformed radial
coordinate r and velocity v of a material point r0 at time t in an
incompressible medium are

r ¼ r0
3 þ R3 � R0

3
� �1=3

; v ¼ dr

dt
¼ _R

R2

r2
; (1)

where R(t) is the evolving radius of the bubble. The balance of
linear momentum in the radial direction requires that

r
@v

@t
þ v

@v

@r

� �
¼ @p
@r
þ @srr
@r
þ 2

r
srr � syyð Þ; (2)

where r is the material density of the surrounding material, p
the hydrostatic pressure in the material, srr and syy the normal
radial and normal circumferential components of s, the devia-
toric Cauchy stress in the material. There need not be a d/dt
term for the density in (2) because we have used continuity of
mass to simplify. A perturbation analysis bridging the near- and
far-fields of the bubble23,24,39 leads to a correction of eqn (1)
accounting for a finite pressure wave speed c in the material
and the energy transfer via outward radial acoustic emission.
Then, integrating eqn (2) over r from r = R to r - N and
considering the traction boundary condition at the bubble wall
results in what is known as the Keller–Miksis equation

describing bubble dynamics,

1�
_R

c

� �
R €Rþ 3

2
1�

_R

3c

� �
_R2

¼ 1

r
1þ

_R

c

� �
pb �

2g
R
þ S � p1

� �
þ 1

r
R

c
pb �

2g
R
þ S

� �:

;

(3)

where overdots denote derivatives with respect to time t, pb the
internal bubble pressure, pN the far-field pressure, g the bubble
wall surface tension, and S the stress integral defined as

S ¼
ð1
R

2

r
srr � syyð Þdr: (4)

We do not simulate the complex plasma physics contribut-
ing to the initial growth of the laser-induced cavity. Instead,
following a conventional approach for modeling LIC,19,25,28,29,40

we assume that the bubble contents and the surrounding
medium reaches thermodynamic equilibrium at maximum
bubble expansion and model the bubble dynamics from the
instance of maximum bubble expansion. When considering
surrounding material with history-dependent viscoelasticity, we
estimate the initial condition of the stress integral S according
to a simplified model of the bubble growth phase, as detailed
below in Section 2.1.2 for the Maxwell model. We assume
that the bubble contains a mixture of water vapor and other,
non-condensible gas components during the rapid bubble
dynamics. Mass and heat transfer of the two-part bubble contents
are assumed to obey Fick’s and Fourier’s laws, resulting in a set
of PDEs.26–28 Following earlier works,19,20,40 we assume that the
surrounding material has a sufficiently large heat capacity and
thus remains isothermal at an ambient temperature. Numerical
solutions to the Keller–Miksis equation coupled with the bubble
content equations are obtained with the ode23tb function in
MATLAB (The MathWorks, Inc., Natick, MA).

2.1.1 Non-dimensionalization and solution of bubble
dynamics model. We follow existing work to non-dimen-
sionalize the governing equations and clarify the interactions
between material parameters,19 and list non-dimensional para-
meters in Table 1, where Rmax is the maximum radius of the
bubble, G1 is the shear modulus associated with the Maxwell

element, and vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p1=r

p
is the characteristic velocity. The

non-dimensional Keller–Miksis equation describing the evolu-
tion of the non-dimensional bubble radius R* is

1�
_R�

c�

� �
R� €R� þ 3

2
1�

_R�

3c�

� �
_R�2

¼ 1þ
_R�

c�

� �
p�b �

1

WeR�
þ S� � 1

� �
þ R�

c�
p�b �

1

WeR�
þ S�

� �:

:

(5)

Unless stated otherwise, we assume r = 998.2 kg m�3, pN =
101.3 kPa, c = 1484 m s�1, and g = 0.072 N m�1. For the viscous

Fig. 1 Schematic representation of the spherical bubble considered in the
bubble dynamics and approximate collapse time models. The nearly
incompressible, viscoelastic material surrounding the bubble is modeled
as a finite deformation, standard linear solid (SLS) described by a ground-
state elastic shear modulus G, a viscous shear modulus m, and a relaxation
time scale t1. When t1 - 0, the SLS model becomes a Kelvin–Voigt model.
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fluids characterized in Section 4.1, we assume using the rule of
mixtures that r = 1154 kg m�3 for the mixture of water and
glycerin and r = 1100 kg m�3 for the mixture of water and
polyethylene glycol (PEG 8000). Assuming a constant tempera-
ture of 298.15 K in the surrounding material, the material
parameters related to the heat and mass transfer of bubble
contents are defined according to Estrada et al.19

2.1.2 Stress integral in the surrounding medium. The
stress integral S* for the viscoelastic constitutive models con-
sidered in this work is tabulated in Table 2. We consider finite
viscoelasticity constitutive models with stress responses that
are additively decomposed into those of three elementary
components: a neo-Hookean hyperelastic contribution, a New-
tonian viscous contribution, and a Maxwell fading memory
viscoelastic contribution. The stress integral for the Kelvin–
Voigt viscoelastic models follow our previous work,19 in which a
neo-Hookean hyperelastic spring is arranged in parallel with a
Newtonian viscous dashpot. The standard linear solid (SLS)
model (sometimes referred to as the Zener model) consists of a
neo-Hookean hyperelastic spring parallel to a Maxwell branch.

Assuming that the characteristic time scale of the bubble
oscillation is longer than the time scale of the exponential
relaxation of a Maxwell material, its stress integral satisfies

S� þDe _S� ¼ � 4

Re

_R�

R�
: (6)

Due to the fading memory of the Maxwell material, a non-
zero stress integral remains at the end of the bubble growth
phase, contributing to the ensuing bubble collapse. This quan-
tity is numerically evaluated by advancing the ODE (6) from the
beginning of the growth phase, with initial conditions R = R0

and
:
R =

:
Ri 4 0, and

:
R decreasing to 0 at the end of the growth

phase. The fminsearch function in MATLAB is used to itera-
tively solve for

:
Ri to minimize |R � Rmax| at the end of the

growth phase. The value of S at the end of the growth phase is
then determined. Heat and mass transfer are neglected in these
simulations of the bubble growth phase.

These models, or their modified hyperelastic equivalents,
have successfully characterized hydrogels with IMR.3,19,20,37,41

In this work, we are primarily interested in the contribution of
material viscoelasticity, S*, on the collapse time. We note that
the primary non-dimensional parameters of calibration inter-
est, therefore, are the Cauchy number (ground-state elasticity),
Ca, the Reynolds number (ground-state viscosity), Re, and/or
the Deborah number (relaxation time), De, all defined in
Table 1. Thus, in the following sections we distinguish and
separately quantify the collapse-time effects from these three
material parameters for characterization from those arising
from other bubble physics.

2.2 Energy balance analysis and analytical estimates of
collapse time

We modify Lord Rayleigh’s original analysis to obtain a more
accurate prediction of a bubble collapse within hydrogel-like
materials. Lord Rayleigh utilized an energy balance approach42

with the following four assumptions: (i) the bubble has no
contents, (ii) there is no surface tension between the void and
the surrounding material, and the surrounding material is
(iii) incompressible and (iv) inviscid. Thus, the potential and
kinetic energy of the surrounding material dictate the evolution
of the bubble radius. Under these conditions, the Keller–Miksis
equation (5) simplifies to,

R� €R� þ 3

2
_R�2 ¼ �p�1; (7)

where p�1 is the non-dimensional liquid pressure p�1 ¼ 1
� �

. The
potential energy of the inviscid liquid surrounding the bubble
is the volume integral of the non-dimensional liquid pressure,

E�LP ¼
ð
V�
b

p�1dV
� ¼ p�1V

�
b ; (8)

where V�b is the volume of the bubble. The kinetic energy of the
liquid is

E�LK ¼
ð
V�
l

1

2
r�u�2r dV� ¼

ð
V�
l

1

2
r�

R�2 _R�

r�2

� �2

dV�

¼ 2pr�R�3 _R�2; (9)

where r* is the non-dimensional liquid density (r* = 1). The
void is assumed to begin at rest, corresponding to an initial
kinetic energy of zero. The energy balance is then (4p/3)(R*3 �
1) + 2pR*3 :R*2 = 0. Isolating the bubble wall velocity as a
function of the radius,

:
R*(R*(t*)), and integrate to the closure

of the bubble, we obtain the Rayleigh collapse time

t�RC ¼ �
ð0
1

�2
3

1� 1

R�3

� �� ��1=2
dR� ¼

ffiffiffiffiffiffi
3p
2

r
G½5=6�
G½1=3� � 0:91468;

(10)

Table 1 Dimensionless quantities in the Keller–Miksis equation

Dimensional
quantity

Dimensionless
quantity Name

t t* = tvc/Rmax Time
R R* = R/Rmax Bubble-wall radius
R0 R�0 ¼ R0=Rmax Equilibrium bubble-wall

radius
c c* = c/vc Material wave speed
pb p�b ¼ pb=p1 Bubble pressure
g We = pNRmax/(2g) Weber number
S S* = S/pN Stress integral
G Ca = pN/G Cauchy number
m Re = rvcRmax/m Reynolds number
t1 = m/G1 De = mvc/(G1Rmax) Deborah number

Table 2 Summary of material stress integrals

Material model Stress integral relationship S*

Neo-Hookean S�NH ¼ 4 R�0
	
R�

� �
þ R�0

	
R�

� �4�5h i.
ð2CaÞ

Newtonian S�v ¼ �ð4=ReÞ _R�
	
R�;

Kelvin–Voigt S�KV ¼ S�v þ S�NH

Maxwell De _S�m þ S�m ¼ �ð4=ReÞ _R�
	
R�

Standard linear solid (SLS) S�SLS ¼ S�m þ S�NH
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where G[�] is the gamma function. To obtain the dimensional

form, we multiply by the characteristic timescale, Rmax

ffiffiffiffiffiffiffiffiffiffiffiffi
r=p1

p
.

2.2.1 General approach for modified Rayleigh collapse
time. We can generalize a Rayleigh-type model as the following
equation

R� €R� þ 3

2
_R�2 ¼ �1þ f � R�; _R�; €R�;S�; c�m;R

�
0; p
�
b; . . .

� �
; (11)

where f * is a sum of different physical phenomena (see
Table 3). f* can also be interpreted as a force or a resistance
to force. Following the work of Yang et al.,43 for a constant f * an
analytical solution for the modified Rayleigh collapse time can
be obtained. Thus, we define a time-averaged f * acting on the
bubble from the surroundings as

�f � ¼ 1

t�c

ðt�c
0

f �dt� ¼ 1

t�c

ð0
1

f �

_R�
dR�: (12)

Thus, an ansatz for the change in the liquid potential
energy, and corresponding energy balance are,

E�f ¼ �
4

3
p�f �R�3; (13)

4

3
p 1� �f �
� �

R�3 � 1
� �

þ 2pR�3 _R�2 ¼ 0; (14)

respectively. Following the procedure of Lord Rayleigh, the
approximate bubble wall velocity is

_R� � � 2

3
1� �f �
� � 1

R�3
� 1

� �� �1=2
; (15)

with the general approximate modified collapse time

t�c �
ð0
Rmax

� 2

3
1� �f �
� � 1

R�3
� 1

� �� ��1=2
dR� ¼ t�RC 1� �f �

� ��1=2
:

(16)

Since time-averaging is a linear operator, we can write the
total collapse time modification to be equal to the following,
�f � ¼

P
a

�f
�
a, where a is indexing different physical effects.

We consider the constitutive terms in eqn (5) individually.

Since inertia dominates the collapse, the interaction of com-
pressibility with other physical phenomena are second-order
and are neglected. Additionally, for simplicity, this analysis will
neglect heat and mass transfer in and outside the bubble. Thus,
the vapor pressure in the bubble is constant.

The time averaging of f* is similar to linearization in
traditional perturbation methods. That is, if any of the forcing
terms approach unity, the approximation will break down
and exhibit large errors when compared to the exact solution.
Neo-Hookean elasticity is an exception, as the leading order
elastic forcing term is constant. This exception permits reason-
able predictions of the elastic contribution to the collapse time,
even for small Ca.

2.2.2 Bubble pressure effects. We assume that there are
two primary gases inside the bubble: (1) water vapor and (2) a
non-water gas phase. The latter consists of air and vaporized
material that diffuses back into the material over time scales
much longer than that of inertial collapse. We consider the
bubble pressure as the sum of partial pressures of the gases

present:44 p�b ¼ p�v þ p�go R�0
	
R�

� �3k, where k is the ratio of the

heat capacity at constant pressure, CP, to the heat capacity at
constant volume, CV. Additionally, the water vapor pressure is
p�v, and we assume the non-condensible gas to be polytropic,
where p�go is the equilibrium bubble pressure.

In the limit R* - 0 (i.e., infinite bubble pressure), the
evaluation of the mean value of the bubble pressure is non-
convergent. Furthermore, there is no expression available for
the minimum radius such that we could obtain a finite inte-

grated result. Since f �bc / p�goR
�3k
0 , then �f

�
bc / p�goR

�3k
0 and a

proportionality constant results through integration of R such
that

�f
�
bc ¼ Bp�goR

�3k
0 þ p�v;

where B is obtained by numerically solving the exact collapse
time integral. The exact collapse time is found by considering
the resistive force of the bubble contents preventing collapse.
The bubble internal energy, or the reduction of liquid potential
energy in the presence of bubble contents, is

E�BIE ¼
ð
V�
b

�p�bdV� ¼
ð
V�
b

�p�go
V�0
V�b

� �k

dV� ¼ p�bV
�
b

k� 1
: (17)

For the special (isothermal) case of k = 1, the bubble internal
energy:

E�BIE ¼ �
4

3
pR�30 p�go log

4

3
pR�3

� �
: (18)

Including the bubble internal energy in the energy balance
with the liquid potential (8) and kinetic (9) energies, the non-
dimensional collapse time is

t�c ¼
ðR�

min

1

� 2qk

3

� �
�1=2dR� (19)

Table 3 Physical phenomena and corresponding functional changes to
the Rayleigh–Plesset equation. The right-most column sums to the overall
function that transforms eqn (11) into (5) (under the polytropic gas
assumption)

Phenomenon Function modifying Rayleigh–Plesset equation f*

Bubble pressure f �bc ¼ p�b ¼ p�go R�0
	
R�

� �3kþp�v;sat
Weak compressibility f �wc ¼ _R�

	
c�m

� �
R� €R� þ _R�

	
2c�m

� �
_R�2 � _R�

	
c�m

Surface tension f �We ¼ �1= WeR�ð Þ
Material response f �S ¼ S�

Compressibility
affecting
bubble pressure

f �cbc ¼ _R�p�b
	
c�m þ R� _p�b

	
c�m

Compressibility
affecting
material response

f �cS ¼ _R�S�
	
c�m þ R� _S�

	
c�m
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where

qk ¼

1

R�3
1þ

p�goR
�3k
0

k� 1
�
p�goR

�3

k� 1

R�0
R�

� �3k

�R�3
 !

; for ka1;

p�goR
�3
0

log R�3
� �
R�3

þ 1

R�3
� 1; for k ¼ 1:

8>>>><
>>>>:

(20)

We evaluate eqn (19) for a small (0.01) non-dimensional
equilibrium radius. The integral is evaluated by setting the
minimum radius to zero. Only the real part of the result is
considered, which is equivalent to evaluating the integral from
1 to the minimum radius. For the special cases of k = 1.4
(isentropic) and k = 1, we obtain B = 2.1844 and 1.4942,
respectively. To be consistent with the initial bubble pressure in
IMR,19 we selected k = 1 for the pIMR solver.

2.2.3 Weak compressibility effects. In Table 3, the third
term of f �wc dominates the weak compressibility effect during
the primary bubble collapse. The third term is associated with
the liquid potential which dominates for most of the collapse
phase. Hence, we neglect the other two weak compressibility

terms related to the kinetic energy. Thus, f �wc � �Mc
_R�, where

Mc ¼ 1
	
c�m is the characteristic Mach number. Time averaging

f �wc for the duration of the collapse and solving explicitly,

�f
�
wc ¼

1� �f
�
c

� �1=2
t�RC

ð0
1

�McdR
� ¼

1� �f
�
wc

� �1=2
t�RC

	
Mc

¼ 2Mc

Mc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mc

2 þ 4t�2RC

q :

(21)

2.2.4 Surface tension effects. The surface tension of the
water-containing material plays a non-negligible role during
the collapse. Time-averaging f �We (see Table 3) we obtain

�f
�
We ¼

1� �f
�
We

� �1=2
t�RC

ð0
1

1

WeR�
2

3
1� �fWe�
� � 1

R�3
� 1

� �� ��1=2
dR�

¼ �pffiffiffi
6
p

Wet�RC

:

(22)

2.2.5 Neo-Hookean elasticity. Approaching bubble closure,
R�0 ! 0, the neo-Hookean stress integral converges to a con-
stant. Therefore, the modification function and collapse time
modification are equivalent for a highly inertial collapse,

f �NH ¼ �f
�
NH ¼ �5=2Ca. Substituting the neo-Hookean expres-

sion for �f
�
NH into eqn (16) results in the modified collapse time

consistent with the result in Yang et al.,43 i.e.,

t�c ¼ t�RC 1þ 5

2Ca

� ��1=2
:

However, for finite R�0 and Ca of O(1), the term that is
linear in R�0 can no longer be assumed to be small. For LIC,

R�0 � 0:1� 0:25 and for the majority of the collapse phase,
R�4R�0, thus we may neglect the quartic term in R�0 in

Table 2 and f �NH � 4R�0
	
R� � 5

� �	
2Ca. Accounting for the finite

equilibrium bubble radius, the time-averaged f* is

�f
�
NH ¼

1

t�RC

ð0
1

1

2Ca
4
R�0
R�
� 5

� �
2

3

1

R�3
� 1

� �� ��1=2
dR�

¼ 1

Ca

ffiffiffi
2

3

r
R�0p
t�RC

� 5

2

 !
:

(23)

2.2.6 Viscous Newtonian fluid. Unlike the elastic case,
the mean value of the modification function for a viscous
Newtonian fluid does not converge. For a void to reach closure
in a viscous fluid, the strain rate and, therefore, the viscous
dissipation becomes infinite. Similar to the approximation in

Section 2.2.2, a proportionality coefficient for �f
�
v is to account

for an intractable non-zero minimum radius when evaluating
%f *, i.e.,

�f
�
v ¼

4 1� �f
�
v

� �1=2
Ret�RC

ðR�
min

1

� 1

R�
dR� �

�4C 1� �f
�
v

� �1=2
t�RCRe

: (24)

Here, C = C(Re) to obtain accurate results at smaller
Reynolds numbers which are experimentally relevant. Solving

eqn (24) for �f
�
v yields

�f
�
v ¼

4C

2Cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2t�2RC þ 4C2

q : (25)

C is solved for by balancing the liquid potential (8) and
kinetic (9) energies with the viscous dissipation, i.e.,

E�v ¼
16p
Re

ðt�
0

R� _R�2dt�: (26)

The bubble wall velocity and exact collapse time are then

_R� ¼ � 2

3

1

R�3
� 1

� �
� 8

ReR�3

ðR�
1

R� _R�dR�
� �1=2

; (27)

t�c ¼ �
ð0
1

2

3

1

R�3
� 1

� �
� 8

ReR�3

ðR�
1

R� _R�dR�
� ��1=2

dR�; (28)

respectively. Substituting eqn (15), (16), and (25) into (28), the
nested integral on the right hand side is evaluated to obtain an
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implicit relationship for C(Re),

t�RC 1� 4C

2Cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2t�2RC þ 4C2

q
0
B@

1
CA
�1=2

¼ �
ffiffiffi
3

2

r ð0
1

1

R�3
� 4

ffiffiffi
6
p

ReG 5=3½ �R�3 1� 4C

2Cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2t�2RC þ 4C2

q
0
B@

1
CA

1=20
B@

�
ffiffiffi
p
p

G
7

6

� �
� 2

ffiffiffiffiffiffi
R�
p

G
5

3

� �
2F1 �

1

2
;
1

6
;
7

6
;R�3

� �� �
� 1

��1=2
dR�;

(29)

where 2F1(�) is an ordinary hypergeometric function. The right-hand
side can be numerically integrated to find the value of C for a given
Re. For a fast and simple calculation, we approximate the implicit
function with a perturbation series where the small parameter is
1/Re such that C(Re) E C0 + C1/Re + C2/Re2. Constants C0, C1, and
C2 approximate the implicit function in eqn (29) and are found by
numerically integrating and iterating for three separate Reynolds
numbers. The Reynolds numbers used for this fitting are 18, 25
and 500. Below a Reynolds number of 18, the numerical integration
produces imaginary solutions. The following values approximate
eqn (29): C0 = 0.46379, C1 = 0.56391, and C2 = 5.74916.

2.2.7 Kelvin–Voigt viscoelasticity. The Kelvin–Voigt stress inte-
gral average is the sum of the viscous and elastic contributions, i.e.,

�f
�
KV ¼ �f

�
v þ �f

�
NH ¼

4C

2Cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2t�2RC þ 4C2

q þ 1

Ca

ffiffiffi
2

3

r
R�0p
tRC
� 5

2

 !
:

(30)

2.2.8 Maxwell viscoelasticity. The stress integral for the
Maxwell model has no closed-form relationship. We approximate

the right-hand side of the stress integral ODE in Table 2 to be �f
�
v

and obtain the approximate relationship for the stress integral

S�m ¼ f �m � �f
�
v � �f

�
v � f �m;o


 �
exp � t�

De

� �
; (31)

where f �m;o is the unrelaxed stress in the surrounding material

at the maximum radius due to the expansion. For De { 1,
f �m;o � 0; otherwise, the initial stress can alter the subsequent

bubble dynamics. The approximation of f �m;o is described in

Section 2.2.10. Evaluating the time-average integral yields

�f
�
m ¼ �f

�
v þ

De

t�c
�f
�
v � f �m;o


 �
exp � t�c

De

� �
� �f

�
v þ f �m;o

� �
; (32)

where �f
�
m is obtained by substituting eqn (16) into the previous

expression. However, the implicit relationship has no analytical

solution for �f
�
m. In equation eqn (32), t�c is the actual collapse time

that depends on �f
�
m. For simplicity, we approximate the remaining

collapse time dependence, t�c , by the Rayleigh collapse time,

�f
�
m ¼ �f

�
v þ

De

t�RC

�f
�
v � f �m;o


 �
exp �t

�
RC

De

� �
� �f

�
v þ f �m;o

� �
: (33)

2.2.9 Standard linear solid using neo-Hookean elasticity.
We consider a material model, the modified standard linear
solid or the Zener model,31,45 comprising a Maxwell element
parallel to a neo-Hookean elastic element to be able to describe
more complicated finite-deformation viscoelastic material
behavior. Since the deviatoric Cauchy stress tensor is a sum
of contributions, the stress integral and its time derivative are

S�SLS ¼ S�m þ S�NH and _S�SLS ¼ _S�m þ _S�NH, respectively. Similarly, the

collapse time modification function is the sum �f
�
SLS ¼ �f

�
m þ �f

�
NH.

2.2.10 Initial stress due to unrelaxed Maxwell element. The
energy balance approach is used to approximate the initial,
unrelaxed Maxwell stress at the maximum bubble radius. We
approximate the growth process as the inverse of the collapse;
therefore, the modification functions %f* switch sign. Addition-
ally, for bubble growth, it is assumed that the fluid is initially

stress-free, f �m;o ¼ 0. Therefore, by using the negative value of �f
�
v,

the growth time, and f �m;o ¼ 0, we approximate the initial

Maxwell stress using eqn (31).
To find the growth time, we consider the bubble to be

nucleated in a stress-free material at the equilibrium radius
with a positive bubble wall velocity such that the correct
maximum stretch ratio Rmax/R0 is reached. The non-dimen-
sional energy balance is

4

3
p 1� �f

�
g


 �
R�30 � R�3
� �

þ 2p R�30
_R�2i � R�3 _R�2

� �
¼ 0; (34)

where _R�i is the unknown initial bubble wall velocity and �f
�
g the

average of the Rayleigh–Plesset modification function during
the growth phase. The initial bubble wall velocity is obtained by
setting the non-dimensional current bubble radius and bubble
wall velocity to 1 and 0, respectively. Solving for the initial
bubble wall velocity yields:

_R�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
1� �f

�
g


 � 1

R�30
� 1

� �s
: (35)

The current bubble wall velocity is obtained by substituting
eqn (35) into eqn (34) and taking the positive root for bubble
growth:

_R� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
1� �f

�
g


 � 1

R�3
� 1

� �s
: (36)

The growth time is then

t�g ¼
ð1
R�
0

2

3
1� �f

�
g


 � 1

R�3
� 1

� �� ��1=2
dR�

¼
ffiffiffi
6
p 	

5

G½4=3�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �f

�
g

q ffiffiffi
p
p

G
11

6

� ��

� R
�5=2
0 G

4

3

� �
2F1

1

2
;
5

6
;
11

6
;R�30

� ��
:

(37)

If �f
�
g 4 1, then the growth time approximation has an

imaginary, unphysical contribution due to averaging the for-
cing during the growth phase. The two physical effects that can
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produce these imaginary solutions are elasticity and surface
tension. Neo-Hookean elasticity and surface tension produce
unphysical results for Ca o 5/2 (G 4 50 kPa) and We of the
same order as Ca, respectively. The shear moduli observed in
this work were all below 25 kPa. For We of O(1), the maximum
radius would be much smaller than is experimentally relevant
in this work. Small Deborah numbers (o0.1) result in the
initial stress prediction deviating from the iterative method
result described in Section 3 with relative errors above 50%
(data not shown). However, the accuracy of the initial stress in
this regime is inconsequential, as the corresponding collapse
time modification factor is very small. For the collapse time
prediction, parameter values yielding a %f* 4 1 would lead to
weak oscillations not inertial bubble collapse.

2.3 Experimental methods

The laser microcavitation experiments follow the general LIC
procedure of Estrada et al.19 with two main advancements of
(i) shadowgraph and ghost imaging and (ii) incident beam
shaping46 (see Fig. 2). These are described in detail in Appendix
A and summarized here.

Single LIC bubble events are generated in soft materials
using a pulsed, frequency-doubled (532 nm), Q-switched
Nd:YAG laser. The pulse energy is user-defined and was on
the order of 1–10 mJ for the experiments. A diffraction-limited
focusing objective condenses the laser pulse into a beam waist
to approximately 4 mm in diameter. A second objective is

oriented orthogonal to the imaging plane for the purpose of
verifying bubble sphericity. A spatial light modulator is used to
tune higher-order beam asymmetry to create spherical bubble
events. We record the microcavitation event at 1 million frames
per second (Mfps) using a Shimadzu HPV-X2 (Tokyo, Japan)
ultra-high-speed imaging camera. A backlight laser strobe fires
synchronously with the camera and is sent to the bubble event
as parallel light. This light enables shadowgraph imaging, a
mode related to Schlieren imaging that permits the visualiza-
tion and measurement of emitted shockwaves. We strobe the
shadowgraph backlight twice per frame, improving our esti-
mate of the collapse time using the shock speed (found by
locating two shocks on one frame) and the minimum radius
estimate.

Water–glycerol solutions were prepared by combining gly-
cerol (G33-1, Thermo Fisher) with DI water at a volumetric ratio
of 60% glycerol to 40% DI water. The solution was subsequently
placed on a magnetic stirrer (Isotemp SP88854200, Thermo
Fisher) and stirred continuously at room temperature for a
duration of 30 minutes. Water–PEG mixture samples were
produced by mixing polyethylene glycol 50% (w/v) of molecular
weight 8000 (PEG 8000; Avantor 101443-878) with DI water in a
proportion of 80% PEG by volume. The blended mixtures were
poured into glass-bottomed, 35 mm diameter Petri dishes up to
roughly 2 mm of depth. These prepared samples retained a liquid
state with no signs of heterogeneity. The low-frequency shear
moduli of the water–PEG mixture samples were measured using
a TA Instrument ARES-G2 rotational rheometer (New Castle, DE)

Fig. 2 The experimental setup to generate, record, and profile single laser-induced microcavitation (LIC) bubble events in soft materials. The setup uses
a combination of a class-4, frequency-doubled Q-switched 532 nm Nd:YAG pulsed laser, a high-speed imaging camera, and a spatial light modulator.
The time of the first bubble collapse is estimated according to the shock wave, which was visualized by shadowgraph and ghost imaging techniques.
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equipped with a 40 mm diameter stainless steel 21-angle cone
plate fixture and a flat base. Dynamic loading was applied at
a frequency of 1 rad s�1 with the maximum strain amplitude of
0.04 rad.

Polyacrylamide (PAAm) gels for characterization purposes
were prepared at concentrations of 5%/0.03% and 10%/0.06%
acrylamide/bisacrylamide (v/v) according to previously devel-
oped protocols.19,47 The PAAm gels were cast in square 5 mL
polystyrene spectrophotometer cuvettes and cured for 45 min
prior to characterization.

2.4 Parsimonious inverse characterization based on bubble
collapse time

Past studies using IMR have found that adjusting the laser
energy can modulate the maximum radius of the bubble, while
the amplification factor of the initial bubble expansion, Lmax =
Rmax/R0, is weakly sensitive to laser energy.48 Thus, we perform
LIC experiments at various laser energy levels on a material and
tune the parameters appearing in eqn (5). Our experiments
traverse the {Rmax, Lmax} space for a constant set of dimensional
viscoelastic parameters and collect t�c Rmax;Lmaxð Þ. As illustrated
in Fig. 3 for a Kelvin–Voigt model example, t�c reflects the
combined effect of the collapse modification functions
reviewed in Section 2.2, which varies with Rmax and Lmax.

We solve for the viscoelastic model parameters that mini-
mize the difference between the collapse times approximated
by the energy balance analysis, tApprox

c , and those that were
experimentally measured, tExpt

c . We refer to this inverse char-
acterization method as the parsimonious inertial microcavita-
tion rheometry technique (pIMR).

Specifically, we use a cost function,

c ¼ log10
1

n

Xn
k¼1

tExptc R
ðkÞ
max;LðkÞmax

h i
tApprox
c G; m; t1;R

ðkÞ
max;LðkÞmax

h i
0
@

1
A

2

�1

0
B@

1
CA

2
2
664

3
775;
(38)

that quantifies the agreement between the collapse time measured
experimentally and the approximated value for a set of trial
parameters {G, m, t1} according to the energy balance analysis

using n number of experiments. The cost function can be inter-
preted as the order of mean square relative error between the
measured and predicted collapse time. Using the fminsearch
function in MATLAB, which implements a Nelder–Mead direct
search process,49,50 an optimal set of viscoelastic parameters is
then determined to minimize c.

To analyze the precision of the inverse characterization
solution, we also introduce the normalized cost function for
experimental data, ĉ = c � c0, where c0 is the minimized cost
function for a given type of viscoelastic model, corresponding
to the optimal solution found by the direct search algorithm.
The normalized cost ĉ is equal to zero at the optimal solution,
whereas the positive-valued ĉ elsewhere reflects how far the
solution is from being optimal.

Furthermore, we seek to encourage the parsimony of the
inversely-calibrated viscoelastic model type and minimize the
number of parameters used. This could be achieved, for
example, through a F-test-based criterion that discourages the
addition of a model parameter that does not lead to a large
enough decrement of c0. In practice, a user could decide to
penalize a model multiplicatively based on the added number
of terms51–53 or use a least absolute shrinkage and selection
operator (LASSO) regression.54 In the present work, we simply
report cost function decrement Dc0 to reflect the parsimony of
the constitutive model. For the specific models we consider, we
report the cost function decrements

Dc0 ¼
min c0;NH;c0;Nt

� 

� c0;KV; Kelvin� Voigt

c0;KV � c0;SLS; SLS

8<
: (39)

where c0,NH, c0,Nt, c0,KV, c0,SLS are the minimized c corres-
ponding to the neo-Hookean, Newtonian, Kelvin–Voigt, and SLS
models, respectively. If a model type results in a decrement below a
threshold value of Dc0, we can consider it to be over-fitting. In our
analysis presented below, a threshold value of 0.5 is considered for
an illustrative purpose. A user may modify the choice of threshold
depending on the type of material characterized and the relative
amount of noise in the experiment data.

Parsimonious inertial microcavitation rheometry procedure.

Data generation: Follow methods in Section 2.3 to obtain R(t)
and tc for n experiments.

From dataset, Rmax, R0, calculate R�0 and then �f
�
bc given material

properties: c, g, r then

Calculate Mc and We from dataset of Rmax

Calculate �f
�
wc and �f

�
We

Provide initial guess for constitutive material properties, m0, G0,
and t1,0

For each constitutive model, calculate an initial loss, ci while c
a c0 do

Evaluate total %f* and calculate tApprox
c for each model

Compute updated loss, via (38)
Update parameters via Nelder–Mead step (fminsearch in

MATLAB)

Fig. 3 Combined effect of viscoelasticity, bubble content pressure, weak
compressibility, and surface tension on the bubble collapse time in a
Kelvin–Voigt material with {G = 10 kPa, m = 0.1 Pa s} across typical range
of Rmax and Lmax in LIC experiments.
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end while
Compute both Dc0 to determine model via (39)
*Optional

To verify model choice, compute RMSE values between RExpt

and RSim for all models
using m, G, and t1 from pIMR
if refine material constitutive parameters further do

Traditional IMR fitting procedure via least squares mini-
mization on optimal model

from verification, see ref. 19
end if

Result: Estimate material model and associated properties, m,
G, and t1

3 Consistency check of pIMR

To check the consistency of the pIMR procedure, we use it to
recover input viscoelastic models from synthetic experiments.
Using the bubble dynamics model and stress integral evalua-
tion procedure described in Section 2.1, we simulate R(t)
corresponding to n = 36 pairs of Rmax A [100, 400] mm and
Lmax A [5, 9]. The Rmax and Lmax values are generated with the
Latin hypercube sampling method assuming a uniform
distribution.55 The simulated collapse time is then used to
inversely calibrate viscoelastic models with pIMR. The results
are presented in Table 4.

If additional constitutive model parameters are rejected
when Dc0 o 0.5, for example, pIMR can correctly identify the
type of constitutive model used in the synthetic experiments.
Compared to the input values, the elastic and viscous shear
moduli, G and m, are recovered to within an accuracy of 5%.
This is well within the confidence interval commonly reported
for hydrogels characterized by IMR,19,20,37,41 confined and
unconfined compression,56–58 and indentation.56 For the SLS
model, the relaxation time scale t1 is recovered to within a
factor of two of the input value. This accuracy is acceptable
since t1 contributes to the viscoelastic stress through an
exponential relaxation function.

In Appendix B, additional synthetic experiments with n o 36
and artificially perturbed collapse time data are considered. We
find that the accuracy of collapse time measurement in our LIC
experiment setup is sufficient to ensure the stable performance
of pIMR. Although it is theoretically possible to calibrate a
constitutive model with m parameters using data from n = m
LIC experiments, this makes the calibration results more
susceptible to the inherent discrepancy between the bubble
dynamics model and the approximate collapse time model
presented in Section 2.2. A larger sample size n is encouraged
for the accurate calibration of viscoelastic model type and
parameters.

We also verified that the assumption of isothermal bubble
content made in Section 2.2.2 has a negligible effect on the
inverse calibration results. Using collapse time data from
synthetic experiments with isothermal bubble content, without
heat and mass transfer, pIMR recovered viscoelastic models
matching those shown in Table 4.

4 Inverse characterization of
viscoelastic materials

The proposed pIMR procedure is applied to the inverse char-
acterization of viscoelastic materials from LIC experiment
results. The calibrated viscoelastic model parameters are sum-
marized in Table 5. The range of Rmax and Lmax spanned in the
experiments are shown in Fig. 7(b).

4.1 Characterization of viscous fluids

We characterized mixtures of water and glycerol, with a 60% v/v
glycerol concentration. The mixtures are expected to exhibit
viscous fluid behavior with negligible elasticity. A total of 11
LIC experiments were considered, with Rmax ranging from
186.8 mm to 345.7 mm and Lmax ranging from 3.55 to 4.35.
The inverse fitting of the Newtonian model resulted in a
viscosity of 0.012 Pa s, which is consistent with previously
reported values.59 Fitting further with the Kelvin–Voigt model
resulted in a minimal cost function decrement. Fig. 4(a) shows
the approximated collapse time tApprox

c for the calibrated model

Table 4 Calibrated viscoelastic parameters, minimized cost function, and cost function decrement from synthetic experiments. (Numerical values
below 10�5 are reported as B0)

Material Model G (kPa) m (Pa s) t1 (ms) c0 Dc0

Synthetic NH, G = 10 kPa NH 10.44 — — �6.09 —
Newtonian — B0 — �1.47 —
KV 10.44 B0 — �6.09 0.00

Synthetic Newtonian, m = 0.1 Pa s NH B0 — — �1.83 —
Newtonian — 0.096 — �4.85 —
KV B0 0.096 — �4.85 0.00

Synthetic KV, G = 10 kPa, m = 0.1 Pa s NH 5.07 — — �2.79 —
Newtonian — B0 — �1.94 —
KV 10.11 0.095 — �5.50 2.71
SLS 10.38 0.116 0.506 �5.78 0.28

Synthetic SLS, G = 10 kPa, m = 0.1 Pa s, t = 1 ms NH 6.56 — — �3.41 —
Newtonian — B0 — �1.80 —
KV 9.17 0.052 — �5.16 1.75
SLS 10.08 0.096 1.90 �5.97 0.81
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versus the measured collapse time tExpt
c of each experiment. We

observe that, on average, tExpt
c is slightly larger than the predicted

value for an inviscid material. This suggests the dominance of
material viscosity over elasticity during the bubble collapse. Due
to the low value of m, the effect of the material viscosity is not
pronounced in Fig. 4(a). However, the calibrated viscosity of the
Newtonian model indeed corresponds to a minimization of c
and an improved agreement between tExpt

c and tApprox
c .

Next, we characterized uncured mixtures of water and PEG
8000, with an 80% v/v PEG concentration. A total of 20 LIC
experiments were performed, with Rmax ranging from 103.7 mm
to 342.9 mm and Lmax ranging from 4.73 to 7.10. The inverse
fitting of the Kelvin–Voigt model converged to a Newtonian
model with minimal elasticity. Fig. 4(b) shows the approxi-
mated collapse time tApprox

c for the calibrated model versus the
measured collapse time tExpt

c of each experiment. If the water–
PEG material were Newtonian, as in the case of the water–
glycerol experiments shown in Fig. 4(a), the predicted and
experimentally observed collapse times would fall along the
dashed red line corresponding to an agreement between the
measurements and predictions. However, the Newtonian pIMR
model overpredicts the collapse time for experimental collapse
times less than 25 ms, and underpredicts for longer times.
Therefore, we hypothesize that the fluid is exhibiting non-
Newtonian behavior in the high-strain rate regime.

Using the IMR technique, a Newtonian model with m = 0.151 Pa s
was found to minimize the offset between the normalized bubble
history {t*, R*(t*)} recorded experimentally and simulated by the
bubble dynamics model, up to the third oscillation peak. Fig. 5(a)
shows R(t) for a typical experiment with the simulated bubble
dynamics and the inversely characterized constitutive model para-
meters. As we expect, the optimal parameters of a Newtonian
model calculated via pIMR produce dynamics that closely match
the bubble collapse time, with an error of 0.29 ms (relative error:
0.94%). The IMR-calibrated model reproduced the post-collapse
bubble dynamics more accurately than pIMR but failed to capture
the correct collapse time, as shown in Fig. 5(a).

The least-squares fitting method employed by IMR obtains
agreement between simulation and experimental data of the
entire transient bubble dynamics. As a result, individual time
events, such as the primary bubble collapse time, can be
inaccurate. Thus, to accurately reproduce the post-collapse
dynamics of non-Newtonian fluids, shear-dependent viscosity
models, e.g., Carreau model, are needed for pIMR. While this
behavior is not the focus of this work, it does warrant further
investigation.

4.2 Characterization of polyacrylamide gels

We characterize PAAm gels with two different concentrations
of acrylamide/bisacrylamide. This class of material has been
characterized with IMR in past studies19,40 and exhibited
viscoelastic behaviors that were captured well by the Kelvin–
Voigt model.

A total of 52 LIC experiments were performed on specimens
with an acrylamide/bisacrylamide concentration of 5/0.03%
(v/v), with Rmax = 218.0–401.3 mm and Lmax = 6.49–8.46. The
history of R(t) for a representative experiment is shown in
Fig. 5(b) with the simulated bubble dynamics of the calibrated
models. The bubble dynamics of the pIMR neo-Hookean
and Kelvin–Voigt solutions matched the collapse time within
0.087 ms (relative error: 0.26%) and 0.063 ms (relative error:
0.19%), respectively. The IMR-calibrated Kelvin–Voigt model
overestimates the collapse time by 0.84 ms (relative error: 2.5%).
If we were to reject a constitutive model when Dc0 o 0.5, for
example, the calculated Dc0 suggests that the neo-Hookean
model suffices to describe the scaling of bubble collapse time.
However, the Kelvin–Voigt model clearly reproduces the post-
collapse bubble dynamics more accurately in Fig. 5(b).

A total of 39 LIC experiments were performed on gels with
an acrylamide/bisacrylamide concentration of 10/0.06% (v/v),
with Rmax = 215.2–416.3 mm and Lmax = 5.67–6.76. Again, cost
function decrement Dc0 suggests that the collapse time scaling
is described well by the neo-Hookean model. Consistent with
the IMR calibration results, pIMR suggests that the elastic

Table 5 Inversely characterized viscoelastic parameters from LIC experiments

Material Technique Model G (kPa) m (Pa s) t1 (ms) c0 Dc0

Water–glycerol pIMR (n = 11) Newtonian — 0.012 — �2.94 —
pIMR (n = 11) KV 4.07 0.110 — �3.03 0.09
IMR Newtonian — 0.066 — — —
Capillary viscometer59 Newtonian — 0.010 — — —

Water–PEG pIMR (n = 20) Newtonian — 0.223 — �1.72 —
pIMR (n = 20) KV B0 0.223 — �1.72 0.00
IMR Newtonian — 0.151 — — —
Shear-plate rheometry Newtonian — 0.122 	 0.005 — — —

PAAm, 5/0.03% pIMR (n = 52) NH 3.11 — — �3.19 —
pIMR (n = 52) KV 6.52 0.109 — �3.28 0.09
pIMR (n = 52) SLS 18.42 0.731 6.24 �3.34 0.06
IMR KV 5.01 0.145 — — —
Static compression19 NH 0.461 	 0.004 — — — —

PAAm, 10/0.06% pIMR (n = 39) NH 10.11 — — �3.18 —
pIMR (n = 39) KV 14.49 0.130 — �3.29 0.11
pIMR (n = 39) SLS 21.31 0.538 6.03 �3.30 0.01
IMR KV 12.02 0.115 — — —
Static compression19 NH 2.97 	 0.06 — — — —
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modulus increases with the concentration of acrylamide/
bisacrylamide, while the viscosity changes minimally between
the two types of specimens.

5 Discussion

The inverse characterization results in Section 4 show pIMR
estimating finite deformation viscoelastic model parameters

across a batch of experiments with different Rmax and Lmax. For
the 52-sample batch of PAAm gel (5/0.03% (v/v) acryl/bis)
experiments, the optimal model type and parameters for all
samples were determined within 1 second of computation on a
workstation (Intel Core i7 14700K). Using the IMR bubble
dynamics model, approximately 10 seconds of computational
time are required to simulate the bubble dynamics up to the
fourth peak of oscillation for each set of input parameters
describing the material viscoelasticity and the bubble’s initial
and equilibrium conditions in each experiment. The computa-
tional cost is amplified as the simulation is repeated for
combinations of input parameters. In the context of an end-
case-usage to characterize soft tissues on-the-fly during medical
procedures, the reduction in computational cost from pIMR
corresponds to a decreased surgical time and an increased rate
of patients treated. While IMR can be accelerated through
alternative approaches such as Bayesian optimal design,60,61

such a procedure still necessitates forward simulations of
bubble dynamics. Inverse characterization considering the full
bubble dynamics is unable to pare down the parameter space
as rapidly as the collapse-time-based, analytical model pre-
sented here for pIMR.

The estimation of viscoelastic properties from collapse time
also reduces the requirements that IMR previously placed on
the optical turbidity of the characterized material. With a
decreased frame rate and an increased exposure time per
frame, bright-field videography can be used to measure the
maximum and equilibrium radii of the bubble in an optically
turbid material. Since the bubble collapse coincides with the
emission of shock waves, its occurrence can be captured with
methods other than the optical strategy introduced in Section
2.3. Integrated circuit piezoelectric transducers are commonly
used in shock tube35,62,63 and Kolsky bar12,64 experiments to
detect pressure spikes during high strain rate deformation of
materials. Past studies of laser- and ultrasound-induced cavita-
tion have used hydrophones to acquire acoustic signals and
identify the occurrences of shockwave-emitting collapse
events.28,65 Using custom-built histotripsy arrays with receive
capable elements, Sukovich et al. have demonstrated the experi-
mental quantification of the time lapse between the nucleation

Fig. 4 Comparison of measured vs. predicted collapse time for (a) the 60% (v/v) concentration water–glycerol mixture characterized, with n = 11
samples and (b) the 80% (v/v) concentration water–PEG mixture characterized, with n = 20 samples. The collapse time during LIC is larger than the
predicted value for an inviscid material, suggesting the dominance of viscosity over elasticity during the collapse process.

Fig. 5 Bubble dynamics corresponding to representative experiment data
(hollow squares) and the inverse characterization solutions: (a) water–PEG
8000 mixture, (b) PAAm gel with 5/0.03% (v/v) acrylamide/bisacrylamide
concentration. (c) Decomposition of collapse modification function %f* for
the representative experiments considered in (a) and (b). Relative to the
weak compressibility ( �f

�
wc , teal) and the surface tension ( �f

�
We , pink), the

bubble pressure ( �f
�
bc, orange) and the viscoelastic stress ( �f

�
S, yellow) have

stronger modifying effects on the bubble collapse time.
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and the first collapse of ultrasound-induced cavitation in
ex vivo porcine and bovine tissues.10,11,66 These acoustic tech-
niques can be feasibly integrated into a LIC experiment setup
for the inverse characterization of optically turbid materials.

The inverse characterization of PAAm gels suggest that, at
the length scale of LIC experiments, the material elasticity has a
stronger contribution to the bubble collapse time than the
material viscosity. This agrees with past studies concluding
that the first collapse of LIC in hydrogels are dominated by
inertial and elastic effects.20,43 In Fig. 6(a) and (b), the approxi-
mated collapse times tApprox

c for calibrated models are plotted
against the measured collapse time tExpt

c of each experiments in
the two types of PAAm gels. For each LIC experiment, tExpt

c is
shorter than what is predicted for an inviscid fluid, indicating
that the ground-state elasticity is more dominant than the
material viscosity during the bubble collapse. In Fig. 5(c), the
collapse modification function %f* in each representative experi-
ment is decomposed into the contributing parts listed in
Table 3. For both the water–PEG mixture and PAAm gel cases,
the decomposed values indicate that the bubble pressure and
the viscoelastic stress are the main factors modifying the
bubble collapse time. The effects of the material compressi-
bility and the surface tension are weaker in comparison.
As shown in Table 5, the neo-Hookean model sufficiently
decreases c0 and seems to be the optimal choice of constitutive
model for the PAAm gel. However, a close inspection of Fig. 6(a)
and (b) reveals that the calibrated neo-Hookean model under-
estimated the collapse time in experiments with small Rmax

and overestimated the collapse time in experiments with large

Rmax. The addition of material viscosity improved the agree-
ment between the measured and predicted collapse time values

since �f
�
v increases in magnitude with smaller Re, which is

inversely proportional to Rmax when m is constant, as discussed
in Section 2.2.6.

The LIC experiments of PAAm gels surveyed ranges of Rmax

with a ratio of B2 between the upper and lower bounds. The
Kelvin–Voigt parameters, G and m, calibrated with pIMR have
relative errors within 30% of the IMR result. However, the
normalized cost function spaces shown in Fig. 6(c) and (d)
reflect a lower precision in the calibration of m compared to G.
For example, in the case of the 10/0.06% (v/v) acrylamide/

bisacrylamide experiments, the region of ĉ o 0.1 spans
11.1 kPa r G r 18.2 kPa and 0.03 Pa s r m r 0.22 Pa s,
corresponding to upper-to-lower bound ratios of 1.6 and 7.3,
respectively. The precision of the calibrated viscosity can be
improved by surveying as broad of a range of bubble sizes as is

experimentally feasible. Because the viscous forcing function �f
�
v

depends on Re, which is linearly proportional to Rmax, max-
imizing the experimental range of Rmax would distinguish this
effect of material viscosity on the bubble collapse time. In our
current setup, practical experimental considerations bound the
maximum (in this case, due to the finite cuvette size) and
minimum values (e.g., due to the camera frame rate) of Rmax.
The range of Rmax for LIC experiments could, in general, be
broadened with longer-focal-length objectives permitting the
generation of larger bubbles in larger samples, or sub-
nanosecond laser pulses to produce more reliable small bubble
events. In the case of more complicated design spaces than

Fig. 6 Characterization of PAAm gels with pIMR. Comparison of measured vs. predicted collapse time for (a) 5/0.03% (v/v) acrylamide/bisacrylamide and
(b) 10/0.06% (v/v) acrylamide/bisacrylamide for inviscid, neo-Hookean, Kelvin–Voigt, and standard linear solid models. Contours of normalized cost
function ĉ corresponding to Kelvin–Voigt parameters {G, m} for (c) 5/0.03% (v/v) acrylamide/bisacrylamide and (d) 10/0.06% (v/v) acrylamide/
bisacrylamide experiments. The opposing effects of elastic modulus G and viscous modulus m on the bubble collapse time are reflected in the slope
of the ĉ space.
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Rmax alone (such as a variety of external pressures or initial
stretch ratios), the pIMR method could be performed in
tandem with a recently developed Bayesian optimized experi-
mental design procedure by Chu et al.60,61 currently only
employing bubble dynamics forward simulations. In this
scenario, the pIMR approach further stands to speed up
characterization by using the analytical model for informing
the next best experiment to run for maximum information gain.

In addition to the initial collapse time considered in the
present work, other measurable parameters or constitutive
models with additional effects (e.g., non-Newtonian behavior)
may be harnessed for a more effective parsimonious charac-
terization of viscoelastic models. For example, Fig. 5(b) shows
that the neo-Hookean and Kelvin–Voigt solutions from pIMR
lead to bubble dynamics that diverge more discernibly from
each other after the initial collapse. Similarly, for the case of a
water–PEG mixture, shown in Fig. 5(a), the difference between
the Newtonian fluid models calibrated via IMR and pIMR
becomes clearer in the post-collapse bubble dynamics. Com-
paring the diverging solutions between pIMR and IMR past the
primary bubble collapse, a hybridized approach containing the
speed of pIMR and accuracy of IMR is warranted. In such a
hybrid setting, pIMR and IMR are complementary to each
other. That is, pIMR is used to identify the constitutive model
and estimates of the associated material parameters, which
may be further refined using an IMR inverse characterization
within a pared-down range of constitutive model parameters.

6 Conclusions

We present the pIMR technique, a parsimonious enhancement
of the IMR technique that rapidly characterizes the local
viscoelastic properties of soft materials from laser-induced
cavitation experiments. This new procedure is possible due to
experimental advancements in estimating the collapse time of
a laser-induced cavity, coupled with a theoretical energy bal-
ance analysis. We make an ansatz to a modified potential
energy through averaging effects within the Keller–Miksis
equation. This ansatz allows the collapse time approximation
to include viscoelastic parameters, surface tension, bubble
pressure, and finite wave speed. In our approach, we do not
introduce empirical fitting parameters in the energy balance
analysis to improve its agreement with the bubble dynamics
model. These approximate models for the collapse time were
shown to perform well in predicting the collapse time from
simulations of the Keller–Miksis equation over a parameter
space that is experimentally relevant to inertial microcavitation
within soft materials.

The proposed procedure successfully pares down the space
upon which we seek the global optima of viscoelastic model
parameters. Using a cost function c that quantifies the agree-
ment between the measured and predicted collapse time, our
procedure identifies the simplest type of constitutive model
and the optimal values of model parameters. Experimental
characterization of viscous fluid and hydrogel specimens

resulted in optimized Newtonian and Kelvin–Voigt parameters,
respectively, that closely matched the results of the IMR proce-
dure while reducing the computational cost of post-processing
from more than an hour to a few seconds.

Our LIC experiments in viscous fluids and soft hydrogels
revealed that the dominating mechanisms during the first
collapse of the bubble do not necessarily dominate during
the ensuing bubble dynamics. For the case of PAAm gels,
a neo-Hookean hyperelastic model suffices to reproduce the
bubble collapse, while the post-collapse kinematics is strongly
influenced by the material viscosity and described better
by a Kelvin–Voigt model. We envision that this issue can be
addressed via an inverse characterization procedure consider-
ing additional observable parameters in the post-collapse bub-
ble dynamics, additional physics in the models (e.g., non-
Newtonian behavior), or through coupling pIMR with IMR.

While the present work only considers viscoelastic models
with three or fewer parameters in part due to potential non-
uniqueness of solutions involving collapse time alone, the
procedure of finding the corresponding modification functions
can be straightforwardly extended to viscoelastic models with
other non-linear elastic and non-Newtonian fluid behaviors.
For example, by recording data over a range of stretch ratios as
in ref. 48 and incorporating higher-order elastic spring
elements,20 the non-linear elastic response can be decoupled
from the shear modulus. Quantification of higher-order non-
linear behavior is a potentially impactful future use case of this
method, as an apparent assessment need in histotripsy is the
quantification of the degree of therapy completion via acoustic
emissions.10,11 Haskell et al.11 found an increase in the time
from bubble initiation to collapse during the course of therapy,
which is qualitatively due to conversion of elastic biomaterial to
an ablated viscous liquid. The method presented herein could
quantitatively describe the material mechanics during the
course of the therapy, and hence, the time to therapy comple-
tion. We thus anticipate pIMR to be a useful tool in establishing
mechanics-based therapy guidelines for different prospective
tissue applications.
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Appendices
A Experimental methods

Our setup generates, records, and profiles pulses of single LIC
bubble events in soft materials using a combination of a
pulsed, Q-switched, user-adjustable 1–25 mJ, frequency-
doubled 532 nm Nd:YAG laser (Continuum Minilite II, San
Jose, CA) and a high-speed imaging camera (HPV-X2; Shimadzu,
Kyoto, Japan). The setup is triggered using an 8-channel pulse/
delay generator (Model 577; Berkeley Nucleonics, San Rafael, CA)
according to a customized pre-programmed pulse sequence. The
pulse sequence was validated using an oscilloscope (P2025;
Berkely Nucleonics). Sequential triggering signals fire two single
pulses: the first triggers the laser’s flash lamp, and the second
fires the Q-switch. The last two triggering signals are sent to a
beam profiler (BC106N-VIS; Thorlabs) and the high-speed camera.
The backside of the sample is illuminated with the aid of a
640 nm monochromatic ultra-high-speed strobed diode laser
(Cavilux Smart UHS; Cavitar, Tampere, Finland). The high-speed
camera sync-out signal triggers the illumination laser. The laser
beam/pulse was aligned to the back apparatus of a 10�/0.25 high-
power microspot focusing objective (LMH-10X-532; Thorlabs,
Newton, NJ) using three reflective broadband dielectric mirrors
(BB1-E02; Thorlabs, Newton, NJ), three short-pass dichroic mir-
rors, a beam-sampler, and a spatial light modulator (SLM)
(Holoeye, Berlin, Germany). The first dichroic mirror (DMSP605;
Thorlabs, Newton, NJ) is used for the beam alignment in con-
junction with a continuous exposure collimated laser diode
module (CPS635R; Thorlabs, Newton, NJ). A 2� fixed magnifica-
tion beam-expander (GBE02-A; Thorlabs, Newton, NJ) helps dis-
tribute the collimated beam on a larger area and minimizes any
potential damage to the SLM and focusing objective lens at the
back aperture. The second high-pass dichroic mirror (DMSP550;
Thorlabs, Newton, NJ), which has a cutoff wavelength of 550 nm,
was used to filter infrared wavelengths and discard them into a
beam-block (LB2; Thorlabs, Newton, NJ). The visible beam is then
reflected onto a spatial light modulator, allowing for higher
control over the last pulse shape and energy. Last, the beam is
split before it reaches the focusing objective using a beam sampler
lens (BSF10-A; Thorlabs, Newton, NJ). Approximately 0.5% of the
split beam is reflected towards a beam profiler (BC106N-VIS;
Thorlabs, Newton, NJ) to assess the pulse quality and measure
its energy. The remaining 99.5% of the beam continues to the

focusing objective through the third dichroic mirror (DMSP550;
Thorlabs, Newton, NJ), which also has a cutoff wavelength of
550 nm, allowing the cavitation laser (532 nm) to pass while
reflecting the illumination laser light (640 nm). The focusing
objective focuses the beam at the microcavitation imaging plane.

The microcavitation event is performed at 1 million frames
per second (Mfps) using a Shimadzu HPV-X2 (Tokyo, Japan)
high-speed imaging camera, illuminated by CAVILUX Smart
UHS (Tampere, Finland) laser, and through both, the cavitation
objective and an Olympus Plan 10X-0.25 Achromat imaging
objective (RMS10X; Thorlabs, Newton, NJ). The data is analyzed
using our in-house Matlab image processing code. To measure
the wave speed in the medium, we deployed two imaging
techniques simultaneously: laser shadowgraph67 and ghost
imaging.68 Shadowgraph imaging is performed by manipulat-
ing the backlighting path to capture density variation due to the
compressive shockwave. The physical location of the pressure
wave is then estimated during the bubble’s cavitation and
collapse. Ghost imaging is achieved by triggering the strobed
backlight a user-defined number of times per camera exposure,
usually 2 or 3 per frame.

B Additional consistency check of pIMR

In this section, we first present a brief summary of how the
collapse time models perform when compared to simulations,
then we show additional synthetic experiments to verify the
consistency of pIMR. We consider a Kelvin–Voigt material with
G = 10 kPa and m = 0.1 Pa s.

We evaluate performance of the collapse time models by
computing a relative error between the predicted to the simu-
lated values. We simulate and compare the effects from each
non-dimensional parameter individually to determine ranges
of the parameters where the theory holds. As such, we numeri-
cally solve Rayleigh’s equation with only one modification on
the right hand side, that is,

R €Rþ 3

2
_R2 ¼ �1þ f �a ;

where a indexes effects from each non-dimensional parameter.
To quantify ranges for the parameters in which the theory
is valid, we set a threshold on the relative error in order to
determine these ranges. That is, if the relative error between the
simulated collapse time and the predicted collapse time is
o1%, then the theory holds.

Table 6 shows the results of quantifying regions of validity in
the parameter space for the approximations.

As discussed in Section 3, when the synthetically generated
collapse time for n = 36 combinations of Rmax A [100, 400] mm
and Lmax A [5, 9] are considered, pIMR identifies the Kelvin–
Voigt model to be the optimal choice and recovers G and m to
within an accuracy of 5%. To examine the effect of the sample
size n, we alternatively consider subsets with n = 9 and n = 3,
as illustrated in Fig. 7(a). The corresponding results from pIMR
are shown in Table 7. The n = 9 case results in Kelvin–Voigt
parameters closely matching the n = 36 case, with the cost
function decrement Dc0 decreasing from 2.66 to 0.20 when the
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constitutive model is advanced from Kelvin–Voigt to SLS.
In contrast, the n = 3 case led to calibrated Kelvin–Voigt
parameters with relative errors of 7% and 37%, respectively
for G and m. The minimized cost function c0 decreases sharply
from �5.06 to �31.18 when the relaxation time scale t1 is
considered. This is due to the fact that exactly three experi-
ments are considered to calibrate the three-parameter SLS
model. Perhaps, a different subset of synthetic experiments
with n = 3 would have resulted in a more accurate calibration
of the viscoelastic model. However, such optimization of {Rmax,
Lmax} is not feasible for real LIC experiments. As a general
guideline, a large sample size of LIC experiments is beneficial
for the performance of pIMR.

In our LIC experiment, the measurement of collapse time
has a relative accuracy on the order of 0.1%. To examine the
effect of such measurement uncertainty on pIMR, we repeat the
above analysis with a relative error of 0.1% uniformly added to
the collapse time of each experiment. Overall, the accuracy
of the calibrated model parameters suffered minimally from

the artificial error. In fact, for the n = 36 and n = 9 cases, the
artificially increased collapse time led to a decreased G in
the pIMR solution, matching the input value better than in
the earlier, error-free case. When the artificial error is further
increased to 1%, we observe that the calibrated G is decreased
by approximately 11% compared to the error-free case, while
the accuracy of m shifted by less than 2%. This suggests that
pIMR performs stably when processing collapse time data from
our LIC experiments.
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Table 6 Non-dimensional parameters with associated theoretically and
experimentally valid regimes

Parameters
Theory-valid
range

Max theory-valid
value of %f*

Experimental
range

Re [15, N] maxRe
�f
�
v

�� ��� �
¼ 0:14 [15, 4000]

Caa [5, N] maxCa �f
�
NH

�� ��� �
¼ 0:5 [5, 500]

De [0, N]c
maxDe

�f
�
max

�� ��� �
¼ 0:14 N/Ab

Mc [0, 0.35] maxMc
�f
�
wc

�� ��� �
¼ 0:32 [0.0064, 0.0068]

We [13, N] maxWe
�f
�
We

�� ��� �
¼ 0:11 [100, 350]

R�0 [0, 0.575] maxR�
0

�f
�
bc

�� ��� �
¼ 0:213 [0.1, 0.25]

a The elastic effect due to a neo-Hookean element does not obey the
same linearization rules as the other models. This behavior is because
the leading order term in the modification function, f*, is constant. As
shown in ref. 43, for a void where R�0 ! 0, this is the exact modification
(%f *) to the collapse time. b No improvement was observed from includ-
ing relaxation in the constitutive models when calibrating using IMR.
De is of O(1) to observe the effect of relaxation. c True for Re 4 70. If the
Reynolds number is smaller, relative errors 41% are observed for De
between 0.03 and 13 (for Re = 15). The largest relative error is 5.7% at
Re = 15 and De = 1.

Fig. 7 Distribution of {Rmax, Lmax} in (a) synthetic experiments and (b) LIC
experiments. For synthetic experiments, all data points are considered in
the n = 36 case, the red square and bubble diamond points are considered
in the n = 9 case, and only the blue diamond points are considered in the
n = 3 case.

Table 7 Calibrated viscoelastic parameters, minimized cost function, and
cost function decrement from synthetic experiments with varying levels of
artificial errors. The input Kelvin–Voigt model parameters are {G = 10 kPa,
m = 0.10 Pa s}

Artificial
error n Model G (kPa) m (Pa s) t1 (ms) c0 Dc0

0% 36 NH 5.07 — — �2.79 —
Newtonian — B0 — �1.94 —
KV 10.11 0.095 — �5.50 2.71
SLS 10.38 0.116 0.506 �5.78 0.28

9 NH 4.65 — — �2.76 —
Newtonian — B0 — �1.99 —
KV 10.11 0.095 — �5.42 2.66
SLS 10.10 0.104 3.34 � 10�3 �5.62 0.20

3 NH 5.46 — — �2.97 —
Newtonian — B0 — �1.91 —
KV 9.29 0.063 — �5.06 2.09
SLS 10.15 0.107 1.57 �31.18 26.12

+0.1% 36 NH 4.97 — — �2.79 —
Newtonian — B0 — �1.95 —
KV 10.00 0.094 — �5.48 2.69
SLS 10.27 0.116 0.515 �5.75 0.27

9 NH 4.55 — — �2.76 —
Newtonian — B0 — �2.01 —
KV 10.00 0.095 — �5.39 2.71
SLS 10.34 0.118 0.603 �5.78 0.39

3 NH 5.36 — — �2.96 —
Newtonian — B0 — �1.92 —
KV 9.18 0.063 — �5.05 2.09
SLS 10.05 0.107 1.583 �31.78 26.73

+1% 36 NH 4.07 — — �2.79 —
Newtonian — B0 — �2.09 —
KV 9.02 0.094 — �5.27 2.48
SLS 9.34 0.116 0.596 �5.48 0.21

9 NH 3.65 — — �2.76 —
Newtonian — B0 — �2.15 —
KV 9.02 0.094 — �5.21 2.45
SLS 9.01 0.102 7.47 � 10�4 �5.35 0.14

3 NH 4.45 — — �2.97 —
Newtonian — B0 — �2.05 —
KV 8.18 0.062 — �4.97 2.00
SLS 9.12 0.109 1.686 �31.78 26.81
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