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1. Introduction

Existence of nonequilibrium glasses in the
degenerate stealthy hyperuniform
ground-state manifold

Salvatore Torquato (2 *3°°® and Jaeuk Kim©"?

Stealthy interactions are an emerging class of nontrivial, bounded long-ranged oscillatory pair potentials
with classical ground states that can be disordered, hyperuniform, and infinitely degenerate. Their hybrid
crystal-liquid nature endows them with novel physical properties with advantages over their crystalline
counterparts. Here, we show the existence of nonequilibrium hard-sphere glasses within this unusual
y tends to zero that are remarkably
configurationally extremely close to hyperuniform 3D maximally random jammed (MRJ) sphere packings.

ground-state manifold as the stealthiness parameter

The latter are prototypical glasses since they are maximally disordered, perfectly rigid, and perfectly
nonergodic. Our optimization procedure, which leverages the maximum cardinality of the infinite
ground-state set, not only guarantees that our packings are hyperuniform with the same structure-
factor scaling exponent as the MRJ state, but they share other salient structural attributes, including a
packing fraction of 0.638, a mean contact number per particle of 6, gap exponent of 0.44(1), and pair
correlation functions g(r) and structures factors S(k) that are virtually identical to one another for all r
and k, respectively. Moreover, we demonstrate that stealthy hyperuniform packings can be created
within the disordered regime (0 < y < 1/2) with heretofore unattained maximal packing fractions. As x
increases from zero, the particles in this family of disordered packings always form interparticle contacts,
albeit with sparser contact networks as y increases from zero, resulting in linear polymer-like chains of
contacting particles with increasingly shorter chain lengths. The capacity to generate ultradense stealthy
hyperuniform packings for all y opens up new materials applications in optics and acoustics.

of being statistically isotropic without any long-range order,
like ordinary liquids, and yet anomalously suppress infinite-

Disordered hyperuniform many-particle systems'” are an emer-
ging exotic class of amorphous states of matter that arise in a
variety of contexts and fields, including the eigenvalues of random
matrices,® nontrivial zeros of the Riemann zeta function,® maxi-
mally random jammed sphere packings,>® avian photoreceptor
mosaics,” antigen receptors in the immune system,® fermionic
ground states,”'® nonequilibrium phase transitions,"*** active
matter," quasicrystals,"®"” distribution of prime numbers,"® the
large-scale structure of the universe,'® soft polymeric materials,>
quantum spin liquids,** and myriads of other examples (see ref. 2
and references therein). These correlated disordered systems are
characterized by a “hidden order” due to the unusual combination
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wavelength density fluctuations, like perfect crystals and
quasicrystals.

A disordered hyperuniform many-particle system in d-
dimensional Euclidean space R? is one in which the structure
factor S(k) vanishes as the wavenumber k = |k| tends to zero.™*
An important subclass are disordered stealthy hyperuniform
(SHU) systems in which S(k) = 0 within a spherical “exclusion”
region of radius K centered at the origin, ie., S(k) = 0 for 0 <
k < K. SHU many-particle systems are derived as classical
ground states of many-particle systems of certain nontrivial,
bounded long-ranged oscillatory pair potentials. Remarkably,
these hyperuniform ground states can be disordered and
infinitely degenerate in the thermodynamic limit.>*">* The fact
that these singular isotropic amorphous states of matter have
the character of crystals (S(k) = 0 from infinite wavelengths to
intermediate wavelengths of order 2m/K)***” and liquids
(statistical isotropy on small length scales)” endow them with
novel optical, transport, and mechanical properties with advan-
tages over their crystalline counterparts.”®™*’

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 The three-dimensional direct-space long-ranged pair potential v(r)
versus the dimensionless distance rK associated with the Fourier transform
(k) that is unity for k < K and zero otherwise, i.e., V(k) = vo®(K — k). We
choose v = 1. This pair potential will be used in our subsequent computa-
tions; see egn (3) with d = 3.

While it is commonplace for quantum-mechanical ground states
to be disordered for a variety of typical Hamiltonians,>%**>* it is
unusual for classical many-particle systems to remain disordered
down to absolute zero temperature with nontrivial interactions,
as is the case for disordered SHU ground states. The standard
collective-coordinate optimization scheme has been used to
create disordered SHU ground states from random initial con-
figurations of N particles within a simulation cell with pair
potential v(r) under periodic boundary conditions.>***>>” The
total potential energy has the Fourier-space form

o(rV) = gz 3(K)S(K), (1)

k#0

where 7(k) is the Fourier transform of v(r), p = N/vg is the number
density and vy is the volume of the fundamental cell. The crucial
idea is that if (k) is bounded and positive with support in the
radial interval 0 < |k| < K and if the particles are rearranged
(via optimization) so that the structure factor S(k) is driven to its
minimum value of zero for all wavevectors in “‘exclusion sphere,”
then the system must be at its ground state or global energy
minimum. This class of functions ¥(k) lead to bounded long-
ranged oscillatory direct-space pair potentials v(r), a three-
dimensional example of which is shown in Fig. 1. We note that
regardless of the choice of ¥(k), the functional form of the
potential v(r) is always long-ranged, since (k) is a function that
has support only in the exclusion region (ie., 0 < |k| < K).**
SHU ground states have been numerically generated with
ultrahigh accuracy.”*°*°® The disordered ground-state regime
for d > 2 occurs when 0 < 5 < 1/2,>* where y = M(K)/d(N — 1)
is a dimensionless stealthiness parameterf that specifies the

1 In the thermodynamic limit, y is inversely proportional to p according to the
exact relation®* py = v;(K)/[2d(2n)"], where 14(R) is the volume of a d-dimensional
sphere of radius R.
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Fig. 2 Phase diagram for d-dimensional SHU ground states (T = 0) as a
function of y for relatively low dimensions with d > 2. The maximal value
of y, denoted by ymax. depends on the space dimension d. Adapted from
ref. 24.

Xmax

number of independently constrained wavevectors, M(K),
(within the exclusion sphere of radius K) relative to the total
number of degrees of freedom of the system, d(N — 1).%
Importantly, the dimensionality of the configuration space per
particle, d., decreases linearly with y as d. = d(1 — 2y) in the
thermodynamic limit, explaining the transition from infinitely
degenerate disordered phases (when y < 1/2) to unique crystal
structures when y < 1/2;>* see Fig. 2. Thus, d. is a measure of the
cardinality of the infinitely degenerate ground-state manifold
set, which, importantly, is maximized in the limit y — 0. We will
see that this distinguished limit plays a central role in the
primary results obtained in this paper.

In the disordered regime, the nature of the energy landscape
allows one to find ground states with exquisite precision®*>*°°
with a 100% success rate for relatively large N from random
initial conditions. In the limit y — 0, i.e., when the cardinality
of the infinitely degenerate manifold is maximized, the ground
states are ideal-gas-like (Poisson-like), and thus particle pairs
can get arbitrarily close to one another. As y increases from
zero, the short-range order and minimum pair separation also
increase due to an increase in the number of constrained
degrees of freedom in a finite-N system.>*****> Such high-y
disordered ground states have been generated to create SHU
sphere packings by circumscribing the points by identical
nonoverlapping spheres.’® However, the success rate to find
allowable packing configurations among all ground states
obtained with even moderate values of the packing fraction ¢
(<0.25) falls off rapidly with N and vanishes in the thermo-
dynamic limit.>®

Is it possible to exploit the huge degeneracy of the energy
landscape to obtain much denser stealthy ground-state pack-
ings by biasing the search in configuration space so that such
atypical portions of the manifold are found? In this article, we
show this possible and, by doing so, shed new light on the
nature of the infinitely degenerate ground-state manifold under
the action of a generalized stealthy long-ranged potential
(defined in eqn (2)). We begin by demonstrating that this
manifold, counterintuitively, in the zero-stealthy limit (y — 0)
when the cardinality is maximized, contains states that are
remarkably configurationally extremely close to the hyperuni-
form nonequilibrium MR]J sphere packings that were recently
reported by Maher et al® using the linear programming

i Although there are 2M(K) + 1 wavevectors inside the spherical exclusion region
of radius K centered at the origin, only M(K) of them are independently
constrained because S(k) is inversion symmetric, i.e., S(k) = S(—k).
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packing algorithm of Torquato and Jiao.®°§ The MR]J packing
state is a prototypical nonequilibrium glass, since it is the most
disordered packing subject to strict jamming,¥ resulting in
packings that are perfectly nonergodic (i.e., permanently
trapped in configuration space) and possess infinite elastic
moduli.®”’®® For this reason, it is remarkable the aforementioned
special ground-state packings and MR] packings share the
following salient structural attributes: pair correlation functions
2»(r) and structures factors S(k) that are virtually identical to one
another for all r and k, respectively, a packing fraction of 0.638, a
mean contact number per particle of 6 and a “gap” exponent of
0.44. Moreover, our 3D ground-state packings become hyperuni-
form, but appropriately no longer stealthy, in the thermody-
namic (infinite-size) limit with the same structure-factor scaling
exponent as the MRJ state. Figuratively, this is akin to finding a
nonequilibrium “needle” in a “haystack.”

We also show that a large family of other stealthy hyperuni-
form packings can be created as y increases up to 1/2 with
heretofore unattained maximal packing fractions. These pack-
ings also have interesting structural characteristics; the parti-
cles in this family of disordered packings always form
interparticle contacts, albeit with sparser contact networks as
7 increases from zero, resulting in linear polymer-like chains of
contacting particles that progressively possess shorter mean
chain lengths. (The reader is referred to ref. 59 for a compre-
hensive study of SHU packings with and without soft-core
repulsions within the disordered regime for d = 1, 2, 3). This
capacity to generate ultradense SHU packings opens up new
applications in optics and acoustics relative to previous studies
that used low-density SHU packings.?®3%36:43:69

The rest of the paper is organized as follows: in Section 2, we
describe the modified collective-coordinate optimization scheme
and how it is applied to determine the maximal packing fraction
of SHU packings with a given value of . Here we also describe
how to determine whether the corresponding contact networks
percolate. In Section 3, we provide results for the ultradense SHU
packings with y tending to zero and select positive values of x
within the disordered regime, including their maximal packing
fractions, pair statistics, and mean contact numbers. Finally, in

§ Such MRJ-like disordered jammed states have been created by various protocols
and systems under periodic boundary conditions, including rapid compression of
5,6,60,61

hard spheres
minima (inherent structures

to their deep mechanically stable local “energy” (—¢)
©0:62) rapid quenching of soft spheres at high 7T to
find inherent structures at T = 0 via conjugate gradient techniques,®"*®

dynamical phase transition via a biased random organization protocol.** It is

or as a

well-known that these current packing protocols lead to disordered jammed
packings with similar but not exactly the same structural features, such as rattler
concentrations, gap exponents, hyperuniformity, and force distributions. For
example, the Torquato-Jiao linear programming algorithm® produces 50% less
rattlers® than that of the modified Lubachevsky-Stillinger algorithm.®® Work on
rapid quenching of soft spheres®"®® typically use only the soft-core potential in
(2), i.e., without the stealthy contribution, and hence cannot guarantee hyper-
uniformity of the packing.

9 A packing is strictly jammed if there are no possible collective rearrangements
of some finite subset of particles, and no volume-nonincreasing deformation that
can be applied to the packing without violating the impenetrability constraints of
the particles.®®
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Section 4, we provide concluding remarks and outlook for
future work.

2. Simulation method

2.1. Generation of dense disordered SHU packings

To achieve the desired goal of creating ultradense disordered
SHU packings, we modify the total potential energy function (1)
by including an additional pairwise soft-core repulsive potential
u(r) that is bounded, differentiable, and positive with support in
the finite range 0 < r < ¢:*%%"%°

D(%) =23 5500 + Y u(ry). @)

k#0 i<j

We choose 7(k) = 1,@(K — k), where O(x) is the Heaviside step
function, yielding the bounded long-ranged pair potential

o) _ (2%)"/ T k). ()

where J,(x) is the Bessel function of the first kind of order v. The
soft-core contribution to the energy (2), embodied by u(r), com-
petes with standard stealthy contribution, and hence the modified
potential biases the optimization to sample portions of the SHU
ground-state manifold in which the minimum particle pair
separation is substantially greater than those obtained via the
stealthy contribution only. Since both sums in (2) are nonnegative,
its ground states with ®(r") = 0 must satisfy the SHU condition
[ie, S(k) = 0 for 0 < k < K] such that all particle pairs are
separated by at least a targeted distance ¢. Then, such ground
states are mapped to SHU packings with a packing fraction at
least given by ¢ = pv,(0/2), where v,(a) = n¥%a%/I'(1 + d/2) is the
volume of a d-dimensional sphere of radius a. At a specific value
of y, the packing fraction ¢ can be increased to its maximum
value, ¢maz), beyond which the ground state ceases to exist,
which can be viewed as a satisfiable-unsatisfiable (SAT-UNSAT)
transition.”””* We numerically determine the values of ¢ya(%), as
described in Section 2.2. The modified potential (2) was previously
used to generate the SHU ground-state sphere packings but only
at relatively small packing fractions for optical and elastodynamic
applications.>*®°

A general form of the soft-core repulsion u(r) in the potential
energy (2) is

L (172)"@(0—7@ (B>1). (4)

In this work, we set f§ = 2, yielding the harmonic contact
potential,®’>73 because it is computationally efficient to
implement.

Importantly, the ground states of potential (2) are indepen-
dent of the ratio of vy/¢, if v and ¢, are positive and finite. We
consider a cubic fundamental cell, and set the energy scales to
be vy = 1 and ¢, = 100v,, enabling us to generate valid packings
that are ground states in a reasonable amount of computa-
tional time for N &~ 400-10 774 and n. = 10>-10*, where . is the
number of configurations. Specifically, using an Intel(R)

This journal is © The Royal Society of Chemistry 2025
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Xeon(R) CPU (E5-2680, 2.40 GHz), it takes approximately 15
core-hours to generate one 3D ground state with y = 0.45, ¢ =
0.47, and N = 4000. It takes roughly 130 core-hours on the same
CPU to generate one 3D ground state with y = 9.28 x 107>, N =
10774, and ¢ = 0.638.

The algorithm to find ultradense SHU ground-state packings
is performed as follows: For given parameters of system size N,
7(>0), and target packing fraction ¢ = ¢,ax(x), we begin with a
random initial condition in a simple cubic fundamental cell and
minimize its potential energy @ given in eqn (3) via the low-storage
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm.””> The
minimization stops when (i) @ < 5 x 1072 (ii) the number of
evaluations exceeds 5 x 10°% or (iii) the mean particle displace-
ments are less than 10~ *°p~ ", After terminating the minimiza-
tion, we retain the ground-state point pattern that satisfies
condition (i) and discard it otherwise. The values of system size
N, the number of configurations 7., and stealthiness parameter y
are listed in Table 3.

2.2. Determination of maximum packing fractions

We first determine the maximal target packing fraction of 3D
SHU ground states with the smallest value of y, denoted by
Jmin- For the simple cubic fundamental cell we consider, ynmin is
a function of particle number N:

Xmin(N) = : (5)

SNoT
where we have used the definition of y, the fact that the
smallest number of constraints is M(K) = 3 with K = 2n/L, and
L is the side length of the fundamental cell. The explicit
formula for the total potential with y = yuin(N) is provided in
eqn (9) in Appendix B. Thus, ymin vanishes as N tends to
infinity. At each system size N, we numerically determine
Pmax(¥min) as follows: For a target packing fraction ¢, we carry
out the optimization mentioned above (Section 2.1) for either a
given number of initial conditions 7,(=100) or at most 1680 core-
hours, equivalent to one week for 10 threads of an Intel(R)
Xeon(R) CPU (E5-2680, 2.40 GHz). The success ratio is obtained
by dividing the number of ground states by the number of used
initial conditions. This search is done by varying ¢ from 0.630 to
0.640 in increments of 0.001. The values of ¢,ax()) are deter-
mined as the largest ¢ such that the success ratio is at least 7%.
Using the determined value of ¢nax()) (see Table 1), we then
generate 1. independent ground states (as tabulated in Table 3).

Using the same procedure, we also numerically determine
dmax(y) for y = 0.10, 0.20, 0.30, 0.35, 0.40, and 0.45, but apply a
slightly looser criterion than for j.;, to save overall computa-
tion cost in both determination of ¢n,.x(x) and generation of the
ultradense SHU packings. At each y value, we use either a given
number of initial conditions n,(=50) or, at most, 840 core hours
to obtain ground states. We consider the largest value of ¢
achieved at least 10% of success ratio as ¢max(y). This search is
done by varying ¢ from 0.20 to the packing fraction of the

|| This threshold is close to zero energy of the potential, given in eqn (3), within
the double precision of the machine

This journal is © The Royal Society of Chemistry 2025
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Table 1 Maximal packing fractions ¢max(0") and fitted values of the gap
exponent y for our ultradense SHU ground-state packings with y = 0*, and
3D MRJ packings. Data for the MRJ packings were obtained in ref. 6. The
values of ymin are given in egn (5). The values in parentheses stand for the
statistical errors

Models N Pmax (07) y

SHU packings 400 0.636 0.45(1)
SHU packings 1198 0.637 0.44(1)
SHU packings 3592 0.637 0.44(1)
SHU packings 10774 0.638 0.44(1)
3D MR] packing 5000 0.638 0.44(1)

densest lattice packing in increments of 0.01. The obtained
values of ¢ma.(y) are tabulated in Table 2.

2.3. Percolation of contact networks

For the contact networks explained in the caption of Fig. 4, we
determine whether they percolate by a simplified version of the
algorithm for general networks, explained in ref. 58 and 76.
Specifically, we begin by creating a contact network of a
configuration in which each vertex (or node) is a particle and
an edge is formed between any two particles whose separation
is less than ¢ + 1072p~*3. For such a network, we randomly
choose an initial vertex and recursively search for all vertices
connected to it. This search stops under two conditions: (i)
when there are no further vertices to explore or (ii) when a
newly searched vertex is a periodic copy of the initial vertex.
When condition (ii) is met, we terminate the search for that
configuration and consider the associated contact network to
be percolated. Otherwise, we repeat this procedure up to 1000
different initial vertices for each configuration. Table 2 of the
Results section provides the percentage of contact networks
that percolate, i.e., topologically connected across the sample.

3. Results

Employing our modified collective-coordinate optimization
procedure described in Section 2, we demonstrate that our
disordered packings, as y tends to zero, become hyperuniform
and non-stealthy in the thermodynamic limit with the same
structure-factor scaling exponent as the MR] state reported in

Table 2 Summary of parameters of 3D disordered sphere-packing
ground states across stealthiness parameter ;. Three parameters include
maximal packing fractions ¢max(y). mean contact number per particle
Z(D"), and the fraction of configurations that have percolated contact
networks p. For other values of 7, we consider 1000 ground states with N =
4000 taken from ref. 59. The values in the parentheses for Z(D*) indicate
statistical errors

x Pmax(1) Z(D") p [%]
o 0.638 6.0(1) 100.0
0.10 0.61 4.388(4) 100.0
0.20 0.58 2.960(4) 100.0
0.30 0.55 1.975(3) 100.0
0.35 0.53 1.514(3) 38.6
0.40 0.50 0.975(23) 0.0
0.45 0.47 0.600(21) 0.0

Soft Matter, 2025, 21, 4898-4907 | 4901
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Table 3 Simulation parameters for 3D ultradense SHU ground-state
packings at y. Here, N is the system size, and n. is the number of
independent ground states

N X Ne
400 min = 2.51 x 107° 10000
1198 Ymin = 8-35 x 107* 5000
3592 Ymin = 2.78 x 107* 1000
10774 Ymin = 9-28 X 107> 100
4000 0.10 500
4000 0.20 500
4000 0.30 500
4000 0.35 500
4000 0.40 500
4000 0.45 500

ref. 6. Furthermore, they share other salient structural attributes,
including a packing fraction of 0.638, a mean contact number
per particle of 6 (isostaticity), a gap exponent y = 0.44, and pair
correlation functions g,(r) and structure factors S(k) that are
virtually identical to one another for all r and &, respectively. We
begin by showing that we can create other stealthy hyperuniform
packings whose particles always form interparticle contacts for
positive values of y as it increases up to 1/2 with heretofore
unattained high packing fractions and determine their maximal
packing fractions as well as mean contact numbers per particle.
Subsequently, we focus on the pair statistics of the hyperuniform
packings in the limit y — 0 and SHU packings with y = 0.45. We
determine the limit y — 0 by applying 7 = ymin(&V) given by
eqn (5) and the associated total potential @ given in eqn (9) for a
given N to a sequence of increasing system sizes with N = 400,
1198, 3592 and 10 774, yielding jmin = 2.51 x 107>, 8.35 x 10~ %,
2.78 x 10~ *and 9.27 x 10>, respectively, and then extrapolating
to the limit y = 0 by increasing N. Importantly, the potential (9)
guarantees the obtained ground states are (stelathy) hyperuni-
form for any N, different from compression algorithms. Hence-
forth, we will refer to this limit simply as y = 0".

3.1. Maximal packing fractions and mean contact numbers

Application of our modified collective-coordinate optimization
procedure (see Section 2 for details) within the disordered
regime (0 < y < 1/2) yields achievable packing fractions that
are substantially larger than those that can be obtained from the
standard collective-coordinate procedure without the soft-core
repulsive potential. Importantly, the maximal packing fraction
decreases (not increases) as y increases and approaches y = 1/2,
as seen in Table 1 and Fig. 2(A). The fact that ¢,y is highest in
the small-y limit and then monotonically decreases with y up to
% = 1/2 is consistent with the decrease in the relative degrees of
freedom as y increases. Such y-dependence on ¢ma(y) can be
well approximated by the following [1,1] Padé approximant:

1 — 1.245y

¢max (X) = 0638T900}57

(6)
which we see is in very good agreement with the data plotted in
Fig. 3(A).

It is noteworthy that for all y values within the disordered
regime, particles in this family of packings always form

4902 | Soft Matter, 2025, 21, 4898-4907
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Fig. 3 Parameters of 3D disordered ultradense SHU sphere-packing
ground states across stealthiness parameter y. (A) Maximal packing fraction
dmax(y) as a function of y. The filled circles are simulation data (with N up to
10774 and 10?-10* configurations) and the solid curve is the [1,1] Padé
approximant of the data given by eqn (6). (B) Mean contact number per
particle Z(D*) as a function of . The solid line is the theoretical prediction
(8). The data in both (A) and (B) are tabulated in Table 2 in the Results
section. Note that the gray and orange regions in (A) and (B) correspond to
the SAT and UNSAT phases’®”* of the ground state of eqn (2), respectively.
The reader is referred to ref. 59 for details.

interparticle contacts. The quantity

{o¢]

g (r)dr (7)

2() = 4an0

is the cumulative coordination number from which we can extract
the mean contact number per particle, Z(D"), and we take D"
(indicating the limit of r to D from above) to be g pay + 0.001p~ >,
As shown in both Fig. 3(B) and Table 2, the mean contact number
per particle is the largest as y tends to zero, where Z(D") achieves
the isostatic (marginally mechanically stable) value of 6 associated
with strictly jammed packings and then monotonically decreases
with y, implying sub-isostatic packings (Z(D") < 6) that cannot be
strictly jammed.®® Such a decrease in Z(D") with y is due to an
interplay between two competing constraints in numerical opti-
mizations. Specifically, for an N-particle SHU ground-state pack-
ing in RY% 2y x d(N — 1) degrees of freedom are already

This journal is © The Royal Society of Chemistry 2025
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constrained among d(N — 1) total degrees of freedom by the
stealthy hyperuniform condition. Thus, the remaining degrees of
freedom determine the maximum number of constraints from
effectively contacting particles:

Z(D") = 2d(1 — 2y). (8)
This prediction shows good agreement with the simulation
data; see Fig. 3(B).

Fig. 4 shows representative contact networks of the ultra-
dense SHU packings at selected values of y between 0 to 1/2,
some of which percolate across the entire system. At y = 0,
shown in Fig. 4(A), the contact network percolates and effec-
tively satisfies the isostatic condition Z(D") ~ 6.0, implying that
these packings are effectively jammed. As y increases from zero,
the contact networks are always sub-isostatic, as predicted by
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eqn (8). For y = 0.20, the contact network percolates, and almost
all of the spheres are part of it, but the network becomes
sparser (contact number decreases) from the isostatic value of
6 for y — 0with Z(D") ~ 3.0, as seen in Fig. 4(B) and Table 2. As
% increases from 0.20 to 1/2, Z(D") continues to decrease, ie.,
the contact networks become even sparser, resulting in linear
polymer-like chains of contacting particles that progressively
possess shorter mean chain lengths. This trend is evident in
Fig. 4(C) for y = 0.35 with Z(D") ~ 1.5, and in Fig. 4(D) for y =
0.45 with Z(D") ~ 0.6. In addition, approximately 38.6% of the
contact networks percolate when y = 0.35, and they then cease
to percolate for the higher values of y; see Table 2 and Section
2.3 for details about how we estimate percolation behaviors.
When y = 0.45, the non-percolating contact network consists of
dimer polymer-like chains. Here, about half of the particles in
the packing are monomers. The reader is referred to ref. 59 for

Fig. 4 Contact networks of 3D SHU sphere packings for various y values: (A) x = ymin(N). N = 3592, ¢ = 0.637 and Z(D*)

6.0; (B) x = 0.20, N = 4000,

¢ = 0.58, and Z(D*) ~ 3.0; (C) y = 0.35, N = 4000, ¢ = 0.53, and Z(D*) ~ 1.5; (D) x = 0.45, N = 4000, ¢ = 0.47 and Z(D*) ~ 0.60. Here, the sizes of the
cubic frames are identical. The centroids of the particles are depicted as black dots in all panels. In each panel, the bonds are drawn between particles

with colored lines if pairs of particle centers are closer than ¢ + 0.001p~ /3.
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the details behind these results for all y as well as corres-
ponding findings concerning local spatial statistics (nearest-
neighbor and minimal pair-distance distributions) for not only
3D cases, but 1D and 2D instances.

3.2. Structure factors

An isostatic value of Z(D") = 6.0 and packing fraction ¢ = 0.638
are not sufficient to define an MR]J packing. Therefore, we now
show that the ground-state packings in the limit y — 0 (ie.,
when the cardinality of the infinitely degenerate ground-state
manifold) are configurationally extremely close to the MR]
state, as measured by structure factors S(k) that are virtually
the same as one another for all k. While MR] packings are
hyperuniform, they are not perfectly stealthy,® and hence the
limit y — 0 (corresponding to maximal cardinality of the
infinite set of degenerate ground states) is a necessary condi-
tion to check if SHU packings have any correspondence to the
MR] state, since the stealthiness vanishes in this limit while
being hyperuniform, which importantly implies the thermo-
dynamic (infinite-N) limit. To approach the large-N limit, we
study a sequence of increasing systems sizes with N =400, 1198,
3592 and 10774, while taking y = ymin(N) given by eqn (5) and
then extrapolate to the limit N — oo. We find that as y becomes
small, the already small stealthy region diminishes in size, and
remarkably, the ground states become hyperuniform but not
stealthy in the limit y — 0. We also confirm that the ultradense
SHU packings with y = ymin €xhibit the power-law scaling form
S(k) ~ kas k — 0 by extrapolating S(k) in the range of KD < kD
< 1.3, which is consistent with those for MR] state reported in
ref. 6; see the inset of Fig. 5(A). Fig. 5(A) also compares the
structure factor for a wide range of wavenumbers for the SHU
packings at the largest value of N (=10774) to the recent
corresponding MR] data,® revealing that they are virtually
identical to one another on the scale of this figure.

By contrast, the structure factors S(k) of the SHU sphere-
packing ground states with the larger values of y are quite
distinct from those in the zero-y limit; see Fig. 5(B) for the case
7 = 0.45. When the ground states have large values of y, S(k)
clearly have a wide exclusion region in which S(k) = 0 for small
k. Furthermore, the oscillations in S(k) decay more rapidly as
wavenumber k increases, reflecting a decrease in the degree of
order at short-range length scales due to the formation of dimer
polymer-like chains.

3.3. Pair correlation functions and cumulative coordination
number

To further confirm the striking correspondence to MR] pack-
ings, we compare its pair correlation function g,(r) to that of
our ground-state packings with y = 0" in Fig. 6(A) for the largest
system size. Again, we see that the pair correlation functions
are virtually identical to one another on the scale of this figure,
including subtle small-scale structural features. Specifically,
they share a Dirac-delta-like peak at » = D, the well-known split
second peak seen in disordered jammed packings at /D = /3
and 2, as well as the power-law singularity for near contacts.*®
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Fig. 5 The structure factor S(k) versus dimensionless wavenumber kD of
3D SHU sphere-packing ground states. (A) Comparison of the data of 3D
hyperuniform MRJ sphere packings from ref. 6 to the corresponding
structure factor for our 3D hyperuniform sphere-packing ground states
in the limit y — 0, as extrapolated from the various system sizes studied,
namely, N = 400, 1198, 3592, 10 774. Both models have the same packing
fraction, ¢ = 0.638. The inset shows S(k) in the range of kD < 2 for SHU
sphere-packing ground states with 7 = ynin(N) as obtained for the afore-
mentioned sizes and MRJ states. The black dashed line is a linear fit of the
data, i.e., S(k) ~ k in the limit kK — 0. (B) 3D SHU sphere-packing ground
states with y = 0.45, N = 4000, ¢ = 0.47, and n. = 500 are shown. In both
(A) and (B), D is the hard-sphere diameter.

For general dense packings, the exponent y in the power-law
singularity, i.e., g&,(r) ~ (r/D — 1)"" for 0 < /D — 1 < 0.2, is
expected to increase with increasing short-range order.®® Spe-
cifically, y - 0 means a constant g, near contact, which is a
signature of the ideal gas. In contrast, y — 1 means that the
first and second peaks are clearly separated with a wide range
of gaps, which is typical of crystal packings. Thus, y for the MR]-
like SHU ground states should lie between 0 and 1.

The excellent agreement of the near-contact divergence in
the ground-state packings with y = 0" and MR] packings is more
apparent in the cumulative coordination number Z(r); see
Fig. 6(B). Here, we find that both packings yield the same fit
Z(x) ~ Zg.+ Cx" ™7, where x = r/D — 1. In the near-contact region
(i.e., 0.001 < x < 0.1), the fitted gap exponents are y = 0.44(1)
for largest ultradense SHU packings with y = ymin and the MR]

This journal is © The Royal Society of Chemistry 2025
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Fig. 6 Comparisons of 3D hyperuniform sphere-packing ground states
( = 07 and 3D MRJ sphere packings in direct space. (A) The pair
correlation function go(r) versus dimensionless distance r/D of the two
models. (B) The cumulative coordination number Z(r) versus dimensionless
distance r/D of the two models. In both panels, we consider 3D MRJ
packings taken from ref. 6 and D is the hard-sphere diameter. In both (A)
and (B), two models have the same packing fraction, ¢ = 0.638.
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Fig. 7 The pair correlation function g»(r) versus dimensionless distance
r/D of 3D SHU sphere-packing ground states with a high value of y. Here,
D is the hard-sphere diameter. We consider the ground states with
7 =045, N = 4000, ¢ = 0.47, and n. = 500.
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state. Table 1 summarizes the values of y at various system sizes N.
Interestingly, by the same contact criterion stated in the caption of
Fig. 4, we estimate the rattler concentration to be about 2%, which
is close to the recently reported value for MR] packings.®

For the SHU packings with the largest value of the stealthi-
ness parameter examined, i.e., y(=0.45), the pair correlation
function g,(r) also possesses a sharp peak at r = D but does not
exhibit either a power-law divergence for near contacts nor split
second peaks; see Fig. 7. Furthermore, the small-scale oscilla-
tions in g,(r) for y = 0.45 for large r decay slightly faster than
those with y = 0". Such differences in g,(r) for the SHU ground
states with y = 0" and 0.45 arise because those with y = 0.45
form only a small number of dimers but lack additional short-
range order.

4. Conclusions and discussion

In sum, we have shown that one can use the modified collective-
coordinate optimization procedure [¢f. eqn (2)] to create disor-
dered SHU ground-state packings with packing fractions that far
exceed those produced in our previous work within the disor-
dered y regime,’>® thus advancing our understanding of the
nature of this highly degenerate ground-state manifold. We
revealed that in the small-y limit, the ground-state packings
associated with eqn (2) are hyperuniform, effectively jammed,
and configurationally very near MR] sphere packings, as mea-
sured by the same values of the packing fraction and mean
contact number per particle, similar rattler concentrations, as
well as pair statistics, both S(k) and g,(r), that are strikingly
virtually identical to one another. The extraordinary existence of
nonstealthy hyperuniform MRJ-like packings in the degenerate
SHU ground-state manifold is possible because the cardinality of
this infinite set is maximized as the stealthiness parameter y
tends to zero. On the other hand, while our ground-state pack-
ings have a Dirac-delta distribution in packing fraction for finite
N, numerically created MR] packings have a range of packing
fractions for finite N, which becomes a Dirac-delta distribution
only in the thermodynamic limit.

We also showed that the modified optimization technique
yields a large family of SHU packings for all values of y < 1/2
that exhibit other novel structural features. The particles in
these disordered packings always form interparticle contacts,
albeit with sparser contact networks, and have heretofore
unattained maximal packing fractions ¢n.x(x) compared to
previous works on stealthy hyperuniform systems. In the y-
¢max plane, the regions below and above the function @max(x)
are satisfiable and unsatisfiable phases, respectively; see
Fig. 3(a). By increasing y from 0 to 1/2, one can tune the contact
networks of the SHU ground states from those that percolate
with various degrees of connectivity for small to intermediate y
values to those that do not percolate at higher y values
characterized by dimer polymer-like chains. Detailed analyses
of local structural statistics of these 3D SHU packings as a
function of system size for y > 0 and their lower-dimensional
counterparts are reported in ref. 59.
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The capability to attain ultradense SHU packings for all y
within the disordered regime opens up exploration of new
applications in optics and acoustics using such exotic amor-
phous materials.3%3%36:38:4274447.69 [ndeed, Vanoni et al’”’
recently showed how certain dynamical physical properties
(i.e., effective dynamic dielectric constant and time-dependent
diffusion spreadability) of two-phase media derived from them
are improved for a range of y within the disordered regime and
packing fractions ¢.

Finally, we note that it has been a great computational
challenge to generate the ideal MR] state, which must be free
of rattlers (defects).”® Rapid-compression algorithms have been
used over the years to generate such packings,>***’° but they
produce a small but significant fraction of rattlers that prevent
the ideal MR] state from truly forming due to a critical slowing
down.® In future work, it would be interesting to explore the
use of our effectively jammed but hyperuniform packing states
as improved initial conditions for the Torquato-Jiao linear
programming packing algorithm, which is designed to find
inherent structures efficiently,* to possibly reduce the fraction
of rattlers below 1.5%, thereby approaching the ideal state.
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Appendices
A. Simulation parameters
Here, we tabulate the simulation parameters for 3D ultradense
SHU packings employed in this work.
B. Total potential in the limit of y — 0
We provide an explicit expression of the total potential (2) with
7 = Xmin(NV) of N-particle systems (denoted by y = 0" in Section 3):
(p(rN> = pVO[S(kminél) + S(kminéZ) + S(knliné3)} + Z ”("0)7
i<j
)

where ki, = 27/L is the smallest wavenumber of the reciprocal
lattice vectors for the periodic simulation box, and é; (i = 1, 2, 3)
are the standard basis of R?. Importantly, we approach the limit
of y — 0 by increasing N in eqn (9) as large as possible (i.e., N =
10774), ensuring that the obtained ground states are

4906 | Soft Matter, 2025, 21, 4898-4907

View Article Online

Paper

hyperuniform in this limit, which is challenging for conven-
tional compression algorithms to achieve.
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