
4498 |  Soft Matter, 2025, 21, 4498–4516 This journal is © The Royal Society of Chemistry 2025

Cite this: Soft Matter, 2025,

21, 4498

Temperature induced migration of interacting
charged colloidal particles: an irreversible
thermodynamics approach

J. K. G. Dhont *a and W. J. Briels*ab

The migration of particles induced by spatial gradients in temperature is commonly referred to as

thermophoresis, thermodiffusion, thermal diffusion, or the (Ludwig-)Soret effect. The force on colloidal

particles that drives such a migration depends on the response to variations in temperature, both of

single particles and of interactions between particles. A distinction can thus be made between single-

particle and collective contributions to the thermophoretic force experienced by a colloidal particle.

There is as yet no systematic theory for thermophoresis of charged colloids that accounts for the

collective contribution due to interactions between charged colloids. In a previous study, we developed

an irreversible thermodynamics approach for uncharged colloids [J. K. G. Dhont and W. J. Briels,

J. Colloid Interface Sci., 2024, 666, 457]. In the present study we extend this approach to account for

interactions between charged colloids, which includes additional fluxes of ions. Enslavement of ion

fluxes to the relatively slowly evolving concentration profile of the colloids, and an approximate

evaluation of the heat-of-transfer, leads to microscopic, particle-based expressions for the thermo-

diffusion coefficient and the Soret coefficient. In addition, an explicit expression for the macroscopic

thermoelectric field is derived, which gives rise to a thermoelectrophoretic force. A comparison to

existing experimental thermophoresis experiments is presented.

1 Introduction

The very first study on temperature-gradient induced mass
transport stems from Ludwig in 1856, who referred to the
phenomenon as ‘‘hydrodiffusion’’. In a one-page report (in
German), a single measurement is performed on a sodium
sulphate solution.1 About two decades later, quite extensive and
systematic studies were published by Soret (in French) on
various types of salts.2–4 Since then, many experiments have
been performed on other types of molecular systems. With the
advent of microfluidics, single-particle imaging, and several
different types of optical techniques, thermodiffusion of macro-
molecular systems gained scientific interest over the last few
decades. Overviews of these techniques and/or experimental
results on many different macromolecular systems can be found,
for example, in ref. 5–11.

Accompanying these experimental developments, a large
body of theoretical work specifically aiming at colloidal

suspensions has been put forward. The main focus of this
previous theoretical research is concerned with thermodiffusion
of single colloidal particles, in which case the concentration of
colloids is sufficiently low to neglect contributions arising from
interactions between the colloids. Single-particle theories and
experiments include the contribution of an electric double layer
of charged colloids to thermodiffusion,12–21 of Marangoni-
related interfacial forces,22–24 and of solvated uncharged
colloids.25,26

As yet, there is no systematic theory that accounts for the
contribution to thermodiffusion due to interactions between
charged colloids. There are only a few theoretical studies of the
effect of inter-colloidal interactions on thermodiffusion. In ref. 27
and 28, the force between charged colloids is assumed to be given
by the spatial gradient of a temperature dependent mean-field
potential. As will be discussed later, however, the force due to
interactions is non-conservative. In ref. 8, 24 and 29–31, the force
of a colloid is related to the spatial derivative of the equation-of-
state pressure (which is referred to in these references as the
osmotic pressure). As will be shown, this expression omits the
contribution from the heat-of-transfer.

The only published experimental thermophoresis data for
charged colloids where interaction effects are probed are on
micellar sodium dodecyl sulphate (SDS) systems12,30–32 and
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charged silica spheres.33 As for the uncharged sticky-sphere
colloids,34 a strong concentration and temperature dependence
due to colloid–colloid interactions is found. Due to the lack of
full characterization of these systems, an accurate quantitative
comparison to the present theory is not possible. The experi-
ments on micellar SDS systems can only be compared to some
extent to the present theory.

In all of the abovementioned experiments and theories, a
prescribed and time independent externally imposed temperature
gradient is applied. In the irreversible thermodynamics approach
described in this paper we will also consider the situation where
such an externally imposed temperature is present.

The present study is solely concerned with the effects of
colloid–colloid interactions on thermophoresis. For single-
colloidal particle thermophoresis, interactions between solvent
and solute molecules with a colloidal particle surface are highly
significant. The corresponding interfacial thermophoretic phe-
nomenon renders the irreversible thermodynamics approach
discussed in the present study not meaningful for single-
particle thermophoresis. We do, however, include single-
particle thermophoretic forces in our theory as an unspecified
additional contribution to those resulting from colloid–colloid
interactions. In a comparison of our theory to experiments, the
single-particle contribution must be obtained from either a
specific theory for single-particle thermophoresis (see the refer-
ences above), or from an extrapolation of experimental data to
zero colloid concentration.

Fig. 1 is an overview of the content of this study. The
thermophoretic force on a charged colloid particle due to
colloid–colloid interactions is derived in Section 2. As indicated
in Fig. 1, the derivation consists of several consecutive steps,
starting from Onsager’s irreversible thermodynamics flux–force
relations, which are formulated in Section 2.1. In the first step
2.2 the fluxes of solvent molecules and small ions are related to
that of the colloid flux. These so-called enslavement relations
are used in the subsequent step 2.3 to eliminate the solvent and
salt fluxes to arrive at an effective one-component flux–force
relation for the double-layer-dressed colloids. In the next step
2.4, the thermophoretic force is expressed in terms of gradients
of the colloid pressure (not to be confused with the osmotic
pressure) and the colloid heat-of-transfer. Separating out the
mechanical forces due to pressure variations allows us to derive
an explicit expression for the colloid heat-of-transfer in the
subsequent step 2.5. We find a contribution to the thermo-
phoretic force on a charged colloid due to colloid–colloid
interactions that has not been considered before, which we
refer to as the thermophoretic interaction force. There is also
an electrophoretic force due to a macroscopic electric field
generated by the spatially varying temperature and colloid
concentration, commonly referred to as thermoelectricity. The
origin of this electric field and an expression for it is derived in
Section 3. Microscopic expressions for the Soret coefficient and
thermodiffusion coefficient in terms of the pair-correlation
function and the pair-interaction potential are then given in
Section 4, which in principle allow for a microscopic, particle-
based comparison of our theory with experiments. Finally,

Section 5 conducts a comparison with experiments, and Section 6
contains a summary and conclusion.

2 The forces acting on a colloid in
concentration and temperature
gradients

In this section we calculate the contribution to the thermo-
phoretic force on a charged colloidal particle in a salt solution
that originates from its interactions with other colloids. Single-
particle contributions, which are due to the response of degrees
of freedom of the electric double layer (and possibly a solvation
layer, a grafted polymer brush, adsorbed surfactants, . . .) to the
temperature gradient are not explicitly specified.

For simplicity, we consider two types of ions being present:
mono-valent positive ions which dissociated from the surfaces
of the colloids and those resulting from added salt, while the
mono-valent negatively charged ions originate solely from
added salt. For many types of charged colloids the positive

Fig. 1 An overview of the steps taken to arrive at an expression for the
thermophoretic force due to colloid–colloid interactions, and subsequent
sections in this paper.
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ions are H+-ions. In an electro-neutral homogeneous suspen-
sion the �-ion number concentrations r� are thus equal to,

rþ ¼ r0 þ Zrc;

r� ¼ r0;
(1)

where r0 is the number concentration of added salt, Z 4 0 is
the number of negatively charged colloid surface groups, and rc

is the number concentration of colloids.
In classic irreversible thermodynamics, the system is sub-

divided into volume elements which are sufficiently large to be
considered as thermodynamic systems by themselves, but
small enough so that concentrations and temperatures do not
substantially vary within the volume elements. These homo-
geneous volume elements are assumed to be in internal equili-
brium. Hereafter, we shall refer to these volume elements as
‘‘irreversible thermodynamics volume elements’’.

2.1 Irreversible thermodynamics approach

As a first step, as indicated in Fig. 1, the basic irreversible
thermodynamics flux–force relations are introduced, and the
approximations made in the further development of the theory
are specified.

In order to quantify the thermophoretic force on a colloid
that is due to interactions between the colloids we start from
the fundamental Onsager flux–force relations,35–39

Jc

Js

Jþ

J�

JU

0
BBBBBBBBBB@

1
CCCCCCCCCCA
¼

Lcc Lcs Lcþ Lc� LcU

Lsc Lss Lsþ Ls� LsU

Lþc Lþs Lþþ Lþ� LþU

L�c L�s L�þ L�� L�U

LUc LUs LUþ LU� LUU

0
BBBBBBBBBB@

1
CCCCCCCCCCA
�

Fc

Fs

Fþ

F�

FU

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (2)

where Jc is the particle-number flux of colloidal particles, Js of
solvent molecules, J� are the number fluxes of �-ions, and JU is
the flux of internal energy. The fundamental forces are equal to,

Fc ¼ � Trmc
T
� ZeE;

Fs ¼ � Trms
T
;

F� ¼ � Trm�
T
� eE;

FU ¼ Tr1

T
;

(3)

with mc,s,� the chemical potentials of the colloids, solvent and
ions, respectively, and where T is the temperature. The flux–
force relations are valid for linear order in local spatial gradi-
ents. These relations remain valid, however, in the presence of
large global variations, in which case the Onsager coefficients
Lij are functions of the local thermodynamic variables.40

Furthermore, E is the macroscopic electric field that is due to
colloid concentration and temperature gradients. As will be
discussed in Section 3, the origin of this electric field is solely
due to the spatial variation of the Donnan potential, to within

the approximations set out in the classic Poisson–Boltzmann
approach.

The Onsager flux–force relations in eqn (2) and (3) relates to
a mixture of ions, solvent molecules, and bare colloids (without
the presence of an electric double layer, but just a core which
carries charges), and therefore has the same standing as for
simple mixtures. In particular, the Onsager coefficients satisfy
the symmetry relations Lij = Lji.

The approximations that we will make concerning the
behaviour of the solvent and the salt ions are much the same
as those made in the classic Poisson–Boltzmann theory for
charged colloids.41 Apart from excluded volume interactions,
which prevent solvent molecules (and salt ions) to penetrate the
cores of the colloids, solvent molecules do not interact with the
colloids in any other way. Salt ions do not occupy volume, and
do not interact with the solvent molecules. In addition, salt
ions behave as an ideal gas in a homogeneous solution that is
everywhere electro-neutral. The ions only interact with each
other through the electric field that they generate due to locally
unequal concentrations of �-ions leading to a violation of local
electroneutrality. The solvent is assumed to be incompressible
and therefore is fully packed in the sense that each solvent
molecule occupies a fixed volume vs, independent of salt and
colloid concentration, which will be referred to as ‘‘the volume
of a solvent molecule’’. In thermodynamic terms this means
that the partial molar volume of solvent is assumed constant.
The number concentration of solvent molecules within bulk salt
solution is thus equal to 1/vs, which is of course different from the
thermodynamic concentration Ns/V of solvent in a suspension
(with Ns the number of solvent molecules and V the volume of the
system). The difference between the two concentrations is due to
the volume that is occupied by the colloids. The cores of the
colloids are assumed incompressible, and the volume vc of the
core is constant, similar to the solvent molecules.

The difference in the relatively slow dynamics of the large
colloids in comparison to the fast dynamics of the much
smaller ions and solvent molecules will be shown below to
enable the reduction of the Onsager flux–force relations(2) to
an effective two-component system, involving only the colloid
flux and the heat flux, evidently with forces that differ from
those in eqn (3).

These assumptions constitute a minimal (Poisson–Boltzmann
type) model which allows us to derive an explicit expression for
the thermophoretic force on charged colloids resulting from
interactions between them.

2.2 Enslavement of solvent and ion fluxes

In the next step in the derivation of the thermophoretic force as
indicated in Fig. 1, we discuss how the solvent flux and ion
fluxes instantaneously adapt to the relatively slowly evolving
colloid concentration profile. The solvent flux J0s defined in
eqn (4) and the ion fluxes J0� defined in eqn (15) will be argued
as vanishing due to enslavement. This sets the relation between
the solvent and ion fluxes, and the colloid flux.

As discussed in ref. 42, the displacement of a colloid is
accompanied by an opposite displacement of vc/vs solvent
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molecules. The corresponding trivial contribution �(vc/vs)Jc to
the solvent flux is accounted for by introducing an effective
solvent flux,

J0s ¼ Js þ
vc

vs
Jc: (4)

Fluxes are defined relative to the volume-fixed frame, for which,

vsJs + vcJc = 0. (5)

For the incompressible system under consideration, fluxes are
thus measured relative to a position fixed to that of a closed
sample cell. It thus follows that J0s is zero. This implies that the
solvent flux responsible for the relaxation of the corresponding
pressure gradients relaxes to zero instantaneously. We note that
this results in zero fluxes only for closed systems, where the
system boundary is impenetrable for solvent molecules.

Due to the fast dynamics of the ions relative to that of the
much larger colloids, the macroscopic concentration profiles of
the ions (quasi) instantaneously adapt to the slowly changing
concentration profile of the colloids. The ion concentrations
are therefore enslaved, and henceforth referred to as rens

� .
The superscript ‘‘ens’’ is used to indicate that this is the ion
concentration profile under the assumption that the ion
concentration profiles fully adapt to the colloid’s concentration
profiles.

To obtain the two ion fluxes in terms of the colloid flux, two
equations are needed that connect the concentration of the
ions to that of the colloids.

First, the stationary state that the ions (quasi) instanta-
neously attain in a closed system for a given configuration of
the colloids corresponds to zero ion fluxes. As for the solvent,
ion fluxes vanish in their stationary state in a closed system,
since the system boundaries are impenetrable for the ions.
A zero flux implies a vanishing total force on the ions, which is
the result of two counter-acting forces. There is a force due to
the variation in the equation-of-state pressure of the ions. Since
within a Poisson–Boltzmann approach the pressure of the ions
is that of an ideal gas, the corresponding force per unit volume
on the �-ions is equal to �r[r�kBT/(1 � j)], where r� is the
thermodynamic concentration of ions (number of ions per unit
volume of suspension), and kB is the Boltzmann constant. Note
that this equation holds on length scales comparable to the
dimensions of irreversible thermodynamics volume elements.
Furthermore,

j = vcrc, (6)

is the volume fraction of colloids. Note that r�/(1 � j) is the
concentration of ions within the solvent surrounding the
colloids, which is the concentration that determines the ion-
pressure. There is also an electrostatic force per unit volume
equal to �r�eE, with e 4 0 the elementary charge, and E the
thermoelectric field (see Section 3 for a detailed discussion
concerning the thermoelectric field). The total force vanishes,

and hence,

r rens� kBT

1� j

� �
¼ �rens� eE: (7)

As mentioned before, rens
� denotes the ion concentrations that

are instantaneously adapted to the colloid concentration profile
(hence the superscript ‘‘ens’’ referring to enslavement). The
thermophoretic force experienced by the ions is included in the
temperature derivative that is implicit on the left hand-side: in
the absence of colloids and a vanishing electric field, the above
equation implies ion-Soret coefficients equal to Sion

T = 1/T,
which complies with the ideal gas behavior of the ions within
a Poisson–Boltzmann approximation.41

The second equation needed to connect the concentration of
the ions to that of the colloids is the Poisson equation on length
scales larger than the size of the irreversible thermodynamics
volume elements,

r�[esE] = �eZrc + rens
e , (8)

with rens
e = e(rens

+ � rens
� ) the charge density due to unequal

concentrations of ions, and where, as before, Z 4 0 is the
number of negative surface charges carried by a single colloid,
and where rc is the spatially varying number concentration of
colloids. Furthermore, es is the dielectric constant of the
solvent, which is kept inside the divergence operator to account
for its temperature-gradient induced spatial variation.

As will be shown in Appendix A, the two eqn (7) and (8) imply
local electro neutrality within each irreversible thermody-
namics volume elements, that is,

r+ � r� = Zrc. (9)

The divergence of the electric field on the left hand-side of
eqn (8) is shown in Appendix A to be relevant only at the walls
of the sample container.

It is furthermore shown in Appendix A that eqn (7) and (8)
imply the following enslavements relations,

Jens� ¼ � ZFðaÞ þ rfreesaltvc
� �

Jc;

Jensþ ¼ Z � ZFðaÞ þ rfreesaltvc
� �� �

Jc:
(10)

For brevity, the function F is introduced,

FðaÞ ¼ 1

2þ a
; (11)

where the parameter a 4 0 is defined as,

a ¼
Ncoll
þ

Nsalt
þ
¼ Zrc

r0
; (12)

which is the ratio of the number of positive ions Ncoll
+ that disso-

ciated from the colloid’s surfaces, and the number of positive
ions Nsalt

+ originating from added salt, within the corresponding
irreversible thermodynamics volume element. Provided that
the global variation of rc and r0 are small, the concentrations
rc and r0 on the right hand-side in eqn (12) can be obtained
from are their ambient values, that is, in that case rc = Nc/V and
r0 = Nsalt/V, with Nc and Nsalt the total number of colloids and
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dissolved salt molecules in the volume V of the sample con-
tainer. Furthermore,

rfreesalt ¼
2þ 2a
2þ a

r0
1� j

: (13)

As will be shown below, this is the concentration of salt within
the solvent surrounding the colloids.

The interpretation of eqn (10) for the enslaved ion fluxes is
as follows. The contribution �rfree

saltvcJc accounts for the trivial
displacement of salt in the opposite direction of the colloids,
just like for the solvent molecules in eqn (4). If there is no salt
added, in which case a - N and r0 - 0, the above results in
eqn (10) reduce to Jens

� = 0, which complies with the fact that
there are no negatively charged ions present, and Jens

+ = ZJc,
which implies that a colloid drags all its counter ions along
with it. In the opposite situation when a { 1, we have the
leading order Jens

� = [�(1/2)Z � rfree
saltvc]Jc. The first contribution

�(1/2)Z is in accordance with colloids that drag along their
electric double layer as predicted by standard linear Poisson–
Boltzmann theory for a single spherical colloid. As already
mentioned, the second term �rfree

saltvcJc accounts for the displa-
cement of salt contained in a volume vc in the opposite
direction of a colloid. No linearization with respect to the
potential within the double layer around the colloids has been
made, so that the result in eqn (10) is valid within the realm of a
non-linear Poisson–Boltzmann approach. In addition, the
above relations are valid also for non-spherical colloids.

That rfree
salt in eqn (13) is the salt concentration that does not

involve the ions within the double layers that are dragged along
with the colloids can be seen as follows: According to eqn (10),
the expression between square brackets is equal to the number
N� of �-ions that is displaced along with a single colloid,

N� ¼ � ZFðaÞ � rfreesalt vc;

Nþ ¼ Z � ZFðaÞ � rfreesaltvc;
(14)

where a minus sign indicates displacement in the opposite
direction of the colloids. The concentrations rfree

� of ions that
do not involve such colloid-enslaved ions are therefore equal to
rfree
� = r� � N�rc. From r� = r0, r+ = r0 + Zrc, and eqn (12)–(14)

it is found that rfree
+ = rfree

� , both being equal to the right hand-
side of eqn (13), which is therefore the salt concentration rfree

salt

of free salt within the solvent outside the cores of the colloids.
Since we are interested in fluxes on time scales larger than

relaxation times of ions, there are no ion fluxes other than
those enslaved by the colloids. It follows that the fluxes,

J0� ¼ J� þ ZFðaÞ þ rfreesaltvc
� �

Jc;

J0þ ¼ Jþ � Z � ZFðaÞ þ rfreesaltvc
� �� �

Jc;
(15)

vanish. These definitions of the primed fluxes will be needed
in the subsequent subsection to eliminate the solvent and
ion fluxes from the original Onsager relations (2), in order
to reduce the number of flux–force relations to an effective one-
component system.

2.3 Reduction of the Onsager flux–force relations

In this subsection, corresponding to the next step in our
derivation in Fig. 1 vanishing of the fluxes in eqn (4) and (15)
due to enslavement is used to derive an effective one-component
colloid flux–force relation (see eqn (22)), which contains the as yet
unknown modified Onsager coefficients L. This allows (as for any
one-component system) to express the total force F in eqn (25) in
terms of the effective chemical potential n in eqn (20), the effective
partial molar enthalpy in eqn (21), and the heat-of-transfer q? in
eqn (26). The latter is the as yet unknown quantity. This total force
is due to spatial gradients in temperature and colloid concen-
tration, and also contains single-particle thermophoretic forces.

The flux–force relations (2) are reformulated in terms of the
fluxes J0s;� in eqn (4) and (15), without yet setting these equal to
zero, and the heat flux,

Jq = JU � h+J+ � h�J� � hsJs � hcJc, (16)

where the partial molar enthalpies of the ions are defined as,

h� ¼
@H Nc;Ns;N�;Nþ; p;Tð Þ

@N�
; (17)

and similarly for the partial molar enthalpies hs and hc for the
solvent and colloids, respectively. In terms of these fluxes, the
Onsager relations (2) become,

Jc

J0s

J0þ

J0�

Jq

0
BBBBBBBBBB@

1
CCCCCCCCCCA
¼

L0cc L0cs L0cþ L0c� Lcq

L0sc L0ss L0sþ L0s� Lsq

L0þc L0þs L0þþ L0þ� Lþq

L0�c L0�s L0�þ L0�� L�q

Lqc Lqs Lqþ Lq� Lqq

0
BBBBBBBBBB@

1
CCCCCCCCCCA
�

F0c

F0s

F0þ

F0�

Fq

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (18)

with Onsager coefficients that differ from those in eqn (2).
By construction, the new Onsager coefficients are symmetric.37,38

The new forces are equal to,

F0c ¼ � Trn
T
þ Thr1

T
;

F0s ¼ � Trms
T
þ Thsr

1

T
;

F0� ¼ � Trm�
T
þ Th�r

1

T
� eE;

Fq ¼ Tr1

T
:

(19)

The ‘‘effective chemical potential’’ n is defined as,

rn
T
¼ rmc

T
� vc

vs
rms
T
þ Zrmþ

T
� ZF þ rfreesaltvc
� �

rm� þ mþ
T

; (20)

and the ‘‘effective partial molar enthalpy’’ h is equal to,

h ¼ hc �
vc

vs
hs þ Zhþ � ZF þ rfreesaltvc

� �
h� þ hþð Þ: (21)

This new set of Onsager relations is completely equivalent to the
original Onsager relations and therefore describes the same
physical phenomena. In this respect we mention that although
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the electric field has disappeared from the force F0c, it is still in
principle present in the colloid flux through the contribution
L0cþ � L0c�
� 	

E.
As discussed in the previous subsection, we set

J0s ¼ 0 ¼ J0�, which is a consequence of enslavement. This
allows elimination of the forces F0s and F0� from the above
Onsager relations (18) to arrive at an effective one-component
flux–force relation,

Jc

Jq

 !
¼

Lcc Lcq

Lqc Lqq

 !
�

F0c

Fq

 !
: (22)

The new Onsager coefficients can be expressed, with some
effort, in terms of the symmetric Onsager coefficients in the
flux–force relations (18). These rather lengthy expressions show
that symmetry is preserved, that is, Lcq = Lqc.

In the force F0c on the colloids, the macroscopic electric field
is absent, which can be understood as follows. The total charge
carried by the ions within a double layer is equal to e(N+� N�) =
Ze and therefore compensates the surface charge �Ze of a
colloid. This confirms the well-known fact that a dressed
colloid, including its electric double layer, is uncharged. The
simultaneous displacement of the colloid together with its
double layer does not lead to a change of the electrostatic
energy, which is the reason for the absence of the electric field
in the force F0c.

The interpretation of eqn (21) being an effective one-
component partial molar enthalpy is as follows. As mentioned
before, the contribution �rfree

saltvc(h� + h+) accounts for the
opposite displacement of a volume vc of dissociated salt
solution. A similar opposite displacement of solvent is
accounted for by the contribution �(vc/vs)hs. Furthermore,
according to eqn (14), the number of positive ions contained
within the electric double layer that is dragged along with the
colloid is equal to N+ = Z[1 � F], while the number of enslaved
negative ions is equal to N� = �ZF (as before, the minus sign
indicates that the number of negative ions decreases upon
displacement of the colloid). The electric double layer thus
contributes

N�h� þNþhþ ¼ � ZFh� þ Z½1� F �hþ

¼ Zhþ � ZF h� þ hþð Þ;

to the effective partial molar enthalpy, in accordance with
eqn (21).

Within the Onsager irreversible thermodynamics approach
the temperature gradient and electric field induced deforma-
tion of the electric double layer is not accounted for. The
enslavement relations (7) and (8) apply on length scales larger
than the size of the irreversible thermodynamics volume ele-
ments, and therefore do not resolve the double layer structure
around single colloids. The double layer deformation due to
temperature gradients gives rise to a single-particle thermo-
phoretic force, while the electric field induced double layer
deformation gives rise to an electrophoretic force. The electro-
phoretic force in the present context will hereafter be referred

to as the thermoelectrophoretic force. Both the resulting single-
particle force and the thermoelectrophoretic force will be
added by hand: our interest here is in the effect of inter-
colloidal interactions on the electrophoretic force. The thermo-
electrophoretic force Fel is proportional to the electric field up
to leading order in spatial gradients, and can be written as,

Fel = �ZemfE, (23)

where mf is related to the electrophoretic mobility. The relation
of mf to the electrophoretic mobility will be discussed in
Section 4. The origin of the macroscopic electric field will be
discussed, and an explicit expression for the electric field will
be derived, in Section 3. We note that the temperature-gradient
induced deformation of the electric double layer of a colloid
contributes to the single-particle thermophoretic force. The
total deformation of the double layer is the sum of the defor-
mation due to the macroscopic electric field (thermoelectricity)
and the temperature gradient (single-particle thermodiffusion).

The colloid flux is driven by the total force F on a single
colloidal particle,

Jc = LccF, (24)

for which the following expression is found from eqn (22) for
the colloid number flux and eqn (19) for the forces,

F ¼ �rn
T
� 1

T
hþ q?ð ÞrT � ZemfE; (25)

where the so-called heat-of-transfer is given by,

q? ¼Lcq

Lcc
: (26)

The name ‘‘heat-of-transfer’’ refers to its contribution to the
heat flux Jq. From eqn (22) it is readily seen that Jq ¼ q?Jc for
constant temperature (excluding mere heat conduction), which
leads to the well-known interpretation of q? being equal to the
heat that is transported per colloidal particle.37–39,42 The heat-
of-transfer in the present case includes the solvent molecules
and ions that are enslaved and dragged along with the colloid.

In ref. 27 and 28, the force on a colloid, including the
thermophoretic force, is assumed to be given by the spatial
gradient of a temperature dependent mean-field colloid–colloid
interaction potential. Eqn (25), however, shows that the force
contains several additional contributions, and in particular is non-
conservative. Depending on the type of colloid under consideration,
the temperature dependent part of the pair-interaction potential
consists of an electrostatic contribution, van der Waals attractions,
depletion attractions, and possible interactions between molecules
grafted or adsorbed to the surfaces of the colloids.

Eqn (25) for the force is formally the same as for uncharged
colloids as found in ref. 42, but now with additional contri-
butions to n from the ions, and with an additional thermo-
electrophoretic force.

2.4 The force in terms of the colloid pressure pc

For the derivation of an expression for the heat-of-transfer, the
force in eqn (25) on a colloid is first expressed in terms of

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/2
0/

20
26

 1
:2

3:
27

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00319a


4504 |  Soft Matter, 2025, 21, 4498–4516 This journal is © The Royal Society of Chemistry 2025

gradients of the colloid pressure pc instead of the chemical
potential n, which is the subsequent step in our derivation as
presented in Fig. 1. The resulting expression for the force is
given in eqn (34). The colloid pressure, which is related to the
osmotic pressure, is the contribution of the colloids to the total
pressure, as will be discussed below.

The starting point is the Gibbs–Duhem relation for the
suspension, which reads,43

0 ¼ hsrs þ h�r� þ hþrþ þ hcrc
� �dT

T

þ T rsd
ms
T
þ r�d

mel�
T
þ rþd

melþ
T
þ rcd

melc
T

� �
� dp:

(27)

where, as before, hs,�,c are the partial molar enthalpies, rs,�,c =
Ns,�,c/V are the thermodynamic number concentrations of the
solvent, the ions, and the colloids, respectively, and p is the
(total) pressure. Furthermore mel

�,c are the electro-chemical
potentials,

mel� ¼ m� � eF;

melc ¼ mc � ZeF;
(28)

where, as before, m�,c are the purely chemical contributions and
F the electric potential corresponding to the macroscopic
electric field E. We note that, on the level of the above Gibbs–
Duhem relation, the colloid electro-chemical potential pertains
to the bare colloids, not including the enslaved ions or solvent
molecules. The macroscopic electric field will be discussed in
more detail in Section 3.

The fundamental difference between colloids and mixtures
of simple fluids is that for the latter the total pressure cannot be
written as a sum of the equations-of-state pressures for the
otherwise pure species. For such systems, there are contribu-
tions to the pressure due to interactions between the various
species in the mixture. Within the present approach, the system
can be considered to consist of three independent subsystems.
First, we have the colloids, including their electric double
layers, which interact only amongst each other. Secondly, we
have solvent molecules interacting with each other, while being
confined to the volume outside the colloids. Finally, the excess
(dissociated) salt molecules, with concentration rfree

salt , that do
not interact with the solvent, and similarly to the solvent have
the same limited accessible volume.

As a consequence, the total pressure is a sum of three
equation-of-state pressures, ps of pure bulk solvent, psalt of
(dissociated) salt molecules, and the equation-of-state pressure
pc resulting from the colloids. The latter pressure includes the
interactions between the colloids due to enslaved ions present
within the electric double layers. For spherical colloids, the
equation-of-state pressure pc can be expressed in terms of an
integral of the pair-correlation function and pair-interaction
potential, as will be discussed in Section 4. Since within the
Poisson–Boltzmann approximation the (dissociated) salt mole-
cules behave as an ideal gas, as discussed before, their equation
of state reads psalt = 2rfree

saltkBT. That the total pressure can be
written as such a sum of three independent equation-of-state

pressures, can be shown similarly to that for uncharged col-
loids in Appendix B in ref. 42 based on the virial theorem,
considering that the colloids with their double layers behave as
a single species due to enslavement. Hence,

p = ps + psalt + pc. (29)

As in ref. 42, we will henceforth refer to pc as the colloid
pressure, which now includes the interactions between the
colloids via their electric double layers.

An effective one-component Gibbs–Duhem relation for the
colloids can now be derived as follows. Within the Poisson–
Boltzmann approximation, the ions do not occupy any volume,
so that rcvc + rsvs = 1. Furthermore using eqn (1) and (9),
imposing ion-enslavement, it follows that r+ � Zrc = r0 and
r� = r0, with r0 the spatially varying salt concentration that
would have existed in the absence of the colloids. In addition,

r0 + rcZF + rcvcr
free
salt = rfree

salt , (30)

which follows from the definition of rfree
salt in eqn (13), as well as

F = 1/(2 + a) with a = Zrc/r0. Using these relations, together with
eqn (20) and (21) in order to eliminate d(nc/T) and hc in favour
of d(n/T) and h, it is found, with some effort, that the suspen-
sion Gibbs–Duhem relation (27) can be rewritten as,

0 ¼ 1

vs
hs
dT

T
þ 1

vs
d
ms
T
� dps

þ rfreesalt h� þ hþð ÞdT
T
þ rfreesalt d

m� þ mþ
T

� dpsalt

þ rch
dT

T
þ rcd

n
T
� dpc:

(31)

As mentioned earlier, each irreversible thermodynamics
volume element is in internal equilibrium, and the solvent
molecules and salt do not interact with each other nor with the
colloids (except for exclusion of volume). The relation between
variations of temperature, chemical potential, and the pressure
for the solvent and the salt between the volume elements are
therefore given by their corresponding Gibbs–Duhem relations.
The first two lines in the suspension Gibbs–Duhem relation
(31) therefore vanish (note that 1/vs is the solvent number
concentration in bulk, outside the cores of the colloids). We
thus arrive at the following effective one-component Gibbs–
Duhem relation for the colloids,

0 ¼ rch
dT

T
þ rcd

n
T
� dpc: (32)

Since the infinitesimal differences can be related to the differ-
ences between the irreversible thermodynamics volume ele-
ments, the above Gibbs–Duhem relation implies that,

rn
T
¼ �hrT

T
þ 1

rc
rpc; (33)

from which eqn (25) for the force can be rewritten as,

F ¼ � 1

rc
rpc �

q?

T
rT � ZemfE; (34)
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Except for the thermoelectrophoretic force, this expression for
the force is formally identical to that for uncharged colloids.42

However, both the colloid pressure and the heat-of-transfer
now include the enslaved ions, that is, the electric double layer
that is dragged along with the colloid. The earlier proposed
expressions for the force in ref. 8, 24 and 29–31 do not include
the contribution arising from the heat-of-transfer, while pc is
referred to as the osmotic pressure (although the correct
equation-of-state pressure is used in these references in its
virial expression, as will be further discussed in Section 5).

It is important to realize that the colloid pressure pc is not
the osmotic pressure P, which is commonly defined as the
excess pressure of the suspension with respect to a salt reser-
voir with a separating membrane that is permeable for solvent
molecules and salt ions. For example, for low colloid con-
centrations and for ideal salt solutions pc = rckBT, while P =
[rc + r� + r+ � 2rR

salt]kBT, with r� the ion concentrations within
the suspension and rR

salt the number concentration of salt in
the reservoir.44,45

Note that the heat-of-transfer q? is responsible for the Dufour
effect, where transport of particles gives rise to a temperature
gradient.

2.5 Expression for the heat-of-transfer and the total
thermophoretic force

As the last step in Fig. 1 to arrive at an explicit expression for
the thermophoretic force, the remaining unknown quantity
needed to fully specify the total force in eqn (34) is the heat-
of-transfer q?. In this subsection, an explicit expression for the
heat-of-transfer is derived. The expression for q? in eqn (37)
contains the internal energy u per colloidal particle, which is an
additive contribution uint due to colloid–colloid interactions
and usingle from single colloids. This finally leads to eqn (39),
where fint and fsingle are defined in eqn (38).

The derivation of an expression for the heat-of-transfer
follows the same lines of reasoning as for uncharged colloids
in ref. 42. First, the force on a colloid due to mere heat
conduction (without particle transport) is neglected. The moti-
vation for this approximation is that microstructural ordering
of the colloids, contrary to simple liquids, is not affected by
mere heat conduction (heat conduction in the absence of
particle transport) since colloids behave in that respect as
macroscopic objects. Secondly, the forces on the colloids due
to pressure gradients as a result of gradients in concentration
and temperature need not be considered in the calculation of
the heat-of-transfer, since these forces are already included in
the first term on the right hand-side in eqn (34) for the force.
In fact, the force has been expressed in terms of the pressure in
favour of the chemical potential to render the calculation of the
heat-of-transfer feasible.

As in ref. 42 we consider two irreversible thermodynamics
volume elements which are thermally isolated from their
surroundings and from each other. We next pull, by means of
an external force balancing the force in eqn (34) a colloid from
one volume element to the other. By isolation of the volume
elements, we have excluded the possibility of mere heat

conduction. The work done by the external force then consists
of work against pressure gradients and work needed to change
the thermodynamic internal energy u per colloid. Therefore,

�q
?

T
rT ¼ �@u

@T
rT � DFT; (35)

where DFT denotes the thermophoretic force responsible for
the changing internal energy. As before, displacing a single
colloid implies displacing enslaved solvent and ions, so that

du ¼ duc �
vc

vs
dus þ Zduþ � ZF þ rfreesaltvc

� �
d u� þ uþð Þ: (36)

The interpretation of each of the terms on the right hand-side is
the same as that discussed for the effective molar enthalpy in
Section 2.3. It thus follows that,

q? ¼ T
@u rc;Tð Þ

@T
: (37)

The variation of the effective partial molar internal energy
comprises an additive contribution duint from interactions
between neighbouring colloids and a single-particle contri-
bution dusingle, that is, du = duint + dusingle. The single-particle
contribution is understood to include the internal energy
involving the earlier discussed opposite displacement of a
volume vc of solvent molecules and salt.

For convenience we introduce the abbreviations,

fint ¼
@uint
@T

;

fsingle ¼
@usingle
@T

þ f0:

(38)

In addition to the contribution to the single-particle thermo-
phoretic force that follows from eqn (37) for q?, we introduced
f0 in the above expression for fsingle. This additional contribu-
tion accounts for effects such as solvent flow induced by the
interface between the solvent and the solid core of the
colloids.22 For charged colloids, for example, it is well-known
that electro-osmotic flow plays a role in addition to the tem-
perature dependence of the internal thermodynamic energy
usingle of the electric double layer. To leading order in spatial
gradients, such phenomena do not give rise to additional
colloid–colloid interaction forces.

We thus find,

F ¼ � 1

rc

@pc
@rc
rrc �

1

rc

@pc
@T
þ fsingle þ fint

� �
rT � ZemfE; (39)

where both pc and fint are functions of just two variables rc and
T, as is evident from the effective one-component Gibbs–
Duhem relation in eqn (32).

In the comparison to experiments, fsingle is determined from
thermophoretic data extrapolated to zero concentration. In
addition to the purely thermodynamic contribution to fsingle

in eqn (38), there are in general contributions that cannot be
described on the basis of thermodynamics alone, due to
temperature-gradient induced solvent flow.19,37,46–49

The above expression for the force is formally identical to
that for uncharged colloids.42 The new aspect of the current
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discussion is that the ions which are dragged along with the
colloids, which give rise to additional interactions between the
colloids, are fully accounted for through the colloid pressure
and the thermophoretic interaction force. Eqn (39) is more
general than just for uncharged colloids.

In the following section an explicit expression for the
macroscopic electric field is derived, which then specifies the
thermoelectrophoretic force in eqn (39).

3 The macroscopic electric field:
Donnan and Seebeck contributions to
thermoelectricity

The phenomenon in which an electric field arises as a result of
a temperature gradient is commonly referred to as thermoelec-
tricity. There are two mechanisms for colloidal suspensions
giving rise to thermoelectricity. One mechanism arises from
concentration gradients of the colloids (also in the absence of a
temperature gradient) and one from temperature gradients
(also in the absence of colloid concentration gradients). Both
mechanisms will be discussed below.

First, the local Donnan electric potential within an irrever-
sible thermodynamics volume element is defined as the volume
averaged electric potential of a unit charge. That potential
depends on the concentration of the colloids, and thus varies
between volume elements, giving rise to a Donnan electric field.
In a closed system, there are oppositely charged layers formed
at the opposite (uncharged) walls of the sample container.
These thin charged layers on either side of the container lead
to the Donnan electric field, even though the bulk system
is locally electro-neutral (see also the discussion at the end of
Appendix A). This is very similar to the electric field that exists
in an isothermal diffusion-sedimentation equilibrium of
charged colloids.50,51

The second contribution to the macroscopic electric field is
due to the disproportional accumulation of different species of
ions at the walls of the sample container as a result of their
different thermophoretic mobilities.31,52–57 This mechanism is
similar to the Seebeck effect in solid state physics, where
electrons accumulate at the walls of a conducting material
(see, for example, ref. 58). That contribution to the electric
field is therefore referred to as the Seebeck electric field. Within
the Poisson–Boltzmann approximation used in the present
approach, the �-ions have identical Soret coefficients being
equal to 1/T so that the Seebeck electric field in our approach is
absent.

We note that within the present approach, an additional
external electric field will not give rise to an additional electro-
phoretic force. Enslavement implies complete electrode polar-
ization: double layers are present at the walls of the sample
container which compensate the externally applied charge,
leading to a zero additional macroscopic field within the bulk
of the suspension. In electrophoresis experiments, enslavement
of the ion concentration profiles must therefore be avoided.
This is accomplished by using a large distance between the

electrodes (which enhances the time to establish electrode
polarization), and switching the direction of the external field
before electrode polarization kicks in (see, for example, ref. 59
and references therein).

An expression for the macroscopic Donnan electric field can
be obtained by subtraction of the two eqn (7) for the �-ions,
and using that rr+ = rr� + Zrrc which follows from local
electro-neutrality as discussed in Section 2.2, leading to,

E ¼ a
2þ a

1

e

kBT

1� j
1

1� j
rrc
rc
þrT

T

� �
; (40)

where, as before, a = Zrc/r0, with r0 = r� is the spatially varying
local thermodynamic number concentration of negative salt
ions (see eqn (1)), and j is the volume fraction of colloids.
Eqn (40) for the Donnan electric field in the presence of a
temperature gradient has not been derived before. The con-
tribution BrT to the Donnan electric field stems from the
temperature dependent structure of the electric double layers of
the colloids.

The thermoelectrophoretic force in eqn (23) is thus equal to,

Fel = mrrrc + mTrT, (41)

where,

mr ¼ � mf
Z2

2r0 þ Zrc

kBT

ð1� jÞ2

mT ¼ mrð1� jÞrc
T
:

(42)

where it is used that a = Zrc/r0 (see eqn (12)).
The response to a given temperature gradient in terms of the

resulting colloid concentration gradient in the stationary state,
which is often probed in experiments, is quantified by the Soret
coefficient ST, which is defined as,

rrc
rc
¼ �STrT : (43)

The Donnan electric field in eqn (40) in the stationary state can
be rewritten as,

E ¼ � a
2þ a

kB

e

1

1� j
TST

1� j
� 1

� �
rT : (44)

Although this is the Donnan electric field, one can formally
define the Seebeck coefficient Se in the stationary state as
E = SerT. From the above expression for the electric field, the
following relation between the Soret coefficient and the Seebeck
coefficient is obtained as

Se ¼ �
a

2þ a
kB

e

1

1� j
TST

1� j
� 1

� �
: (45)

For non-interacting colloids and without colloid-internal
degrees of freedom contributing to single-particle thermophor-
esis, we have ST = 1/T, and hence Se B j/(1� j)2. For very dilute
suspensions, the Seebeck coefficient is therefore, as expected,
solely due to single-particle contributions to the colloid’s Soret
coefficient.
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An expression for the macroscopic electric field in the
stationary state is proposed in ref. 57 on the basis of a
Nernst–Planck approach. In this approach the variation of the
Donnan potential as a consequence of the varying colloid
concentration and temperature is not included. In addition,
the heat-of-transfer for the colloids is not accounted for.
A relatively large increase of the Seebeck coefficient is experi-
mentally observed in ref. 60 upon adding colloids to an
electrolyte solution, which might be due to the Donnan electric
field in eqn (40).

There are some studies on thermoelectricity of suspensions
of colloids with added salt which indicate that once colloids
accumulate at the container walls, specific interactions with
the wall lead to a significant chance of the thermoelectric
potential.61,62 The details of such electrode-specific interactions
are as yet unclear.

4 The Soret and thermodiffusion
coefficient

Here, microscopic expressions for the Soret coefficient ST

(defined in eqn (43)) and the thermodiffusion coefficient DT

(see eqn (49)) will be discussed. This allows in principle for a
particle-based evaluation of ST and DT as far as the collective
contributions are concerned. The single-particle contribution
fsingle in eqn (39) for the force requires a separate theoretical
approach for each different type of colloid particles.

In typical closed systems, like for example in cells with
thermalized boundaries, as well as in thermodiffusion forced
Rayleigh scattering (TDFRS) experiments,63,64 the colloid flux
vanishes in the stationary state. A vanishing flux implies a
vanishing force on the colloidal particles. It thus follows from
eqn (39) and (41)–(43) that

ST ¼
1

rc

@pc
@T
þ fsingle þ fint � mT

� �

@pc
@rc
� rcmr

� �
: (46)

The coefficients mr and mT will be specified in terms of the
electrophoretic mobility mel below (see eqn (53)).

Eqn (39) for the force, and hence the above expression for
the Soret coefficient, is valid for any type of geometry of the core
of the colloids, spherical, rod-like, plate-like, or otherwise. For
spherical colloids, for which the theory will compared to
experiments below, a particle-based approach is feasible, based
on the expressions,42,65

pc rc;Tð Þ ¼ rckBT �
2p
3
rc

2

ð1
0

dRR3geqðRÞdVðRÞ
dR

;

fint ¼ 2prc
@

@T

ð1
0

dRR2geqðRÞVðRÞ;
(47)

where V(R) is the pair-interaction potential between the colloids,
and geq(R) is the equilibrium pair-correlation function which
specifies the probability to find two colloids a distance R apart.
The pair-correlation is understood to be evaluated at a local
temperature and colloid concentration.

The transient dynamics in reaching the stationary state is
governed by the phenomenological diffusion equation,

@rcðr; tÞ
@t

¼ �r � Jc ¼ r � Dcrrc þDTrT½ �; (48)

where Dc is collective diffusion coefficient, and DT is the thermo-
diffusion coefficient. Eqn (24) and (39) lead to the following
expressions for these diffusion coefficients,

Dc ¼ Lcc
1

rc

@pc
@rc
� mr

� �
;

DT ¼ Lcc
1

rc

@pc
@T
þ fsingle þ fint � mT

� �
:

(49)

From the well-known expression for the collective diffusion coeffi-
cient of spherical colloids in the absence of thermoelectricity,66–69

it immediately follows that the mobility Lcc is equal to

Lcc = D0rcbH0, (50)

where D0 = kBT/6pZsa is the Stokes–Einstein–Sutherland diffu-
sion coefficient for non-interacting colloids (Zs is the solvent
shear-viscosity), b = 1/kBT, and the hydrodynamic mobility
function is defined as (with k̂ = k/k the unit vector in the
direction of the wave vector k),

H0 ¼
1

Nc
lim
k!0

XNc

i;j¼1
k̂ �Dij

D0
� k̂

� �
exp ik � ri � rj

� �� �* +
0

: (51)

Here, h�i0 denotes the equilibrium average with respect to the
position coordinates {ri|i = 1, 2, . . . Nc} of the colloids, and
the tensors Dij specify hydrodynamic interactions between the
colloids.66–69 Note that H0 is a function of the local colloid
concentration and temperature through the probability density
function with respect to which the average h�i0 in eqn (51) is
taken. We note that a non-zero wave vector k has a significance
in light, X-ray, and neutron scattering experiments, being
related to the wave length and scattering angle.66–69

We note that the expression for the collective diffusion
coefficient is the short-time coefficient, whereas the diffusion
coefficient in eqn (49) is the long-time diffusion coefficient. It is
well-known, however, that the zero-wavevector limit of the
short-time collective diffusion coefficient is essentially equal
to the long-time diffusion coefficient.70–72

The relation between mf in eqn (23) and the electrophoretic
mobility mel is as follows. By definition, v = melE, v being the
field-induced velocity of a colloid. The colloid flux due to that
velocity is Jel = rcv = rcmelE. On the other hand, from eqn (23)
and (24), Jel = LccFel = �LccZemfE, and hence,

mf ¼ �
rc

LccZe
mel ¼ �

1

D0bH0Ze
mel: (52)

The relation between the coefficients mr and mT in eqn (46) for
the Soret coefficient, according to eqn (42) and (52), thus reads
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(using that b = 1/kBT),

mr ¼
mel

D0H0

Zrc
2r0 þ Zrc

1

erc

kBTð Þ2

ð1� jÞ2;

mT ¼ mrð1� jÞrc
T
:

(53)

Well-known expressions for the electrophoretic mobility mel on
the single-particle level in terms of the surface charge Z and the
salt concentration r0 exist. It should be noted, however, that
colloid–colloid interactions give rise to a concentration depen-
dence of the electrophoretic mobility, for which simulation data
are available for particular system parameters (see ref. 73–76 and
references therein).

The above expressions for the Soret coefficient and the
thermodiffusion coefficient allow in principle for a micro-
scopic, particle-based test of the validity of the theory for
spherically shaped colloids.

5 Comparison with experiments

For a detailed comparison of the theory with experiments, a set
of thermophoretic data as a function of the colloid concen-
tration, temperature, and salt concentration is required, pre-
ferably with a characterization of the temperature and salt-
concentration dependence of the pair-interaction potential
(similar to the uncharged colloids in ref. 42). Such data are
unfortunately not available for charged colloids. The most
complete set of thermophoretic data of charged colloids that
allow a comparison to the theory to some extent concerns
micellar sodium dodecyl sulfate (SDS) suspensions.

It is stated in ref. 31 that for the micellar SDS suspensions
under consideration no significant thermoelectric contribu-
tions to experimental Soret coefficients are found, which is in
accordance with the present theory, as shown in Appendix B.

In ref. 12, 30 and 31 the Soret coefficient for SDS micelles is
reported as a function of the NaCl concentration at a fixed
temperature. Here, it is found that 1/ST varies linearly with the
micellar concentration for various NaCl salt concentrations, up
to micellar concentrations of about 20 g dm�3. The slope of
these curves can be determined from eqn (46) for the Soret
coefficient.

First, it follows from eqn (46), by neglecting thermo-
electricity,31 that the single-particle Soret coefficient S0

T is equal to

S0
T ¼

1

T
1þ fsingle

kB

� �
; (54)

so that the Soret coefficient can also be written as,

ST ¼
1

rc

@

@T
pc � rckBTf g þ kBTS

0
T þ fint

� �

@pc
@rc

: (55)

Expanding both the numerator and the denominator to leading
order in concentration, using that pc = kBTrc[1 + B2rc], where

B2 ¼ 2p
ð1
0

dRR2 1� exp �VðRÞ=kBTf g½ �; (56)

is the second virial coefficient, leads to,

ST ¼
S0
T

1þ 2B2rc
1þ rc

TS0
T

B2 þ T
dB2

dT
þ f 0int

kB


 �� �
; (57)

with (see eqn (47)),

f 0int ¼ lim
rc!0

fint

rc
¼ 2p

@

@T

ð1
0

dRR2 exp �VðRÞ=kBTf gVðRÞ; (58)

considering geq(R) = exp{�V(R)/kBT} at low concentrations. The
linear dependence of 1/ST on the micellar SDS concentration that
is found in ref. 12, 30, and 31 suggests that the term in the
numerator involving the curly brackets in eqn (57) is small
compared to unity. Expanding the corresponding term in the
expression for 1/ST up to leading terms in concentration leads to

1

ST
¼ 1

S0
T

1þ krc½ �; (59)

where,

k ¼ 2B2 �
1

TS0
T

B2 þ T
dB2

dT
þ f 0int

kB


 �

� 2B2 þ Dk:

(60)

The coefficient k is not to be confused with the wave vector in
eqn (51).

The term in the curly brackets has not been included in the
data interpretation in ref. 12, 30 and 31. In ref. 12 and 30 a
typical ratio k/2B2 was approximately equal to 2, while in ref. 31
a typical ratio close to 1 was reported.

To obtain numerical values for k, we need values for S0
T, B2,

dB2/dT, and f0
int. Values for S0

T can be directly obtained from
extrapolation of data in ref. 12 and 30 for 1/ST to zero micellar
SDS concentration. The results are given in Fig. 2, for 25 1C at
which the thermophoretic experiments were performed. Values

Fig. 2 TS0
T as a function of the salt concentration in moles NaCl per dm3.

These data are obtained from Fig. 1 in ref. 30 by linear extrapolation. The
ambient temperature is 25 1C. The solid line is a guide to the eye.
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for B2 and dB2/dT can be obtained from independent light
scattering data in ref. 77–79, albeit for a single NaCl concen-
tration of 100 mM. How to obtain the second viral coefficients
B2 in units of nm3 from those reported in ref. 77–79 is
discussed in Appendix C. The resulting second virial coefficient
B2 in units of nm3 is given in Fig. 3 as a function of temperature
for a salt concentration of 100 mM. Independent values for f0

int

are not available. However, the amplitude f0
int can be expressed

in terms of the second virial coefficient up to leading order in
Vel/kBT (with Vel the electric contribution to the pair-interaction
potential), which leads to f0

int/kB = B2 + TdB2/dT, and hence,

Dk
2B2
¼ � 1

TS0
T

1þ T
d lnB2

dT

� �
:

Accepting this estimate, the numerical value of k for 25 1C and
an NaCl concentration of 100 mM can be obtained from Fig. 2
and 3, although numerical errors are quite substantial. From
Fig. 2 it is found, for T = 298 K, that 1/(TS0

T) = 0.071 � 0.015,
and from Fig. 3, Td ln B2/dT = �(6.3 � 2.7). It thus follows that
Dk/2B2 = 0.38 � 0.30. In ref. 12 and 30 it was reported that
Dk/2B2 = 1, with an equally large experimental error, while in
ref. 31 a smaller value was found. The above theoretical
estimate is therefore in agreement with those experiments,
although error margins are quite substantial.

In ref. 32 the Soret coefficient for the same micellar SDS
system is reported as a function of temperature for two NaCl
concentrations (10 and 20 mM), and for two surfactant con-
centrations (10 and 20 g dm�3). As discussed in the Appendix C,
this allows in principle for the determination of numerical
values for k in eqn (60) as a function of temperature for the two
salt concentrations from eqn (59). The necessary independent
information for the temperature- and salt-concentration depen-
dence of the micellar molar mass and critical micellar concen-
tration (cmc) can be found in ref. 77–80. As discussed in

Appendix C, the substantial variation of reported values for
the molar mass and cmc as a function of temperature does not
allow for a (semi-) quantitative comparison. Note the quite
substantial variation of reported data on micellar systems is
also reflected in the variation between B2’s taken from ref. 77–79
as plotted in Fig. 3.

As mentioned above, there are at present no experimental
thermophoresis data available where the colloid concentration,
temperature, and ionic strength are systematically varied,
together with a characterization of the colloids concerning
their size and effective surface charge. Such data would allow
for a quantitative comparison to our theory, similar to that for
uncharged colloids in ref. 42.

6 Summary and conclusions

We present an irreversible thermodynamics analysis of the
thermodiffusion of charged colloids, focussing on the effect
of colloid–colloid interactions. This is an extension of our
earlier work on uncharged colloids.42 The starting points are
the irreversible thermodynamics flux–force relations in eqn (2)
and (3) for the colloids, solvent molecules, and ions. Due to the
relatively fast dynamics of the solvent molecules and ions as
compared to the colloids, the spatially varying solvent and ion
concentrations quasi instantaneously adjust to the relatively
slowly varying colloid’s concentration profile. This allows us to
derive enslavement relations, where the fluxes of solvent mole-
cules and ions are proportional to the colloid flux (see eqn (4)
and (15)), with vanishing J0s;�). This in turn allows reducing the
flux–force relations to the effective one-component colloid flux–
force relation in eqn (19) and (22). Subsequently this leads to
the expression (25) for the force on a single colloid, which
contains the still unknown heat-of-transfer. The Onsager irre-
versible thermodynamics approach does not account for defor-
mation of the electric double layers of the colloids due to the
macroscopic electric field. The corresponding thermoelectro-
phoretic force in eqn (23) is therefore added by hand in eqn (25)
for the total force. After expressing the force on a colloidal
particle in terms of spatial gradients of the colloid pressure (see
eqn (34), an approximate expression for the heat-of-transfer is
derived (see eqn (37)), which contains both single-particle and
collective contributions. The approximation involves neglecting
pure heat conduction (that is, heat conduction in the absence
of colloid migration), which is argued to be a good approxi-
mation due to the relatively large size of the colloids. The total
force in eqn (39) is valid for arbitrary core geometries (sphe-
rical, rod-like, plate-like, etc.) and arbitrary surface charge
density. It consists of a single-particle thermophoretic force, a
term proportional to the spatial gradient of the colloid pres-
sure, a thermoelectrophoretic force, and a thermophoretic
force that we refer to as the thermophoretic interaction force.
In a closed system, the stationary state implies a zero flux and
hence a zero force, which leads to the explicit expression (46)
for the Soret coefficient. An expression for the mobility, valid
for spherical colloids, is then derived, which leads to an explicit

Fig. 3 The second virial coefficient as a function of temperature at a NaCl
concentration of 100 mM obtained from data in ref. 78 (B), ref. 77 (’), and
ref. 79 (K). The solid line is a guide to the eye.
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expression for the thermodiffusion coefficient (see eqn (49)–(51)).
The coefficients mr and mT in the expression (46) for the Soret
coefficient and eqn (49)–(51) for the diffusion coefficients, which
account for the thermoelectrophoretic force, are expressed in
terms of the electrophoretic mobility in eqn (53), for the derivation
of which the expression (44) for the macroscopic electric field is
essential. The colloid–colloid interaction contributions to the
Soret and thermodiffusion coefficients can be expressed in terms
of integrals of the pair-interaction potential and the pair-
interaction function (see eqn (47)), which are valid for spherical
colloids). This allows in principle a particle-based, microscopic
comparison of the theory with experiments.

The main results are summarized in Section 4: the Soret
coefficient is given in eqn (46) (where mr and mT specify the
contributions from electrophoresis, which are given in
eqn (53)), and the collective and thermodiffusion coefficients
are given in eqn (49) and (50) (where H0 is the hydrodynamic
mobility function, which is defined in eqn (51)).

To within the Poisson–Boltzmann approximations that were
made, and assuming enslavement of the ion concentrations, there
is a macroscopic electric field that is given in eqn (44). This
expression for the macroscopic electric field is a necessary input
to quantify the thermoelectrophoretic force in eqn (23). The electric
field is solely due to the spatial variations of the Donnan potential,
which is very similar to the field that exists in an isothermal
diffusion–sedimentation equilibrium for charged colloids.50,51

That the force on a colloid in a temperature gradient is
proportional to spatial gradients of the colloid pressure has
been suggested before in ref. 8, 24 and 29–31, albeit without
further justification and without inclusion of the thermophore-
tic interaction force. The force on a colloid is argued in ref. 27
and 28 to be proportional to gradients of the mean-field
colloid–colloid interaction potential, which resembles the pre-
sent thermophoretic interaction force that originates from the
heat-of-transfer. Forces due to gradients of the colloid pressure
are not included in these latter papers. Moreover, a term
proportional to the concentration derivative of the colloid–
colloid interaction potential appears in ref. 27 and 28 that is
absent within our theory. The theory presented here provides a
systematic approach that leads to the force in eqn (39) that
contains contributions resulting from gradients of the colloid
pressure (like in ref. 8, 24 and 29–31), as well as the gradient of
the colloid–colloid interaction potential as far as its tempera-
ture dependence is concerned (like in ref. 27 and 28, except that
there the concentration derivative of the colloid–colloid inter-
action energy should be omitted).

The colloid pressure pc in eqn (47) should not be confused
with the osmotic pressure P. The colloid pressure is the
contribution to the total suspension pressure originating from
the presence of the colloids in a closed system. The osmotic
pressure on the contrary is the excess pressure of the suspen-
sion with respect to an osmotic reservoir, with a membrane that
is permeable for both solvent molecules and ions. This is most
explicitly seen from the expression P = (rc + r� + r+ � 2rR

�)kBT
for the osmotic pressure at low colloid concentrations,44,45 for
which pc = rckBT.

A comparison of the theory with experiments for uncharged
colloids requires data where the concentration and tempera-
ture are systematically varied ref. 34 and 42. For charged
colloids, where also the ionic strength is varied, are not available.
The only experiments that allow for a comparison to some extent
are those conducted on a micellar sodium dodecyl sulphate (SDS)
system.12,30–32 In these references the inverse Soret coefficient
(without the contribution from the thermophoretic interaction
force) is expanded to leading order in concentration. In that case,
apart from the single-particle contribution, the only unknown
parameter that is left is the second-order virial coefficient origi-
nating from the colloid pressure. For such micellar SDS systems
additional information is necessary, such as the temperature
and concentration dependence of the molar mass and the
critical micellar concentration. The limited available data and
the variation of such data between different publications77–80

unfortunately renders a conclusive quantitative comparison not
feasible. We presented a comparison that indicates that the
thermophoretic interaction force could explain differences
between second-virial coefficients obtained from thermophor-
esis experiments as described above12,30–32 and those obtained
by independent light scattering experiments.77–80

Experiments on well-defined charged colloids where the
colloid concentration, ionic strength, temperature, and possi-
bly the colloid’s charge are systematically varied are required
for a conclusive comparison with the theory. A particle-based
comparison would also provide access to knowledge of the pair-
interaction potential and the pair-correlation function.

The results obtained here for charged colloids are applicable
to other types of colloids as well. The analysis is equally valid in
case there are additional colloid–colloid direct interactions, on
top of the excluded-volume and double-layer interactions, due
to for example, van der Waals attractions and/or an uncharged
polymer brush grafted to the surface of the colloids. Further-
more, for the additional presence of relatively small solutes,
their enslavement can be assumed just as for ions.

The main assumption in our treatment of the ions is conform
those made in the classic Poisson–Boltzmann approach of
charged colloids.41 The ions are assumed to behave as an ideal
gas, and only respond to the (mean) electric field that is generated
by the colloid’s surface charges and the unequal �-ion concentra-
tions within the double layers. This is a crucial assumption for the
formulation of eqn (7), which is one of the equations to obtain the
ion-enslavement relations. This equation is also at the origin of
the expression (40) for the macroscopic electric field. Including
interactions between the ions would be an important general-
ization of the theory towards very high salt concentrations.
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Appendices
A: Derivation of the enslavement relations

First, we rewrite eqn (7), as,

1

rens�
r rens� kBT

1� j

� �
¼ �eE: (61)

Adding the equation for the � ions eliminates the electric field,
and leads to

1

rensþ
r

rensþ kBT

1� j

� �
þ 1

rens�
r rens� kBT

1� j

� �
¼ 0: (62)

Performing the differentiation gives,

kBT

1� j
1

rensþ
rrensþ þ

1

rens�
rrens� þ

2

T
rT þ 2

1� j
rj

� �
¼ 0; (63)

and hence,

r ln rens
+ + r ln rens

� + r ln T2 � r ln(1 � j)2 = 0.
(64)

It thus follows that,

r
rens� ðr; tÞrensþ ðr; tÞT2ðrÞ

½1� jðr; tÞ�2

� �
¼ 0: (65)

As before, the superscript ‘‘ens’’ refers to enslavement. Note
that we consider throughout this paper a time independent,
externally imposed temperature gradient, so that T � T(r) is
independent of time. Since eqn (65) holds for all times, we
also have,

r rens� ðr; tþ dtÞrensþ ðr; tþ dtÞT2ðrÞ
½1� jðr; tþ dtÞ�2

� �
¼ 0; (66)

where dt is an infinitesimally change of the time. During the
time interval (t,t + dt), the colloid concentration profile changes
from rc(r,t) to rc(r,t) + drc(r,t) and the ion concentrations
change from rens

� (r,t) to rens
� (r,t) + drens

� (r,t). Subtracting
eqn (65) and (66) this leads to, up to leading order in the
changes of the concentrations (not denoting the position and
time dependencies for brevity),

r T2

ð1� jÞ2 � rens� drensþ þ rensþ drens� þ 2
rens� rensþ
1� j

dj
� �
 �

¼ 0: (67)

Since linear irreversible thermodynamics assumes from the
outset small spatial gradients, and drens

� and dj are by defini-
tion infinitesimally small differences, products of gradients
with either drens

� or dj can be neglected, so that eqn (67)
leads to

r rens� drensþ þ rensþ drens� þ 2
rens� rensþ
1� j

dj
� �

¼ 0: (68)

The combination within the square brackets is thus a function
of time only. Dividing by rens

� rens
+ and using that j = vcrc

thus gives,

1

rens�
drens� þ

1

rensþ
drensþ þ

2vc

1� j
drc ¼ dFðtÞ; (69)

where dF(t) is the infinitesimally small change of the as yet
unknown function F(t) during the time interval dt. That dF(t) = 0
can be shown as follows. Since drens

� = dt(qrens
� /qt) =

�dtr�Jens
� and similarly drc = �dtr�Jc, while the fluxes are

linear in gradients, eqn (69) can be written as,

r � 1

rens�
Jens� þ

1

rensþ
Jensþ þ

2vc

1� j
Jc

� �
¼ dFðtÞ

dt
; (70)

up to linear order in gradients, where products of two gradients
are neglected. Due to the impermeability of the boundary of the
system (the wall of the sample container) for ions and colloids,
the components of fluxes normal to the boundary vanish.
Therefore, according to Gauss’ integral theorem, the integral
over the volume of the system of the left hand-side of eqn (70)
vanishes. The integral on the right hand-side is equal to (dF(t)/
dt) � V, with V as the volume of the system. It thus follows
F is independent of time, so that dF in eqn (69) vanishes,
and hence,

1

rens�
drens� þ

1

rensþ
drensþ þ

2vc

1� j
drc ¼ 0: (71)

The number-concentration increments dr�,c are directly corre-
lated with their corresponding fluxes. Enslavement implies that
each colloid drags along with it, in the same direction, a propor-
tional amount of positive and negative ions. These amounts of
�-ions that are dragged along with a single colloid correspond to
are specified by eqn (71) as drens

� /drc = �rens
� [2vc/(1 � j)]. Since

the ions are dragged along with the colloids, it follows directly
from eqn (71) that

1

rens�
Jens� þ

1

rensþ
Jensþ ¼ �

2vc

1� j
Jc: (72)

In order to obtain the second enslavement relation, we
calculate r�[esE] from eqn (7) and compare the result to
eqn (8). Subtraction of the eqn (7) for rens

+ and rens
� leads to

the following expression for the electric field,

E ¼ 1

e2 rensþ þ rens�
� 	r rense kBT

1� j

� �
: (73)

Within linear irreversible thermodynamics, products of two
gradients are neglected. Multiplication of eqn (73) with es then
leads to

r � esE½ � ¼ 1

1� j
k�2 r2rense þ

rense

1� j
r2jþ rense

T
r2T

� �
; (74)

where k�1 is the Debye screening length,

k2 ¼ 2e2I

eskBT
; (75)

with I the ionic strength,

I ¼ 1

2
rensþ þ rens�
� �

: (76)

Within the present setting, contrary to the classic Poisson–
Boltzmann theory for single charged colloids, both the Debye
length and the ionic strength are position dependent quantities
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that vary between irreversible thermodynamics volumes and
are thus related to the macroscopically varying ion concentra-
tions. Each term on the right hand-side of eqn (74) is of the
form k�2r2(�), which is the second order gradient contribution
in a Taylor expansion of (�) over a distance equal to the Debye
length k�1. Since the Debye length is of the order of the size of a
colloid, these terms constitute the spatial variation of (�) within
irreversible thermodynamics volume elements. The Onsager
irreversible thermodynamics approach, (�) is assumed constant
within irreversible thermodynamics volume elements which
contain many colloids. The terms on the right hand-side of
eqn (74) are therefore of no significance within the present
irreversible thermodynamics approach. In other words, the
variation of (�) over distances comparable to the size of a single
colloid is negligible as compared to the change of (�) over
distances comparable to the size of irreversible thermody-
namics volume elements. Within the bulk of the system, we
thus find that

rens
+ � rens

� = Zrc, (77)

which implies local electro neutrality to leading order in spatial
gradients. A small change drc thus leads to changes
drens
� equal to

drens
+ � drens

� = Zdrc, (78)

and hence, similarly as discussed just below eqn (71),

Jens
+ � Jens

� = ZJc. (79)

Combining eqn (72) and (79) it is found that,

Jens� ¼ � rens�
rens� þ rensþ

Z �
rens� rensþ

rens� þ rensþ

2vc

1� j

� �
Jc: (80)

According to eqn (1) for the (position dependent) concentration
profiles rens

� that exists under enslavement and the corres-
ponding position dependent concentration r0, together with
the definitions in eqn (11)–(13); this can be rewritten in the
final form given in eqn (10).

We note that the right hand-side of eqn (74) cannot be
neglected in the Poisson equation to describe sample container
wall effects. In an isothermal sedimentation–diffusion equili-
brium, for example, similar contributions lead to thin charged
layers of ions at the sample container walls with an extent of the
order of the Debye length, within which k�1r(�) cannot be
neglected.50 No approximation is made, however, neglecting
these wall effects to correctly describe the electric field within
the bulk of the system (see also the discussion section in
ref. 51).

B: The significance of thermoelectrophoretic forces

An estimate of the significance of thermoelectrophoretic forces
can be made on the basis of data provided in ref. 31 and 77–80:
a E 2.5 nm, Z E 17 (less than the number of monomers due to
physical adsorption of ions), B2 E 8.2 � 10�25 m3, and the
dimensionless electrophoretic mobility ~mel = (6pZsa/e)mel =
3Z/[2(1 + ka)] is equal to 7 (where ka = 2.6). Furthermore,

dB2/dT E�14� 10�27 m3 K, and fsingle/kB = 13 (see eqn (54) and
Fig. 2 for 100 mM salt). To within the second virial approxi-
mation it follows that, for T = 298 K, (1/kBT)(qpc/qrc) E 1 + 24j,
and (1/rckB)(qpc/qT) + fsingle/kB E 14 � 52j. In addition, H0 E 1,
so that, rcmr/kBT E mT/kB E 290j/(2r0vc + 17j). For the 100 mM
salt solution r0vc E 4, so that it follows that, (qpc/qrc)/(rcmr) E
(1 + 24j)(8 + 17j)/290j and (qpc/qT + rcfsingle)/(rcmT) E (14 �
52j)(8 + 17j)/290j. The micellar SDS concentrations corre-
spond to volume fractions 0.002 o j o 0.02, so that 6 o (qpc/
qrc)/(rcmr) o 37 (the 6 for j = 0.02 and 37 for j = 0.002), and
46 o (qpc/qT + rcfsingle)/(rcmT) o 460 (the 460 for j = 0.02 and
46 for j = 0.002). The above lower limit of 6 is most probably
about a factor 2 larger, since the mel decreases with increasing
concentration. Thermoelectric contributions can thus be safely
neglected against those from pressure gradients and single-
particle forces for the micellar SDS system under consideration.

C: Converting experimental second virial coefficients to B2

The experimental determination of the second virial coefficient
and the molar mass M of colloids by means of static light
scattering experiments is based on the following relation
involving the (inverse) Rayleigh ratio R(k - 0), which goes
back to Debye,81

Kc

Rðk! 0Þ ¼
1

M
þ 2Bc; (81)

where K is a constant, c is the colloid concentration in units g
ml�1. Furthermore, B is the second virial coefficient in units ml
mol g�2, which is proportional to the second virial coefficient B2

in eqn (56). To obtain the proportionality constant between B
and B2, it is noted that (see, for example, ref. 69, Section 3.5),

Kc

Rðk! 0Þ ¼
1

M
1þ 2B2rc½ �: (82)

Comparing the two expressions above, and using that rc[#col-
loids per m3] = (NAv/M)106c [g ml�1], leads to,

B2 = (M2/NAv)10�6B, (83)

where B2 is understood to have the unit m3, M is expressed in
units g mol�1, and the unit of B is already mentioned above.
Experimental light scattering data for B are given in Fig. 4.77–79

The necessary temperature and salt-concentration dependence
of the molar mass of SDS micelles, required to convert experi-
mental values for B into B2, are given in Fig. 5 and 6, respec-
tively, where the data are taken from the same references.
These plots are used to generate Fig. 3 for B2 versus temperature
for cs = 100 mM in the main text.

Also note that relation (3a) in ref. 78 implies that the
numerical values for kI in Tables I and II in that reference
(for 25 and 40 1C, respectively) are related to B as kI = 2MB.
Alternatively, B2 can also be obtained from ref. 78 without the
use of their eqn (3a), using the values for kI and the aggregation
numbers m in Tables I and II (with the molecular weight of a
single surfactant equal to M1 = 288 g mol�1), together with the
relation k0I ¼ 2B2 ¼ kI=�v. The specific volume %v of a micelle is
obtained from the data for the radii in Tables III and IV in
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ref. 78, using that %v = [NAv/(mM1)]vc. The thus obtained numer-
ical values for B2 are the two data points } in Fig. 3.

For a given temperature and salt concentration, eqn (59)
predicts that,

k ¼ S
ð1Þ
T � S

ð2Þ
T

rð2ÞSð2ÞT � rð1ÞSð1ÞT

; (84)

where the superscripts refer to two different micellar concen-
trations. Fig. 2 in ref. 32 allows in principle to obtain k as a
function of temperature for the two salt concentrations 10

and 20 mM. To this end, however, the concentration in
units g dm�3 must be converted to the number of colloids rc

per unit volume, for which the molar mass is needed for the
two salt concentrations as a function of temperature. Further-
more, the total surfactant concentration in terms of which
Fig. 2 in ref. 32 is plotted, should be corrected for the cmc to
obtain the concentration of the surfactant in the micellar form.

Without salt, the cmc is equal to (2.30 � 0.15) mg ml�1

within the temperature range of 15–30 1C.83 In ref. 79, for a
NaCl concentration of 100 mM, the cmc concentration of
(0.41 � 0.01) mg ml�1 is also found to be independent of the
temperature within the temperature range of 17–30 1C. One can
therefore safely assume that the cmc is independent of tem-
perature within the temperature range of interest. For 25 1C the
cmc is equal to 1.50 mg ml�1 for a NaCl concentration of
10 mM, and 0.43 mg ml�1 for 100 mM,82 and is found to vary
from 2.65 to 0.53 mg ml�1 for salt concentrations varying from
10 to 100 mM in ref. 77. These data are plotted in Fig. 7, and are
thus taken to be independent of temperature. For the salt
concentrations of 10 and 20 mM it is found from Fig. 7 that
cmc = (1.57 � 0.10) mg ml�1 and (1.35 � 0.10) mg ml�1,
respectively. The molar mass on the contrary is a function of
temperature, as shown in Fig. 5 and 6. For a salt concentration
of 100 mM, the data for the molar mass in Fig. 6 are in quite
good agreement between the varies reported values. For the salt
concentrations of 10 and 20 mM used in the temperature
dependent thermophoretic measurements in ref. 32, however,
there is quite a significant variation between the reported
values for the molar mass. It turns out that this variation leads
to quite large errors in the expression (84) for k, and thus
prevents us from a comparison of the experimental data in
ref. 32 with theory.

Fig. 4 The second virial coefficient B as defined in eqn (81) in units of ml
mol g�2 for a NaCl concentration of cs = 100 mM, as a function of
temperature. The data points K are taken from ref. 79, the points are
from ref. 78, and the point ’ is taken from ref. 77. Note that the definition
of the second virial coefficient kI in eqn (3a) in ref. 78 differs by a factor of
2 M from the definition of the second virial coefficient B in ref. 77 and 79.

Fig. 5 The molar mass of SDS micelles as a function of temperature at a
salt concentration of 100 mM. The data points K are taken from ref. 79,
the two pointsB from ref. 78, and the single point ’ from ref. 77.

Fig. 6 The molar mass as a function of NaCl concentration for two
temperatures. The data points K and J are taken from ref. 78, for 25
and 40 1C, respectively. The points ’ for 25 1C are taken from ref. 77. The
two pointsBare obtained by interpolation of the data in Fig. 5 from ref. 79
to 25 and 40 1C. The points n for 25 1C are from ref. 82. The solid lines are
guides to the eye.
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Elsevier, Amsterdam, 1996.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/2
0/

20
26

 1
:2

3:
27

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00319a


4516 |  Soft Matter, 2025, 21, 4498–4516 This journal is © The Royal Society of Chemistry 2025

70 B. U. Felderhof and J. Vogel, Long-time collective diffusion
coefficient of semidilute suspensions of spherical Brownian
particles, J. Chem. Phys., 1992, 96, 6978.

71 E. Wajnryb, P. Szymczak and B. Cichocki, Brownian dynamics:
divergence of mobility tensor, Phys. A, 2004, 335, 339.
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