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Modeling the role of supramolecular clustering in
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In self-assembled systems, a combination of multiple weak supramolecular interactions is often utilized

to enable strong yet reversible binding. When modeling the behavior of these multivalent interfaces, it is

commonly assumed that binding pairs are independent, i.e., the probability of a pair being bound is

unaffected by the bound state of neighboring pairs. Inspired by recent experimental work, we report

that for a variety of systems this assumption may not hold, leading to the formation of clusters at the

binding interface. Through a series of analytical and numerical models of end-functionalized brushes,

we reveal the role of cluster size on binding thermodynamics, detail how entropic contributions from

polymer chains provide tunable control of cluster size, and provide predictions for cluster size as a

function of system architecture. Investigation of these models yields surprising results: within the

melting window, the enthalpy of binding of multivalent interfaces is predicted to depend only on cluster

size and not on the overall valency of the multivalent system. Moreover, clustering is predicted to be

significant even in systems with only weak dipole and dispersion interactions between neighboring

groups. Combined, this work brings to light the potential impacts of clustering on multivalent self-

assembly, providing theoretical justification for previous experimental observations and paving the way

for future work in this area.

1 Introduction

The term ‘‘multivalent interface’’ can be used to describe any
system involving two objects binding simultaneously at multi-
ple sites via non-covalent interactions. Since first brought to
light by Mammen et al.,1 the majority of studies involving these
interfaces have been in a biological context, where the objects
may be cells,2,3 pathogens,4–6 or nanoparticle therapeutics7–9

and individual binding sites are ligand–receptor pairs. Within
these systems, multivalency is commonly used to increase
binding strength and selectivity while remaining dynamic and
reversible. Pursuit of these same properties on the macroscale
has led to a recent surge in the study of multivalent soft
materials outside of biological contexts, where strong yet
reversible interfaces enable functions including hierarchical
self-assembly10,11 or self-healing capabilities.12–14 While the

size and specificity requirements of biological systems often
limits them to lower valencies, synthetic polymers and grafted
surfaces are not bound by this restraint, leading to obvious but
unanswered questions: is there a limit to multivalency’s effect
on interface strength? And if so, what is this limit and how is it
affected by system architecture?

Evidence of an upper limit to multivalent scaling can be
found in existing biological systems where plateauing of
binding constants can occur at valencies as low as 4.15,16

However, the small size, high curvature, and often restricted
ligand flexibility within these systems suggest that their multi-
valency limit may come from simply steric constraints, i.e., an
inability for additional ligands to access the binding interface.
Synthetic materials do not necessarily face this same con-
straint, however, as multivalent scaffolds comprised of polymer
chains, colloidal nanoparticles, or macroscopic surfaces can be
designed to express hundreds or thousands of supramolecular
groups spread over areas that are significantly larger than an
individual supramolecular binder. For example, Santos et al.
examined the multivalent binding thermodynamics of polymer
brush-coated nanoparticles, where the surface of the nano-
particles permitted the grafting of larger numbers of supramo-
lecular groups.17 Despite each nanoparticle presenting a
valency of approximately 1000 (i.e., each particle is functiona-
lized with up to 1000 supramolecular binding groups), the
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reported enthalpies of binding were only 5–20 times that of an
individual binding pair. This limited enhancement was hypothe-
sized to equal the size of a so-called ‘‘bundle’’: a local clustering
of interacting chain ends where groups within a cluster readily
exchanged with one another. Thus, binding enthalpy was
proposed to be controlled not by the number of clusters or the
overall system valency, but instead by the number of binding
pairs within each cluster. In other words, each cluster acted as an
independent multivalent system. Importantly, it was also shown
that the size of these clusters was also dependent on the system
architecture, specifically the sizes of the nanoparticle core and
the height and grafting density of the polymer brushes, as these
affected the configurational entropy penalty associated with
clustering. Similar clustering behavior has been predicted and
observed for mobile receptors within lipid membranes,18,19 but
this study marked the first experimental observation for immo-
bile tethers in a polymer brush.

Despite the implications of these observations for multivalent
materials design, they remain difficult to probe experimentally,
requiring computational investigation to further explore and
explain the phenomenon. However, the influence of clustering
behavior on multivalent interface strength has not been ade-
quately examined theoretically. In fact, it would be impossible
for clustering to emerge in the majority of existing models of
multivalent interfaces with immobile tethers due to the common
assumption that all ligand–receptor pairs are independent (or in
other words, there are no ligand–ligand or receptor–receptor

interactions).15,20–22 In this work, we show that it is the very
breaking of this assumption that enables the formation of finite-
sized clusters, using both a simple analytical theory and numerical
simulations. Using these interacting-brush models, we demon-
strate that in systems with large overall valencies, the interplay
between chain stretching entropy and end group binding enthalpy
leads to a wide range of accessible cluster sizes across
experimentally-relevant regimes (Fig. 1). We also provide a brief
argument to explain the counterintuitive hypothesis that binding
enthalpies of massively multivalent systems (e.g., those observed in
Santos et al.) can depend only on cluster size, independent of the
number of clusters formed.17 Together, these results provide both
a justification for the formation of clusters and their effects on
interface properties, and establish recommended parameter
spaces for future experimental exploration of these predictions.
Such designs have potential benefit for a broad materials space
where supramolecular chemistry is employed, including
adhesives,23,24 biological diagnostics,25,26 therapeutics,7–9 and
chemical sensing.27,28

2 Results and discussion
2.1 The role of cluster size in melting

In prior work involving ‘‘massively multivalent’’ systems con-
sisting of polymer-brush-grafted nanoparticles that expressed
up to B1000 supramolecular groups per particle scaffold, it was
hypothesized that multivalent binding enthalpy was restricted
by clustering of polymer chain ends. Thus, an upper limit was
theorized to exist for the enthalpy of binding of particle inter-
faces, set by the average number of chain ends within each
cluster.17 In follow-up work, similar trends were observed and
direct control of cluster size between two nanoparticles was
demonstrated using a multivalent polymer.29 In both works,
clustering is rationalized by phenomena that would be expected
in a physical system consisting of complex chemical compo-
nents, namely that molecular species tend to self-segregate
based on types of intermolecular forces. More simply, ‘‘like
dissolves like’’—the supramolecular groups in these systems
possess a large number of polar C–N, C–O, N–H, and O–H
bonds, meaning each binding group has an overall net dipole.
Conversely, both the polymer chains and solvent are comprised
of mostly non-polar C–C and C–H bonds. Thus, lateral interac-
tions between supramolecular groups lead to clustering; simi-
lar behavior would be expected of any multivalent system that is
comprised of both polar and non-polar components where
individual components can self-sort or reorganize (e.g., recep-
tors in lipid membranes,18,19 or elastomeric polymers with
multiple tethered supramolecular groups12,14). While these
prior works provided significant experimental evidence for this
clustering phenomenon, neither proposed a direct reasoning to
explain why the multivalent enthalpy of binding depended
solely the number of chain ends in a cluster and not the total
number of clusters. Here, we provide a brief argument for why
this would be true for enthalpies of binding measured around
the melting temperature, Tm, as is employed in those studies.

Fig. 1 For systems with low multivalency, cluster size Nc is equal to the
total number of binding pairs m. For massively multivalent systems, Nc is
instead dictated by the balance between the entropic penalty of chain
stretching and the enthalpy of binding of end groups, independent of m.
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For a population of multivalent interfaces, here idealized as
two parallel planes each grafted with m end-functionalized
polymer chains, melting does not occur at one specific
temperature.21,30 As interfaces only become unbound once all
binding pairs are broken, melting instead takes place over a
temperature range, or window, in between which the fraction of
interfaces bound, fbound, transitions from 1 to 0. The specific
definition for multivalent melting temperature is a topic of
debate,29–31 but here we chose Tm as the temperature at which
fbound = 0.5. By this definition, Tm is the temperature at which the
concentrations of bound and unbound interfaces are equal, the
binding constant is 1, and DG of binding is 0. For a given
temperature in the melting window, there is a distribution of the
number of bound pairs per interface; explaining the unintuitive
results of cluster size-dependent multivalency requires solving
for the expected value of this distribution for a given fbound and
maximum number of pairs m (overall valency). Importantly, the
probability of all pairs of a given interface being unbound is
equivalent to 1 � fbound. In the simplest case, where binding
pairs are assumed to be independent and each ligand has one
valid binding partner, each pair’s probability of binding must be
equal and can therefore be calculated as ppair = 1� (1� fbound)1/m

(e.g., for m = 4 as shown in Fig. 2a, ppair = 1 � (0.5)1/4 E 16%).
This scenario is a Bernoulli process, predicting an average

formation of mppair pairs per interface. Combining the equations
noted above results in an expected number of pairs formed of m(1
� (1� fbound)1/m). For fbound = 0.5 and large m, this value converges
to exactly ln(2), meaning that at Tm, the average number of pairs
formed is independent of the total valency of the system. In fact,
convergence occurs for any fbound o 1, resulting in an average of
�ln(1 � fbound) pairs. However, the valency at which it converges
increases with increasing fbound (e.g., to reach 90% of the asymp-
tote value, m Z 4 at fbound = 0.5 vs. m Z 22 at fbound = 0.99). This
argument relies on the assumption that each ligand can only
reach and bind to one receptor, however, existing multivalency
models commonly allow ligands to bind to a subset of
receptors,20–22 introducing a combinatorial entropy as described
by Kitov et al.32 These cases, modeled in ESI,† Section S1, also lead
to an average of �ln(1 � fbound) pairs within the melting window.

The above scenarios, which rely on the assumption that
pairs are independent, are unable to capture the behavior
observed in Santos et al. where the number of pairs formed
at Tm is on the order of 5–20.17 To remedy this, the assumption
can be broken, allowing pairs to interact with one another (e.g.,
via self-sorting based on polarity as noted above) and creating
clusters. This clustering behavior skews the distribution
towards forming a number of pairs that are a multiple of an
equilibrium cluster size. States with partially-broken clusters
are short-lived because either (1) loose chain ends will rapidly
reconnect due to enhanced local concentration within the
cluster or (2) complete pair dissociation within the cluster will
occur simultaneously to overcome the rebinding effect.33

Repeating the above logic with clusters as the independent
component will arrive at a probability of cluster formation of
pcluster = 1 � (1 � fbound)Nc/m and an expected number of bound
clusters of (m/Nc)(1 � (1 � fbound)Nc/m) where Nc is the cluster
size and thus m/Nc is the maximum number of clusters
(Fig. 2b). In the limit of large m/Nc, a formation of �ln(1 �
fbound) clusters is thus expected, which is equivalent to �Nc ln(1
� fbound) expected pairs. A similar conclusion to before can now
be made: that at and around Tm, the average number of pairs
formed is approximately independent of system valency,
though now it is also directly proportional to the system’s
equilibrium cluster size.

For systems with different maximum cluster numbers, a
near identical number of clusters are bound on average at and
above Tm (Fig. 3a, blue background). When larger fractions of
supramolecular groups are in a bound state (i.e., at tempera-
tures below Tm), the system valency begins to have an effect, as
its limit on the maximum number of clusters contributes
significantly to the average (Fig. 3a, red background). Multi-
plying the number of clusters by the number of supramolecular
groups per cluster gives the average number of pairs bound
across an entire multivalent system (Fig. 3b). This value is of
significant experimental importance, as it would equal the
multiplicative scaling applied to a monovalent binding
enthalpy to obtain the multivalent binding enthalpy measured
at Tm in the work of Santos et al. and other multivalent

Fig. 2 Probability of binding for independent interface components at Tm. (a) In the case of independent supramolecular binding pairs, the probability of
pair binding is calculated from the total system valency and the definition that 50% of interfaces have all pairs unbound. (b) In the case of independent
clusters, the probability of cluster binding is calculated from the maximum number of clusters, not the total number of pairs.
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nanoparticle studies.17,29 In the valency-independent regime,
two systems with vastly different valencies but identical cluster
size have the same number of bound pairs at a given fbound,

whereas two systems with identical valencies have pairs bound
proportional to their cluster size. It is worth noting that the
absolute temperatures of these regimes are outside the scope of
this work, and are functions of system valency.21

This result, that cluster size (and not overall valency) controls
the number of bound pairs at Tm, provides a theoretical justifica-
tion for the behavior observed by Santos et al. and their proposed
equation for multivalent binding enthalpy in a system assembled
with binary A–B supramolecular pairs:17 DHbind = NcDHAB,
although with an added prefactor of ln(2). Notably, this relation
includes only the enthalpy of the monovalent across-brush inter-
actions (A–B), and not the ‘‘like-interactions’’ between chain ends
on the same brush (A–A/B–B). While these ‘‘intra-brush’’ interac-
tions are the driving force for cluster formation and control cluster
size (vide infra), their direct contribution towards the interface
binding strength is non-obvious, but likely significantly smaller
than those ‘‘inter-brush’’. In relation to the overall interfacial free
energy, cluster size also contributes to the entropy of binding,
setting topological constraints on the combinatorial entropy often
attributed to multivalent binding enhancement.29,32 Derived and
further discussed in ESI,† Section S2, this value (found to be
proportional to ln(Nc!) under the assumption of unconstrained
pairing within a cluster) is similarly independent of m for large m/
Nc. Combining these enthalpic and entropic contributions, the
overall interfacial free energy would be expected to have a strong
dependence on Nc, demonstrating a need to model cluster size as a
function of interface design parameters.

Backed by experimental observations, this theory has sig-
nificant ramifications for supramolecular materials, where
systems are often melted and slowly cooled to encourage
assembly into thermodynamic products.34 Cluster size would
directly control the thermodynamics in this regime, and thus
the ability for components to reorganize, the ease of avoiding
kinetic traps, and impacting resulting structure.17

2.2 Theoretical cluster size

Given the importance of cluster size in determining the thermo-
dynamics of multivalent systems such as those described above,

Fig. 3 Average interface behavior in the vicinity of Tm. (a) At and above Tm

(blue background, lower fbound), the average number of clusters bound is
approximately independent of the maximum number of clusters. Below Tm

(red background, higher fbound), the dependence reemerges. (b) For
systems with vastly different overall valencies, the same number of bound
pairs would be expected at and above Tm.

Fig. 4 Schematic and cluster size predictions of the analytical theories. (a) Chains are described by a number of Kuhn segments N with a corresponding
Kuhn length b and grafting density s. Chain ends interact within a brush with energy eAA = eBB or across the interface with energy eAB. (b) Plotted against
system parameters with f = 0.001, the infinite chain model produces a narrow window of controlled cluster size. (c) The short chain theory (N = 10)
predicts a smooth increase in cluster size over all parameter space.
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advancing understanding of these massively multivalent sys-
tems requires analysis of how different parameters affect the
sizes of these clusters. In the simplest case, one would expect
cluster size to be a function of chain length N, grafting density s
(the number of chains grafted per unit area), interaction
strength between like and opposing chain ends (eAA = eBB and
eAB, respectively), and system temperature T (Fig. 4a). N and s
provide geometric constraints on how much configurational
entropy is lost when polymer chain ends are confined to the
limited volume of a cluster, and the e values correspond to the
enthalpic benefit gained from forming supramolecular bonds
and clusters. These enthalpic and entropic contributions, with
their relative weight controlled by T, compete to result in an
equilibrium cluster size Nc. Previous work has modeled cluster-
ing in a similar telechelic brush system, but did not solve for
this value.35

Several important assumptions are required to make the
derivation of Nc analytically tractable. Namely, the multivalent
interface will be considered infinite and planar, grafted on both
sides by end-functionalized, monodisperse brushes. Such an
approximation is expected to apply in the case of nanoparticle
binding for low curvature systems, where one can approximate
the brush locally as planar. For large pairwise interaction
strength across the interface, eAB, it can be assumed that each
A-functionalized chain end will always form a pair with a B-
functionalized chain end, with these A–B pairs resting in a thin
contact interface between the two brushes. Under this assump-
tion of ‘‘fixed pairs’’, which applies to the eAB of B12kBT found
by Santos et al.,17 the problem becomes analogous to that of a
single self-interacting brush experiencing twice the interaction
energy per chain end. This assumption can be both justified
and relaxed by a concomitant Monte Carlo model (vide infra),
but is useful for initial analysis.

Before including the effects of chain stretching on cluster
size, the limiting case of N - N was examined, which is
analogous to that of clustering in a 2D gas and can be
compared to models of clustering of receptors within lipid
membranes.18 Mapping the problem onto the Fisher droplet
model for 2D gases,36,37 the following set of equations were
obtained for average cluster size (derived in ESI,† Section S3),

Nch i ¼

P1
Nc¼1

yNcx
ffiffiffiffiffi
Nc
p .

Nc

P1
Nc¼1

yNcx
ffiffiffiffiffi
Nc
p �

Nc
2

(1)

x ¼ exp
�pf e
kBT

� �
(2)

y ¼ �s exp
�e
kBT

� �
(3)

where e is the total interaction energy contribution for a chain
end in the center of a cluster (a multiple of the pairwise eAA) and
f r 1 is the fraction of this energy lost for a chain end on the
edge of a cluster. Here, �s = a2s represents the area fraction of
chain end groups at the interface, where a2 is the area occupied

by a chain end. This result concludes that Nc E 1 for the
majority of experimentally relevant system parameters, and
that Nc diverges sharply at some critical parameter value
(Fig. 4b). Similar behavior was observed in Monte Carlo simula-
tions for the clustering of mobile cell surface receptors.18

However, this behavior contradicts the experimental observa-
tions, where Nc was a smoothly varied function of system
parameters such as nanoparticle curvature (which affects �s)
and chain length.17 This gradual behavior can be reproduced
through reintroduction of finite chain length and its corres-
ponding entropic contributions.

In the case of short-chain brushes, the deviation of the chain
end from its equilibrium position (above the tether point) will
lead to an entropic penalty stemming from the reduction of
chain conformational entropy. At a fixed value of �s, increasing
the number of supramolecular groups per cluster results in
increasingly larger entropic penalties per polymer chain, as
added chains would have to stretch further distances to reach
the cluster. Thus, to calculate the total entropic penalty of a
cluster, the contribution from each chain end would be
summed, with these individual contributions being a function
of the distance between the chain end’s equilibrium position
and the cluster center, r (assuming the physical size of the
cluster is negligible). If Nc is large, a continuous representation
of the grafted surface can be used, where the number of
grafting points located in the (r,r + dr) interval equals to
2prdr � �s/a2. Assuming only the closest chain ends are
recruited to a cluster, the radius of the area that contains all
chains forming the cluster (denoted as L) satisfies the normal-

ization condition: Nc ¼
Ð L
0 2pr�sdr

�
a2; therefore, L = a(Nc/(p�s))1/2.

This continuous representation is valid if L is much greater than
the distance between grafting points, which is satisfied when
Nc

1/2
c 1. Each chain grafted at the distance rA [0,L] from the

cluster loses conformational entropy TDS(r) = �1.5kBTr2/(Nb2),
where b is the Kuhn segment length, and N is the number
of Kuhn segments. The total loss of conformational entropy
of all Nc chains forming a cluster equals to TDSc ¼
�
Ð L
0 1:5kBTr

2
�

Nb2
� �

� 2pr�sdr
�
a2 ¼ �3kBTa2Nc

2
�

4p�sNb2
� �

. As
clusters are viewed as a dynamic fluid in which chain ends are
mobile and can exchange binding partners, we neglect entropic
contributions from local chain stretching to accommodate the
positioning of pairs within a cluster.

The total interaction potential energy of a cluster, Uc, which
counterbalances the entropic penalty of clustering, is calcu-
lated in a similar method to the infinite chain case. Namely,
each chain end contributes energy e if it is in the interior of the
cluster and energy (1 � f)e if it is at the cluster edge. Thus, Uc =
Nce � fepNc

1/2 and the total free energy of a cluster Fc can be
written as:

Fc � Nce� f epNc
1=2 þ 3kBTa

2Nc
2

4p�sNb2
(4)

To find the equilibrium cluster size, Fc is minimized with
respect to Nc; discussion of why this calculation can be done
here but not in the Fisher model is found in ESI,† Section S4. As
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this expression was derived in the Nc
1/2

c 1 approximation, the
�fepNc

1/2 term is subdominant with respect to other terms and
can be neglected during minimization. With this simplifica-
tion, the resulting expression for the equilibrium Nc can there-
fore be written as:

Nc ¼
2p
3

jej
kBT

�s
a2
Nb2 (5)

Eqn (5) predicts Nc behavior that agrees with intuition.
Namely, if the interaction strength between end groups |e| is
increased, the chains can overcome a larger entropic penalty of
stretching to participate in cluster formation, which in turn
increases the cluster size. Increasing �s and chain length N also
increases Nc, with the former increasing the number of chains
that can access the cluster without significant stretching and
the latter decreasing the entropy of stretching per chain. On the
other hand, Nc decreases with increasing temperature T as this
leads to a larger weight of the entropic term.

Of significant note is that the short chain theory predicts a
gradual change in Nc with all system variables, in contrast to
the discontinuous behavior in the infinite chain case (Fig. 4c).
Moreover, the Nc values predicted in the range of experimental
parameters are exactly on the order of those observed in the
nanoparticle self-assembly experiments.17 This confirms that
the clustering behavior in end-functionalized brushes is inher-
ently different than that observed for mobile tethers, and that it
is exactly the finite chain length that leads to the smooth
behavior of Nc.

This short chain theory of cluster size makes a number of
assumptions that idealize multivalent brush interfaces in pur-
suit of a simple model. While some of these assumptions,
including disk-like cluster shape and negligible combinatorial
entropy effects, can be relaxed with minimal or no change to
the resulting power laws (see ESI,† Section S5), limits towards
its applicability still remain. Notably, regions with low cluster
size, dense chain grafting (�s1/2 t 1), and moderately long
chains remain inaccessible. Thus, to further extend the applic-
ability of this concept to a broader range of systems, a Monte
Carlo model was developed to explore a wider range of Nc

values, system parameters, and A–B pairing strengths.

2.3 Monte Carlo simulations

The algorithm and parameters for the Monte Carlo model
developed here are fully detailed in ESI,† Section S6. Briefly,
the interface between the two brushes is discretized into a 2 �
Ngrid � Ngrid grid, where A and B chain ends each occupy one
Ngrid � Ngrid plane (Fig. 5a). In each iteration, diffusion of the
chain ends is modeled by permitting a randomly chosen chain
end to move to a neighboring cell, with the probability of
moving to state k given by the equation:

PðkÞ ¼ e�bEkP
j

e�bEj
(6)

where Ei is the energy level of a given state i. P(k) is calculated as
a summation taken over the chain end’s eight neighboring cells
plus the current state, with the probability of moving to an
already occupied cell set at zero to prevent double occupancy of
any cell. Ei is calculated from two components, a square-well
attraction between neighboring chain ends and a Gaussian
chain stretching energy:

e�bEi ¼ exp � NAAeAA þNBBeBB þNABeAB

kBT
þ 3DR2

2Nb2

� 	� �
(7)

where NAA/BB/AB and e values represent the multiplicities
and energies, respectively, of pairwise interactions between
neighboring chains ends, and DR2 is the squared distance to
the corresponding equilibrium chain end position above the
tether point. For a given chain end, NAA/BB and NAB have
maximum values of 8 and 1, respectively. The former represents
nonspecific dispersion and/or dipole–dipole interactions, and
the latter represents a monovalent hydrogen bonding inter-
action. N and T are directly analogous to their analytical counter-
parts, s is the number of grafted chains per nm2 (equal to �s/a2),
and 4eAA = 4eBB = e (as each chain end contributes half to a
maximum of eight interactions with neighbors). As the system is
allowed to evolve, the model converges on an equilibrium cluster
size, the scaling of which can be easily studied due to the simple
nature and low computational cost of the simulation. Both self-
interacting brushes (NBB = NAB = 0) and pairs of interacting brushes
can be studied (Fig. 5b and Videos S1–S3, Section S7, ESI†).

Fig. 5 Monte Carlo moves, resulting clustering behavior, and extraction of cluster size. (a) In a given MC move, a chain end, represented by a filled grid
cell, moves one cell over in its plane, resulting in an entropic penalty for chain stretching and an enthalpic payoff for interacting with other chain ends. (b)
and (c) Representative snapshots of clustering behavior in a single self-interacting brush (b) and two interacting brushes (c). (d) Distributions of cluster
sizes for a single brush (N = 10 kDa, s = 0.0625 chains per nm2) with varying self-interaction strengths. Clustering is indicated by a Gaussian distribution
about the average cluster size.
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The algorithm varies slightly between the two cases, discussed
further in ESI,† Section S6.

To quantify the behavior within a given simulation, cluster
sizes (via 8-connectivity) are collected cumulatively throughout
an equilibrated duration (on the order of 1 � 108 MC moves) to
produce a cluster size distribution (Fig. 5d for a series of
increasing self-interaction strengths within an A-functionalized
brush). Two distinct regions are observed in the case of signifi-
cant clustering, the first being an exponential decay representing
the thermal motion of chain ends when diffusing between
clusters, and the second being a Gaussian distribution centered
around the average cluster size. To eliminate the contribution of
thermal motion (an artifact exacerbated by confining chain ends
to a two-dimensional interface), the ensemble average maximum
cluster size hNc,maxi was used to evaluate the evolution of these
systems over time. This value was chosen over the mean of the
Gaussian distribution as it was demonstrated to follow the same
scaling laws while being more robust to noise (ESI,† Section S8).

For the majority of simulations, the single self-interaction
brush model was utilized, as it could both be directly compared
to the analytical theory and was easier to equilibrate than the
two-brush model. Results confirmed that the single-brush case
is indeed analogous to a two-brush case where it is assumed
that all A–B pairs are permanent under the timescale being
considered (ESI,† Section 10): cluster sizes for the two-brush
model were approximately equivalent to the cluster sizes in a
one-brush model with twice the self-interaction strength eAA

(Fig. S6, ESI†). Cluster size relations to system variables eAA, N,
s, and T were examined (Fig. 6), with input parameters chosen
to span experimentally-relevant values including those reported
for cell surface ligands38 and multivalent nanoparticles.17 The
value of eAA is on the order of 1kBT to represent non-specific
binding between chain ends (Keesom, Debye, and London
forces).39 Each data point represents the average maximum

cluster size after an equilibration period with error bars repre-
senting one standard deviation above and below the mean. The
upper limit for each variable examined was determined based
on the limits of feasible simulation times.

Based on the prior results from the analytical theory, linear
scaling with eAA, N, and s would be expected (eqn (5)). For
variations in eAA this is indeed observed, though this scaling
only applies past a minimum strength of self-interaction that
varies as a function of chain length (Fig. 6a). Based on the
model structure, we hypothesized this minimum should occur
at eAA = �3kBT/4Nb2s, as this is the point where the interaction
strength is on the order of the stretching entropy penalty for the
meeting of two neighboring chains. Following this hypothesis,
clustering would become significant at |eAA| values of roughly
0.74kBT and 0.37kBT for N = 5 and 10 kDa, respectively, which
indeed match fairly closely to the onset of linear behavior
(Fig. 6a). For interaction strengths below this minimum, the
cluster size asymptotically approaches that of encounter fre-
quency in random chain end diffusion (and is exactly equal in
the absence of lateral interactions), an artifact of the manner in
which the model is designed.

The expected linear scaling is also observed for s (Fig. 6b).
However, variations in N resulted in a lower scaling of B2/3
(Fig. 6c). We attribute this discrepancy primarily to discretiza-
tion effects, as the change in the entropic stretching term on
moving between grid cells is large and discontinuous, poten-
tially excluding the true equilibrium position. We would expect
that for a large chain or a finer grid, the scaling with N would
approach 1, though modifying the model in this manner would
be computationally infeasible given the larger number of
calculations required. Regardless, these discretization effects
would not impact the scaling of other variables with fixed N, as
they, along with the entropic spring constant, would be fixed.
Temperature, for instance, has the predicted scaling of T�1 for

Fig. 6 Cluster sizes predicted by MC simulation. Simulation parameters are eAA = �1kBT, N = 10, b = 1.8 nm, s = 0.0625 chains per nm2, and T = 300 K
unless varied. Short chain analytical theory results are reported as dashed lines. (a) Clustering does not become significant until after a threshold eAA, after
which it approaches linear behavior as the enthalpy of binding overcomes the entropy penalty of stretching. (b) Increasing grafting density increases the
number of chain ends that can access a cluster, increasing cluster size almost linearly. (c) Increasing chain length lowers the entropy penalty of stretching,
increasing cluster size with slightly slower than the linear behavior.
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constant N = 10 kDa (Fig. S5, ESI†). Slight inconsistencies aside,
the MC model matches the analytical theory surprisingly well,
being almost exact in magnitude at low N, though we attribute
this primarily to serendipity and would rather emphasize the
matching of scaling relations. This agreement suggests that the
analytical model accurately represents the underlying entropic
and enthalpic contributions towards clustering and can be
employed to estimate experimental cluster sizes.

Together, these results predict that a broad range of cluster
sizes are accessible within experimentally-relevant regimes,
aligning with the magnitudes observed in experiments.17 While
in practice some parameters are more straightforward to vary
than others, the relatively smooth nature of these relations
indicates that cluster size is a well-behaved, tunable quantity.
Of particular note is that temperature changes are expected to
only have a mild impact on cluster size. In the case of melting
and dissociation studies of multivalent complexes, this implies
that cluster formation is still significant throughout the melt-
ing window, and thus would significantly affect DH of binding
as argued above. Similarly, clustering would exist in and
potentially impact the association/dissociation constants of
multivalent systems at room or physiological temperatures.

Moving away from the one brush analogy and outside the
high eAB regime enables exploration of systems not immediately
applicable to the developed analytical theory (though these
studies require slight changes in cluster quantification, see
ESI,† Section S11). These explorations include systems not
explicitly designed for strong A–B interactions, unlike those
studied by Santos et al.17 which are on the order of 10kBT. This
low- to intermediate-eAB regime is of particular interest for drug
delivery systems, as lowering ligand–receptor bond strength
can increase binding selectivity to receptor density, a critical
targeting parameter.40,41 Weaker interactions also encourage
faster exchange between end groups, which in turn helps self-
assembled systems avoid kinetically trapped states.42

Using the two brush model, cluster size can be plotted versus
eAB strength for varying eAA = eBB values (Fig. 7). For eAB on the
same magnitude as eAA, there is minimal impact on cluster size
(Fig. 7a). It is only once eAB increases beyond 1kBT that a
significant change in cluster size begins (Fig. 7b); past this point,
cluster size increases asymptotically to approximately 1.5 times its
original value. It is important to note that this logistic behavior is
not observed with variations in eAA. This difference arises from the
monovalent nature of A–B interactions in the MC simulation, as
once eAB is large enough for these pairs to be ‘‘permanent’’ relative
to the lateral A–A and B–B interactions, further increases have
little effect. In this regime of high eAB, a chain end must remain
paired when leaving the cluster, and thus must break twice the
lateral interactions as when leaving independently, leading to
larger cluster sizes. These limiting effects are particularly notable
for experimental systems such as those used by Santos and
coworkers,17 since it indicates that designing systems with
increasing monovalent binding strength will asymptotically
approach a maximum multivalency, even though these systems’
overall binding strengths at Tm would still increase multiplica-
tively. If A–B interactions were instead modeled as nonspecific (as
in the case of general brushes modeled in prior systems35,39), this
asymptote would no longer be present. While not required for
clustering, A–B interactions promote the formation of larger
clusters and directly impact experimental enthalpies of binding,
thus providing another lever for tuning interface behavior and
binding strength.

3. Conclusions

Ligand and receptor clustering, as a phenomenon that affects
the behavior and strength of multivalent interfaces, has been
overlooked in prior examples of supramolecular multivalency
under the assumption that ligand–receptor pairs behave inde-
pendently. Here, we provide an argument that clustering plays a
direct role in the binding strength of these systems, with cluster
size contributing to (and in the melting window often becom-
ing the sole contributor towards) the multivalent enthalpy of
binding. Additionally, through both analytical and numerical
models, we reveal the role of chain stretching entropy in
controlling cluster size and show that non-negligible cluster
sizes are achieved even in systems with minimal dispersion or

Fig. 7 Cluster size in two-brush interface (N = 10 kDa, s = 0.0625 chains
per nm2) as a function of interaction strength between their chain ends,
eAB. Cluster size is reported for chain ends of an individual face. (a) At lower
eAB values cluster size is almost constant, only increasing by one standard
deviation at most. (b) eAB only has a larger effect past 1kBT, where it causes
an approximate 50% increase in cluster size before leveling off.
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dipole interactions between end groups. These models provide
predictions for cluster sizes over a range of experimentally-
relevant system parameters including chain length and grafting
density, and predict cluster sizes that match closely in magnitude
with experiments. Combined, these results deliver a missing
theoretical justification for clustering behavior and its resulting
effects on the thermodynamics of binding observed in previous
experimental systems.17,29 Armed with these relations, future
experimental work will have finer control over interface behavior,
enabling precise control of melting behavior in self-assembled
systems and their underlying thermodynamics.

For future theoretical work, we envision extensions of these
models into more complicated systems with fewer simplifica-
tions. For instance, the assumption of perfectly Gaussian chain
behavior could be relaxed, with a more accurate consideration
of solvent effects leading to an improved estimate of the
prefactor in eqn (5) and multiple power law regimes. Similarly,
implementing curvature effects and capability for imperfect
A–B pairing to the theoretical model could lead to improved
numerical estimates for the cluster size in the case of brush-
coated nanoparticle assemblies. Radical augmentations such as
capabilities for out-of-plane motion or kinetic effects could also
be explored, with clustering’s role on binding dynamics outside
the melting window providing applicability for a vast number of
systems operating at physiological and room temperature.
Extensions could also be made into electrostatic interactions,
whose long-range character and additional repulsive interac-
tions would lead to unique and non-obvious ligand distribu-
tions at the interface.

Author contributions

All authors were involved in the conception of this research. NS
and MY developed the probabilistic theory in the melting
window; AP and AAK developed the analytical brush theory;
NS wrote the Monte Carlo simulations and JS implemented
them on supercomputing resources. NS, AP, and JS wrote the
manuscript and all authors edited and reviewed it.

Data availability

MATLAB code for Monte Carlo simulations is available at
https://github.com/nsbalbi/cluster-mc.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

NS acknowledges support from a National Science Foundation
Graduate Research Fellowship under Grant No. 2141064.
This work was supported with funding from the National
Science Foundation (Macromolecular, Supramolecular, and
Nanochemistry, Award CHE-2304909). It was also supported

by funding from the Department of the Navy, Office of Naval
Research, under ONR Award N00014-22-1-2148. AP and AAK
acknowledge the support by the National Science Foundation
through award number DMREF 2118678. The authors thank
the MIT SuperCloud and Lincoln Laboratory Supercomputing
Center for providing HPC resources that have contributed to
the research results reported within this paper.

Notes and references

1 M. Mammen, S.-K. Choi and G. M. Whitesides, Angew.
Chem., Int. Ed., 1998, 37, 2754–2794.

2 D. Morzy and M. Bastings, Angew. Chem., 2022, 134, e202114167.
3 X. Liu, H. Yan, Y. Liu and Y. Chang, Small, 2011, 7, 1673–1682.
4 S. Bhatia, L. C. Camacho and R. Haag, J. Am. Chem. Soc.,

2016, 138, 8654–8666.
5 S. Liese and R. R. Netz, ACS Nano, 2018, 12, 4140–4147.
6 N. J. Overeem, P. H. E. Hamming, O. C. Grant, D. Di Iorio,

M. Tieke, M. C. Bertolino, Z. Li, G. Vos, R. P. de Vries,
R. J. Woods, N. B. Tito, G.-J. P. H. Boons, E. van der Vries
and J. Huskens, ACS Cent. Sci., 2020, 6, 2311–2318.

7 S. Hong, P. R. Leroueil, I. J. Majoros, B. G. Orr, J. R. Baker
and M. M. Banaszak Holl, Chem. Biol., 2007, 14, 107–115.

8 S. Angioletti-Uberti, npj Comput. Mater., 2017, 3, 48.
9 M.-H. Li, S. K. Choi, P. R. Leroueil and J. R. Baker, ACS Nano,

2014, 8, 5600–5609.
10 R. L. Li, C. J. Thrasher, T. Hueckel and R. J. Macfarlane, Acc.

Mater. Res., 2022, 3, 1248–1259.
11 P. J. Santos, P. A. Gabrys, L. Z. Zornberg, M. S. Lee and

R. J. Macfarlane, Nature, 2021, 591, 586–591.
12 H. W. Ooi, J. M. M. Kocken, F. L. C. Morgan, A. Malheiro,

B. Zoetebier, M. Karperien, P. A. Wieringa, P. J. Dijkstra,
L. Moroni and M. B. Baker, BioMacromol., 2020, 21,
2208–2217.

13 G. A. Williams, R. Ishige, O. R. Cromwell, J. Chung,
A. Takahara and Z. Guan, Adv. Mater., 2015, 27, 3934–3941.

14 L. Zou, A. S. Braegelman and M. J. Webber, ACS Appl. Mater.
Interfaces, 2019, 11, 5695–5700.

15 K. C. Tjandra and P. Thordarson, Bioconjugate Chem., 2019,
30, 503–514.

16 J. Wan, J. X. Huang, I. Vetter, M. Mobli, J. Lawson, H.-S. Tae,
N. Abraham, B. Paul, M. A. Cooper, D. J. Adams, R. J. Lewis
and P. F. Alewood, J. Am. Chem. Soc., 2015, 137, 3209–3212.

17 P. J. Santos, Z. Cao, J. Zhang, A. Alexander-Katz and
R. J. Macfarlane, J. Am. Chem. Soc., 2019, 141, 14624–14632.

18 G. M. Fricke and J. L. Thomas, Biophys. Chem., 2006, 119,
205–211.

19 D. Lingwood and K. Simons, Science, 2010, 327, 46–50.
20 J. Huskens, A. Mulder, T. Auletta, C. A. Nijhuis,

M. J. W. Ludden and D. N. Reinhoudt, J. Am. Chem. Soc.,
2004, 126, 6784–6797.

21 E. W. Gehrels, W. B. Rogers and V. N. Manoharan, Soft
Matter, 2018, 14, 969–984.

22 P. Varilly, S. Angioletti-Uberti, B. M. Mognetti and
D. Frenkel, J. Chem. Phys., 2012, 137, 094108.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 1

/2
3/

20
26

 1
0:

07
:4

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://github.com/nsbalbi/cluster-mc
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00163c


4052 |  Soft Matter, 2025, 21, 4043–4052 This journal is © The Royal Society of Chemistry 2025

23 G. Desroches, Y. Wang, J. Kubiak and R. Macfarlane, ACS
Appl. Mater. Interfaces, 2022, 14, 9579–9586.

24 G. J. Desroches, P. P. Gatenil, K. Nagao and R. J. Macfarlane,
J. Polym. Sci., 2024, 62, 743–752.

25 H. Yoon, E. J. Dell, J. L. Freyer, L. M. Campos and
W.-D. Jang, Polymer, 2014, 55, 453–464.

26 J. Hooper, Y. Liu, D. Budhadev, D. F. Ainaga, N. Hondow, D. Zhou
and Y. Guo, ACS Appl. Mater. Interfaces, 2022, 14, 47385–47396.

27 J. J. Reczek, A. A. Kennedy, B. T. Halbert and A. R. Urbach,
J. Am. Chem. Soc., 2009, 131, 2408–2415.

28 R. de laRica, R. M. Fratila, A. Szarpak, J. Huskens and
A. H. Velders, Angew. Chem., Int. Ed., 2011, 50, 5704–5707.

29 C. J. Thrasher, F. Jia, D. W. Yee, J. M. Kubiak, Y. Wang,
M. S. Lee, M. Onoda, A. J. Hart and R. J. Macfarlane, J. Am.
Chem. Soc., 2024, 146, 11532–11541.

30 D. Y. Lando, A. S. Fridman, C.-L. Chang, I. E. Grigoryan,
E. N. Galyuk, O. N. Murashko, C.-C. Chen and C.-K. Hu,
Anal. Biochem., 2015, 479, 28–36.

31 R. Jin, G. Wu, Z. Li, C. A. Mirkin and G. C. Schatz, J. Am.
Chem. Soc., 2003, 125, 1643–1654.

32 P. I. Kitov and D. R. Bundle, J. Am. Chem. Soc., 2003, 125,
16271–16284.

33 M. Weber, A. Bujotzek and R. Haag, J. Chem. Phys., 2012,
137, 054111.

34 S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand,
G. C. Schatz and C. A. Mirkin, Nature, 2008, 451, 553–556.

35 A. Zilman and S. Safran, Eur. Phys. J. E: Soft Matter Biol.
Phys., 2001, 4, 467–473.

36 M. E. Fisher, Phys. Phys. Fizika, 1967, 3, 255–283.
37 N. Sator, Phys. Rep., 2003, 376, 1–39.
38 C.-Z. Zhang and Z.-G. Wang, Langmuir, 2007, 23,

13024–13039.
39 D. Cao and J. Wu, Langmuir, 2006, 22, 2712–2718.
40 F. J. Martinez-Veracoechea and D. Frenkel, Proc. Natl. Acad.

Sci. U. S. A., 2011, 108, 10963–10968.
41 X. Xia, G. Zhang, M. Pica Ciamarra, Y. Jiao and R. Ni, JACS

Au, 2023, 3, 1385–1391.
42 R. J. Macfarlane, R. V. Thaner, K. A. Brown, J. Zhang, B. Lee,

S. T. Nguyen and C. A. Mirkin, Proc. Natl. Acad. Sci. U. S. A.,
2014, 111, 14995–15000.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 1

/2
3/

20
26

 1
0:

07
:4

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00163c



