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Enhanced collective vibrations in granular materials

Granular particles are known to be more collective than
colloidal particles. To elucidate the underlying mechanism,
we numerically and analytically studied the vibrational
dynamics of model granular particles. We find that the
damping becomes increasingly weaker for softer modes,
which results in the collective vibrations in granular
materials.
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Enhanced collective vibrations in
granular materials
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Granular materials are defined as collections of macroscopic dissipative particles. Although these
systems are ubiquitous in our lives, the nature and the causes of their non-trivial collective dynamics still
remain elusive and have attracted significant interest in non-equilibrium physics. Here, we focus on the
vibrational dynamics of granular materials. While the vibrational dynamics of random packings have been
examined concerning the jamming transition, previous research has overlooked the role of contact
dissipations. We conducted numerical and analytical investigations into the vibrational dynamics of
random packings influenced by the normal dissipative force, which is the simplest model for contact
dissipations. Our findings reveal that the kinetic energy per mode diverges in the low-frequency range,
following the scaling law K; < w;2 with the frequency , indicating that low-frequency modes
experience strong excitation and that the equipartition of energy is violated. Additionally, the spatial
structure factor of the velocity field displays the scaling law S,(q) oc g2 with the wavenumber g, which
signifies that the velocity field has an infinitely long range. We demonstrate that these phenomena arise
from the effects of weaker damping on softer modes, where the particle displacements parallel to the
contacts are minimal in the low-frequency modes, rendering normal dissipation ineffective at damping

rsc.li/soft-matter-journal these modes.

1. Introduction

Granular materials, such as sand and flour, are defined as
collections of macroscopic dissipative particles. While these sys-
tems are ubiquitous in our lives, their dynamics are highly
complex, and many questions remain unanswered from a physics
perspective."” Understanding their dynamics is crucial for engi-
neering and other natural sciences as they provide guidelines for
handling granular materials in industrial processes and also offer
insights into various natural phenomena, such as snow ava-
lanches and the formation of planetary rings.> A key feature of
the dynamics of granular materials is the emergence of collective
behavior.® In dilute systems, granular particles in a free cooling
state tend to form clusters, and the spatial heterogeneity results in
non-trivial energy decay.””® In dense systems, granular particles in
sheared or vibrated states exhibit vortex structures in their velocity
fields, which have been an important research focus.”"” Because
granular materials are dissipative, these macroscopic dynamics

“ Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902,
Japan. E-mail: koyama-shihoril46@g.ecc.u-tokyo.ac.jp,
hideyuki.mizuno@phys.c.u-tokyo.ac.jp, atsushi.ikeda@phys.c.u-tokyo.ac.jp

b Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan.
E-mail: Norihiro.Oyama.vb@mosk.tytlabs.co.jp

¢ Research Center for Complex Systems Biology, Universal Biology Institute, The
University of Tokyo, Tokyo 153-8902, Japan

This journal is © The Royal Society of Chemistry 2025

emerge as non-equilibrium phenomena that respond to external
manipulations of the systems."®

The physics of the jamming transition provides a useful
framework for understanding the complex dynamics of dense
granular materials. Random packings of athermal, frictionless
particles serve as the central model in this area of research."®
This model achieves mechanical stability at a specific density,
known as the jamming transition.’®*® The jamming transition
represents a form of critical phenomenon, where various
physical properties exhibit power laws in relation to the proxi-
mity to the critical density."®***” Among these, the vibrational
dynamics of random packings have been extensively studied.
The vibrational modes of the packings are derived from the
diagonalization of the dynamical matrix, which depends solely
on the mass, inter-particle interactions, and the configurations
of the constituent particles. In crystals, these vibrational modes
manifest as plane waves, and the vibrational density of states
adhere to the notable Debye law D(w) o« »? !, where d denotes
the spatial dimension. In contrast, many vibrational modes of
the random packings are spatially disordered, contributing to
an excess density of states relative to the Debye law. D(w)
exhibits a plateau down to a characteristic frequency that
reveals critical power-law behavior near the jamming transi-
tion. Furthermore, the spatially localized vibrational modes,
referred to as quasi-localized modes, are known to emerge in
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the lowest frequency regime.”®° Importantly, the linear rheo-
logical properties of the packings are dictated by these vibra-
tional modes,*" highlighting the significance of understanding
their vibrational properties.

In parallel to these numerical and theoretical works on vibrational
properties near jamming, the vibrational dynamics of dense granular
materials have been studied experimentally. One method involves
recording the covariance matrix of grain positions and diagonalizing
it to obtain the vibrational modes. This analysis captures collective
vibrations in the system.**** Another method records the time
correlation function of grain velocities and transforms it into the
frequency domain. Through this approach, an increase in low-
frequency vibrations near jamming was observed.>**® However, the
connection between these experimental observations on granular
materials and the above-mentioned understanding of vibrational
modes of random packings remains unclear.***” This arises because
conventional vibrational mode analysis has neglected dissipation,
which is present in experimental granular systems. Dissipation can
alter the amplitude of vibrational mode excitations or even the
vibrational modes themselves. To fully understand the vibrations of
granular materials, it is essential to explicitly incorporate dissipation
into vibrational mode analysis.**?*?°

In this work, we study the vibrational dynamics of a model of
granular materials. We examine random packings of particles
driven by external random forces as the simplest setup. In parti-
cular, we demonstrate the non-trivial roles played by dissipation in
vibrational dynamics by comparing two distinct systems that share
the same setups but the precise implementation of dissipative
forces. The first system is the simplest model for granular materi-
als, in which the effects of inelastic collisions are incorporated via
normal dissipative forces. In the second system, dissipation is
implemented by the Stokes drag force. Although this approach is
well-suited to describing colloidal suspensions, we study it as a
reference system. We solve the linearized equations of motion for
these systems both analytically and numerically. Our findings
indicate that the precise form of the dissipation significantly alters
the vibrational dynamics. Notably, low-frequency vibrations are
markedly amplified and long-wave-length collective motions arise
in the case of the normal dissipative forces, whereas the law of
equipartition of energy is satisfied under the Stokes drag.

This paper is organized as follows. We begin by introducing our
models in Section 2. The simulation methods and physical
observables are also presented in this section. Next, in Section 3,
we analyze the excitations of vibrational modes using the analytical
solutions of the linearized equations of motion. We demonstrate
that the low-frequency modes are strongly excited in the case of
normal dissipative force. In Section 4, we discuss the spatial
properties of the vibrations. In particular, we show that collective
motions arise due to the strong excitation of low-frequency modes.

2. Model and methods
2.1. Model

In this section, we describe our granular models. We consider a
three-dimensional monodisperse system consisting of N
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particles with equal masses m. The system obeys the equation
of motion:

dzi’,'
dr?

m— = FS + FP + F}, 6]
where r; = (r;y, 7, r:;)" is the position of particle 7, and T denotes
transpose operation. The vectors F¢, FP, F¥ denote the con-
servative force, dissipative force, and random force acting on
particle i, respectively.

In our model, the particles interact through the harmonic
potential:*°

Q’ZZ%"(U*V@/‘)@(U*V@J» (2)

where k is the spring constant, ¢ is the particle diameter, r; =
|ry| = |r; — 1;| is the distance between particles i and j, and ©(x)
is the Heaviside step function. Therefore, particles i and j
interact only when they overlap r; < . Then, the conservative
force acting on particle 7 is given by

C _ R
Fi - 6:‘,-' (3)

For the dissipative force, we consider two different models.
One is the normal dissipative force model:

FP = 0, S mal (v~ ). 0

e

0; denotes the set of particles in contact with particle i, and 5, is
the coefficient of the normal dissipative force. v; is the velocity
of particle i and n; = r;/r; is the unit vector along the contact
between particles i and j. Therefore, this dissipative force is
proportional to the relative velocity parallel to the contact. This
is the simplest model of inelastic collisions of granular materials.
The other dissipative force model in our research is the Stokes
drag model:

FD = —NsVis (5)

1

where 5y represents the coefficients of the Stokes drag.
Although this is the simplest model of the dissipation of
colloidal particles immersed in solvent, we study this model
as well, for comparison.

For the external force, we consider the random white noise
satisfying the following property:

<F§(1)E;<T(s)> = 2B3,0(1 — 5)I5, (6)

where B is a parameter that determines the strength of the
white noise, d; is the Kronecker’s delta, o(t) is the Dirac’s delta
function, and I; is the 3 x 3 identity matrix. (-) represents the
average over noise. Note that this work focuses on the random
force for its simplicity. In real granular materials, there is a
wide variety of energy injections, such as vertical vibrations,
shear deformations, and air fluidization. Some of them are
characterized by the specific frequency and the resulting
dynamics can depend on it. To avoid these complications, we
focus on the random force as it has the simplest flat frequency
characteristics.

This journal is © The Royal Society of Chemistry 2025
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2.2. Linearization of the equation of motion

We consider the model at the volume fraction of ¢ ~ 0.74 which
is higher than the jamming density. Our analyses focus on such
a high density system to reveal general features of the vibrations
of jammed granular materials without paying too much atten-
tion to the criticality of the jamming transition. We focus on a
mechanically stable configuration, or in other words, an inher-
ent structure of the model. The position of particle i in the
inherent structure is denoted by R; = (R;, Ry, R)". Hereafter, we
introduce a compact notation of a 3N-dimensional vector like a =
(ai", a,7,.. ., ay")". For example, the positions of particles in the
inherent structure are denoted by R = (R,", R,",..., Ry")".
When the random force is sufficiently weak, the model
behaves as a solid and the particles move only around their
positions in the inherent structure. In this situation, the
prestress (or pressure) keeps the particles in contact with each
other and the interparticle contacts never be broken by random
forces even if the dissipative forces are absent. Hence, we
linearize the equation of motion eqn (1) in terms of the
displacements of the particles, u=r — R, to obtain:

2
m%+F%+Hu=FR, 7)
where I' is the 3N x 3N damping matrix and H is the 3N x 3N
hessian matrix of the potential, which will be given below.

From the definition of the dissipative forces eqn (4) and (5),
the damping matrix I" is composed of the 3 x 3 matrix elements
I'; corresponding to the pairs of particles ¢ and j. More
specifically, the damping matrix for the normal dissipative
force model eqn (4) is given by

l€0;
T = —nmgny (€ ), (8)
0O; (others),

where O; is the 3 x 3 zero matrix. The damping matrix for the
Stokes drag model eqn (5) is given by

{”513 (i =),
ry = ©)
0;  (i#)).

Similarly, the hessian matrix H is composed of 3 x 3 matrix
2

Or; 8r]-T

cles i and j. In general, the element H; depend on both the first

elements H; = corresponding to the pairs of parti-

r=

d)ii

and the second derivative
d}"!']'

derivative of the potential

oy by 0
dri? dry
which is called the ‘“unstressed” approximation. In this
approximation, all the contacts between particles are replaced
by the relaxed springs with the spring constant k. Then the

= k. Here, we employ a simple approximation

This journal is © The Royal Society of Chemistry 2025
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element of the hessian matrix is given by:
k> mymy (i =),
1€d;
Hij = —kngnl;  (j €9y, (10)
05 (others).

In summary, the linearized equation of motion is controlled
by the damping matrix I" and the hessian matrix H. These
matrices are fully determined by the inherent structure. In the
following sections, we solve this equations of motion for the
normal dissipative force model (8) and the Stokes drag model
(9) to discuss the vibrations of granular materials.

2.3. Observables

In this section, we introduce the observables to characterize
the vibrations in our granular model. We first introduce the
eigenequations of the hessian matrix:

He; = e, (11)

where e; is the I-th eigenvector and /; the I-th eigenvalue (I = 1,
2,..., 3N). Physically, 4; describes the effective spring constant
for the mode e;. Accordingly, we introduce the characteristic
frequency of the /-th mode as

A
w) = —.
m

For crystals and structural glasses where the dissipation does not
play important role, these eigenvectors and eigenvalues carry all
the relevant information of the vibrational dynamics of the
system. In particular, thermal agitation excites these modes with
the same energy, which is known as the law of equipartition of
energy. However, in our granular model, the non-trivial dissipa-
tion is present, which may break the law of equipartition.

To quantify the excitations of the modes, we focus on the
kinetic energy associated with each mode. To this end, we
expand the displacement fields using the modes as

3N
u—= E C/el.
=1

Here, C; = eju is the displacement along the /-th mode, and also
C; = dCy/dt is the velocity along the i-th mode. Then the kinetic
energy of the [-th mode is given by

(12)

(13)

K= %m<C,2>. (14)
We calculate X; for our granular models to examine the excita-
tion of each mode.

Next, to quantify the spatial structure of the vibrational
dynamics, we introduce a spatial correlation function of the
velocities of particles:*'

Su(q) = (Wgv_y). (15)

1 X . .
Here, v, = TN >~ v;exp(—iq - R;) is the Fourier transform of the
i=1

velocity field of the system, g is the wave vector, and v; = du,/dt

Soft Matter, 2025, 21, 3957-3964 | 3959
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is the velocity of the particle i. If S,(q) — co in the limit of large
scale ¢ — 0, it means that the spatial structure expands whole
the system.

Finally, to quantify the alignment of the velocities of neigh-
boring particles, we introduce the following parameter:

1 oy,
'Ill' - - u, (16)
Ni 5 villvl

where N; is the number of particles in the set 0;. This parameter
quantifies the tendency of the alignment of velocities of neighboring
particles. If ¥; = 1, particle i moves in the same direction as its
neighboring particles. If ¥; = 0, particle i and its neighboring
particles move in completely random directions.

2.4. Simulation setup

We first obtained the inherent structure of the model in the
same way as ref. 28. The rattler particles which have less than 4
contacting particles were removed iteratively. Starting from the
inherent structures, we performed the molecular dynamics
simulations of the linearized equation of motion eqn (7). We
performed sufficiently long simulations to obtain the steady
state of the system, and then performed product runs where we
calculated the physical quantities defined in Section 2.3. To
calculate the kinetic energies introduced by eqn (14), we
diagonalized the hessian matrix H to obtain the eigenvectors
and the eigenfrequencies. We set the dissipative force para-
meter to 7, =1, = 0.158v/mk which corresponds to typical
restitution coefficient of granular particles ¢ ~ 0.7.*>* The

random force parameter was set to B = 0.000162v/mk3 which
justifies the linear approximation of the equation of motion.
This corresponds to the situation in which the random forces
are vanishingly weak but large enough for macroscopic motion
to be clearly observed.

To integrate the equation of motion, we utilized the DPD-VV
method,** which is an extension of the Velocity-Verlet method
to particle systems with dissipation. The time step of the
simulation was set to At = 0.005\/m—/k. The models with sev-
eral different system sizes are considered: 1000 < N < 512 000.
These system sizes enable us to observe the spatially hetero-
geneous vibrational dynamics. For each system size, we pre-
pared 500 different steady-state configurations for N < 125 000
and 250 configurations for N = 256 000, 512 000. The results are
all averages over these samples. Note that we used the same
inherent structures for both the Stokes drag model and the
normal dissipative force model.

3. Kinetic energy on vibrational mode

In our models, the hessian matrix H and the damping matrix I’
share the same matrix structure. This enables us to solve the
equations of motion of our models. In the following, we
calculate the kinetic energies using the analytical solutions of
the equations of motion.

3960 | Soft Matter, 2025, 21, 3957-3964
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3.1. Stokes drag model

We first focus on the Stokes drag model eqn (9). Since I'e; = e,
in this case, we can expand the equation of motion into each
mode [ (=1, 2,..., 3N) as:

mCi +n,Cr + 4C = f, (17)

where f; is the random force for the /-th mode, defined by

3N
FR =3 fie;. This equation of motion can be solved by the
=1

variation of constants method (see Appendix A). Using this
solution, we obtain the kinetic energy for each mode as:

(18)

Therefore, all the modes are equally excited in the Stokes drag
model. This is reasonable since this model can be seen as colloidal
particles in a solvent, which are in the thermal equilibrium state.

To confirm this result, we performed MD simulations for the
Stokes drag model (see Section 2.4 for details). The obtained
kinetic energy K; are shown against the characteristic fre-
quency w; as the blue symbols in Fig. 1. Clearly, the simulation
result agrees with the theoretical result eqn (18) shown by the
dashed line.

3.2. Normal dissipative force model

Next, we consider the normal dissipative force model eqn (8).
For this case, it is crucial to observe that the hessian matrix
eqn (10) and the damping matrix eqn (8) have the same matrix

structure and they are proportional I = %H. Therefore, the two

matrices share the same eigenvectors and the following

x o’k
10 -
O  stokes
ot normal
theory
10-2¢
L
1073}
1074
102 101 100 y \ﬁ
m
wi

Fig. 1 The kinetic energy for each mode against the characteristic fre-
quency. Symbols express the simulation results and lines represent the
theoretical results egn (18) and (21). Blue symbols are for the Stokes drag
model and red symbols are for the normal dissipative force model. The law
of equipartition of energy is violated for the later case.

This journal is © The Royal Society of Chemistry 2025
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relation holds:
A
=—¢. (19)

This result means that the effective damping coefficient for the
Ith mode is n,A/k. Since /; is the effective spring constant for
the I-th mode, eqn (19) means that the damping becomes
weaker as the mode is softer. This is natural due to the nature
of the normal dissipative force. The hessian matrix eqn (10)
describes the energy cost that comes from the relative displace-
ments parallel to the contacts. If 4; is small, such parallel
displacements are small in the mode I. Since the normal
dissipation damps the relative motions parallel to the contacts,
the effective damping coefficient should be smaller when the
parallel displacements are smaller. This effect, that is weaker
damping for softer mode, is described by eqn (19).

Using eqn (19), the equation of motion can be decomposed
into each mode as:

mC, +n"T/llC./+)»12C1 =i (20)

Compared to the Stokes drag force model eqn (17), the damping
coefficient # is replaced by #,4,/k. We can solve this equation by
the same method, and we obtain the kinetic energy as

__ B _B Kk
2, 0/k 20, mop

K (21)
The law of equipartition of energy is violated, and the low-
frequency vibrations are strongly excited in the normal dissipa-
tive force model. The factor k/mw;> comes from the effect of
weaker damping for softer mode.

To confirm this result, we also performed MD simulations
for the normal dissipative force model. The obtained kinetic
energy KC; are shown as the red symbols in Fig. 1. Clearly, the
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simulation results the theoretical result

eqn (21) well.

reproduce

4. Spatial structure of the velocity field

The previous section showed that the law of equipartition of
energy is violated in the normal dissipative force model and the
low-frequency vibrations are strongly excited due to the effect of
weaker damping for softer modes. In this section, we show that
this effect causes a collective behavior in the velocity field.

First, we use MD simulations to calculate ¥; that quantifies
the similarity in velocities of the neighboring particles. Fig. 2
shows the snapshots of particles colored by the value of ¥;. In
the Stokes drag model, ¥; of each particle is random and there
is no noticeable spatial structure. On the other hand, in the
normal dissipative force model, the particles with larger ¥;
(colored in red) make clusters. This means that the particle
tend to move in the same direction as the neighboring particles
and the collective behavior emerges in the velocity field.

We quantify this collective behavior by calculating the
spatial correlation function of velocities S,(g). Fig. 3 shows
the results. In the Stokes drag model, S,(g) is constant for all
g, which suggests a fully random structure of the velocity field.
This is consistent with the thermal dynamics of this model as
shown in the previous section. By contrast, in the normal
dissipative force model, the correlation function increases
and diverges at ¢ — 0. In particular, the asymptotic behavior
S,(q) oc g > appears in the low-q regime, which suggests the
infinitely long-range correlation of the velocities of particles.

The asymptotic behavior S,(q) cc g~* can be understood in
terms of the effect of weaker damping for softer mode. Here, we
focus on the fact that the eigenmodes of the ‘“unstressed”
hessian matrix H can be approximated well by the plane waves

-0.5

Fig. 2 Order parameter ¥; of the granular systems. Visualization of the spatial structure of the vibrations. Results for N = 16 000 are shown. (a) Stokes
drag model and (b) normal dissipative force model. The color of the particles reflects the value of the order parameter, corresponding to the color bar on

the right.
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Fig. 3 Velocity correlation functions obtained from simulations. (a) Stokes
drag model and (b) normal dissipative force model.

in the low-frequency regime.”® In this approximation, the mode
lis characterized by the wave vector q and the polarization « = L,
Ty, T,, and we write

S ig-r;
C— Cpa, €1 — L]i] e, (22)
where s, is the normalized polarization vector. Then, the

Fourier component of the velocity field can be expressed as v, ~

> C”sq# and the velocity correlation function is obtained as
o

Si(a) =Y (Cood)- (23)
o
This expression should be valid for the low-g regime where the
plane wave approximation works. In the Stokes drag model,
eqn (18) leads to (C,,”) = B/mys. Therefore, we obtain
3B

Sia) =~ (24)

This result explains the simulation data for the Stokes drag
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model very well. In the normal dissipative force model, eqn (21)
leads to (C,,”) = Bk/m®n,w,,”. Within the plane wave approxi-
mation, the frequency follows the dispersion relation wg , = ¢.g,
where ¢;, and ¢r is the longitudinal and transverse sound
velocity, respectively. Then, we obtain

B k 1 2

This result explains the simulation data for the normal dis-
sipative force model where S,(q) diverges as g~> in the low-q
regime.

This calculation shows the effect of weaker damping for
softer mode causes the infinitely long-range velocity correlation
in the normal dissipative force model. This effect causes the
strong excitation for the low-frequency modes as (C/%) oc w; >
In the low-frequency regime, the eigenmodes are approximated
well by the spatially extended plane waves with the dispersion
relation w oc ¢, and then these modes are strongly excited as
(Cq,’) oc g 2. This leads to S,(q) o ¢ >

(25)

5. Conclusion and future works

In the present work, we examined the vibrational dynamics of
random packings of particles agitated by random forces. We
considered two types of models for dissipation: the Stokes drag
model, which is appropriate for colloidal particles immersed in
a solvent, and the normal dissipative force model, which
describes dissipation due to contact between particles and is
suitable for granular materials. By numerically and analytically
solving the linearized equation of motion, we demonstrated
that the kinetic energy per mode diverges in the low-frequency
limit as K o« 2 in the normal dissipative force model. This
sharply contrasts with the Stokes drag model, where the law of
equipartition of energy applies effectively. This violation of the
equipartition law in the normal dissipative force model results
from the weaker damping effects for softer modes. Since the
particle displacements parallel to the contacts are minimal in
the low-frequency modes, normal dissipation is ineffective in
damping these modes. Furthermore, we showed that the spatial
structure factor of the velocity field exhibits the scaling law
Sy(q) oc g~ in the normal dissipative force model, indicating
that the velocity field is infinitely long-ranged. This also relates
to the weaker damping effects for softer modes: low-frequency
plane-wave modes are strongly excited, resulting in the emer-
gence of long-range velocity correlations. These results estab-
lish that contact dissipation significantly alters the vibrational
dynamics of random packings.

Our results suggest that the vibrations in granular materials
are more collective than those in the thermal glass system.
As mentioned in the introduction section, the vibrational
dynamics of granular materials were studied experimentally,
and the collective vibrations along with an increase in low-
frequency modes were observed.**™* It would be interesting
to quantitatively analyze these experimental results based on
those obtained in this work. However, for this purpose, our

This journal is © The Royal Society of Chemistry 2025
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model remains too simplistic. The present study considered
only the normal dissipative force, while in real experiments,
there must be situations where both the normal dissipative
force and the Stokes drag are involved. Besides, the tangential
dissipative force should also be present in granular materials.
To account for this in our model, we need to treat the case
where the damping matrix I" and the hessian matrix H do not
share the same matrix structure. In this case, the vibrational
modes are no longer the eigenvectors of the hessian matrix H.
Furthermore, the dynamics of real-world granular materials are
affected by the friction force arising from the contacts between
particles. Understanding these effects on vibrational dynamics
will be the focus of future studies on granular materials.
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Appendix
A. Derivation of the kinetic energy

In both the Stokes drag model and the normal dissipative force
model, the linearized equations of motion for each mode have
the following form

mC +nC +2C =f, (A1)

where m, n, 4 are constants and fis the random noise satisfying
(f*) = 2B. This Langevin equation can be solved using the
standard method of variation of constants.

We first transform this equation to the matrix form:

d

@ a(t) =0 -a(t) + F(1), (A.2)
where a(t) = (C(£), C(8)", F(t) = (0, f(&)/m)", and
0 1
o- ( ) a3)
—A/m - —n/m
The covariance matrix of F is given by
0 0
(F(t)F'(t)) =2B = ( ) (A.4)
0 2B/m?

Since this is the first order differential equation, the formal
solution can be written as

a(r) = Ji ds e=® . F(s). (A.5)

Because the kinetic energy is given by (C?), we need to evaluate
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the covariance matrix of a. This can be calculated as

! n
(a(na' (1)) = J dsel=90 9 p . o(=)0!

—00

> i

- J dre® 2B, (A.6)
0

where f denotes the conjugate transpose. By diagonalizing @,

the matrix e® and ¢® can be calculated in a lengthy but
straightforward way. The obtained result is

() (co) B/ni 0
woao) = () ) o
() 0 B/my

In the case of the Stokes drag model, the parameter is given
by 1 = ns and then

(<)

’C/ = 1I”I’l<C12> = ﬁ

5 “3 (A.8)

In the case of the normal dissipative force model, the para-
meter is given by = ,4/k and then

| B
lC;:—m C

2 < /2> = Znn)“//k. (Ag)
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