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We investigate the translational motion of rotating colloidal systems at moderate Reynolds numbers
(Re), focusing on particle dimers in snowman-like configurations in three scenarios: (i) two co-rotating
spheres driven by an external field, (i) two counter-rotating spheres driven by an internal torque as a
swimmer, and (iii) a single rotating spinner with a passive sphere for cargo delivery, using hydrodynamic
simulations. In all three cases, the particles are bound together hydrodynamically, and the purely
rotational motion of the spinners produces a net propulsion of the dimers along the axis of rotation
due to symmetry breaking. We demonstrate tunable dynamics, where the propulsion direction of the
co-rotating dimer can be reversed by tuning the aspect ratio and Reynolds number, as well as cargo
transport where a dimer consisting of a single spinner and a passive cargo particle can have a sustained
locomotion due to broken head-to-tail symmetry of the overall flow fields. These findings highlight the
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controlling and optimizing translational motion in colloidal assemblies through rotational degrees of
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1. Introduction

Biological organisms such as bacteria, algae, and spermatozoa
employ specialized propulsion strategies to navigate fluid
environments." At the micro-scale, where the Reynolds number
(Re) is typically very low, these swimmers rely on non-reciprocal
motions,™ such as flagellar beating or ciliary strokes, to achieve
net movement under conditions dominated by viscosity. However,
as the physical size of a swimmer or its speed increases, inertial
effects become significant, leading to fundamentally different
propulsion mechanisms under higher Re conditions.*”

In recent years, growing interest in artificial micro-swimmers
has highlighted the importance of understanding and harnessing
fluid inertial effects.®”® Many synthetic designs aim to replicate or
abstract biological propulsion methods.’ A particularly promis-
ing strategy, in both biological and artificial systems, is to exploit
rotational degrees of freedom for propulsion.'®™® Rotating struc-
tures, such as bacterial flagella or magnetically driven colloids,
can generate pronounced flow fields, especially when operating
in regimes not strictly confined to Re « 1.'*™° Indeed, as the
particle size increases or rotational frequencies become large,
secondary flows arise and enable net motion in relatively simple,
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axisymmetric geometries that would remain stationary under
purely viscous conditions (Re <« 1).**° Specifically, breaking
head-to-tail symmetry along the spinning axis has been shown
to lead to self-propulsion for a co-rotating colloidal snowman
dimer® and slightly asymmetric cylinders,® when inertial flows
are included. Deepening our understanding of these fluid-struc-
ture interactions offers new avenues for micro- and meso-scale
robotics, targeted cargo transport, and biomedical applications.

In this paper, we explore how inertial effects enable propul-
sion in rotating colloids, bridging the gap between the classical
Stokes-limit scenario and the more complex flow regimes at
moderate Reynolds numbers (Re). We begin by validating our
simulation method by examining a single rotating sphere. The
result highlights the transition from purely azimuthal flows at
low Re to a regime where secondary flows become significant
and agree well with theoretical calculations.>" Although a single
spinning sphere remains stationary across all Re due to its
inherent symmetry, it has been demonstrated theoretically and
numerically®® that including an additional sphere of a different
size can induce net motion along the spinning axis and towards
the larger sphere for a Re of up to 12.

We build on this, and consider three distinct configurations:
(i) corotating spheres at Re ~ 0...65, (ii) a snowman configu-
ration of counter-rotating spinners and (iii) a driven sphere and a
passive cargo particle. In all of the three cases, spontaneous
motility is observed to arise from inertial hydrodynamic flows.
Specifically, we show that when the Reynolds number is increased,
the co-rotating dimer can reverse its direction of motion, and move
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towards the smaller sphere. Generally, our findings demonstrate
how the size asymmetry between the spheres and inertial effects
alter the flow field and drive self-propulsion.

By systematically varying the Reynolds number (Re) and geo-
metric parameters, we identify two primary propulsion regimes: at
lower Re, fluid is drawn in from the spinner poles and pulls the
dimer forward. Conversely, at higher Re, increasingly strong jets
emerging from the equatorial region push the spinner ahead. In
summary, this study provides a comprehensive study of how
rotating colloidal systems transition to inertia-dominated propul-
sion. It offers valuable insights for the design and optimization of
future generations of active particle systems capable of operating
across diverse fluidic regimes.

2. Numerical methods and validation

We employ the open-source package “Ludwig”>? to implement the

lattice Boltzmann method (LBM) for simulating the system
dynamics. Fluid-particle interactions are handled using the
bounce-back on links method, ensuring a no-slip boundary con-
dition on the particle surfaces. To prevent particle-particle overlap,
a short-range repulsive force is applied between solid boundaries,
following the approach outlined in relevant ref. 23 and 24. The
cutoff of the repulsion is 0.5Ax, where Ax is the lattice spacing.

All simulations for the spinner-dimer are conducted within a
cubic simulation box of side length L = 20R. In the chosen
simulation units, where the larger spinner has a fixed radius of
R = 8Ax, while the radius of the second spinner is varied to
introduce geometric asymmetry. The fluid density is set to p = 1.

We investigate the system at finite rotational Reynolds
numbers, defined as Re = pR?w/u, which quantifies the ratio
of inertial to viscous forces. Here, w represents the angular
velocity of the spinner, and u denotes the fluid viscosity, which
is adjusted to achieve the desired Re values.

In the Stokes limit (Re « 1), a rotating sphere generates only
azimuthal flow. However, as the Reynolds number increases, a
secondary flow begins to emerge.>**® Due to inertial effects, the
flow converges toward the poles and moves outward near the
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equator. An asymptotic analysis for small Re (Re « 1) has been
derived,"?* yielding:

vo(r) = wr—lfsin ¥ + O(Re?), (1)

vi(r) = —2—23(3 cos’y — 1) (1 - §)2Re +0(Re?),  (2)

wR*
vy (r) = F( .

These equations describe the azimuthal, radial, and polar
velocity components of the flow induced by the rotating sphere,
respectively. To validate our numerical results, we compare them
against these analytical solutions. Fig. 1 shows the velocity field
in the meridional plane for various Reynolds numbers. At low Re
(e.g, Re = 0.0128), the flow field closely matches the analytical
solution for the secondary flow (Fig. 1), and this agreement
remains good for Re < 5, with only minor deviations.

As Re increases, the asymptotic assumptions become invalid,
leading to significant changes in the flow behavior. A marked
difference from the cross-sectional slice of the velocity field (the
full flow is axisymmetric) is that the incoming flow from the
polar region tends to split into two distinct streams, while the
outward flow intensifies at the equator, forming a jet-like
structure (Fig. 1). This effect can be attributed to the growing
influence of inertia (like centrifugal effects) with increasing Re.

To quantitatively validate our numerical results, we calcu-
lated the velocity profile along the spinning pole. For Re =
0.0128 and Re = 0.8, the near-field velocity exhibits good
agreement with the asymptotic solution (Fig. 2a). However, at
Re = 32, the flow profile deviates from the analytical prediction
because the Reynolds number is too high for the asymptotic
assumptions to remain valid. In the far field, the numerical
results show a faster decay compared to the analytical solution
(Fig. 2a), which can be attributed to the periodic boundary
conditions used in the simulations. Additionally, we deter-
mined the maximum velocity along the rotation axis and

- 5) siny cosyRe + O(Re?). (3)
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Fig. 1 The flow field in the meridional plane for a spherical particle rotating at Reynolds numbers (Re) ranging from 0.01 to 32. The color map represents
the magnitude of the secondary flow normalized by the maximum radial velocity obtained from the asymptotic solution.
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(a) The normalized radial component of the fluid velocity along the spinning pole for Re = 0.0128, 0.8, and 32. For each Re, three curves are

plotted, corresponding to simulations with computational domain sizes of L = 20R, 30R, and 40R. The black solid line represents the asymptotic solution.
(b) The maximum radial velocity along the spinning pole is plotted as a function of Re. The lines correspond to results from previous numerical

simulations.?”

compared our data with previous studies that used other
numerical methods.”” The resulting velocity-versus-Re curve
shows excellent agreement with the earlier findings (Fig. 2b).

For a single spherical particle, the system maintains axisym-
metry about the rotational axis and mirror symmetry across the
equatorial plane. As a result, no translational motion of the
sphere is expected, even when the flow becomes nonlinear at
higher Reynolds numbers. However, when two spheres of differ-
ent sizes form a snowman-like configuration with co-rotating
axes, the dynamics change significantly and the dimer can self-
propel along its spinning axis towards the larger sphere.”®

At small Reynolds numbers, the flow remains predomi-
nantly azimuthal, preserving the system’s symmetry and pre-
venting any translational motion. As the rotational frequency
(and thus the Reynolds number) increases, secondary flows
emerge. The size difference between the two spheres breaks the
equatorial-plane symmetry, triggering the onset of translational
motion of the spinner-dimer. We systematically explore this
behavior in three representative scenarios: (i) two co-rotating
spheres driven by an external field, (ii) two counter-rotating
spheres driven by an internal torque as a swimmer, and (iii) a
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single rotating spinner attached to a passive sphere for cargo
transport.

3. Results

3.1. Two co-rotating spheres

First, we examine the translational motion of two spheres with
co-rotating axes and identical rotational frequencies, forming a
snowman-like colloid driven by a rotating field along their
common axis. The configuration is similar to ref. 20, but we
extend the exploration to larger Reynolds numbers and system-
atically vary the aspect ratio between the sizes of the two
spheres. We define the rotational Reynolds number (Re =
pR*w/y) and translational Reynolds number (Ret = pRu/u) using
the radius of the larger particle (R = R,) in the dimer (Fig. 3a).
The aspect ratio is given by o = Ry/R,, where R, and R, are the
radii of the smaller and larger spheres, respectively.

At relatively small Reynolds numbers, the secondary flow
closely follows the asymptotic behavior. Applying the analytical
solution of the secondary flow field, we see that the flow velocity
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Fig. 3 Two coaxial spherical particles rotating at the same angular velocity w can achieve translational motion along their common axis. The streamlines
for (a) Re = 0.64 and (b) Re = 10.67 are shown for a size ratio of & = 0.5. (c) The translational Reynolds number Rer is plotted as a function of the rotational
Reynolds number Re for various values of a. The hollow circles represent the case of o = 0.5, as obtained by Nadal et al.?° using the finite element method
in a moving reference frame. All curves exhibit the presence of an optimal Reynolds number, Re =~ 7, which corresponds to the maximum Rer.
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near the poles increases with Re when the angular velocity (o) is
fixed. Consequently, the incoming flow at the front of the larger
sphere where Re is higher becomes more intense, creating a
stronger pulling on the dimer. This imbalance induces transla-
tional motion from the smaller sphere toward the larger one, as
illustrated in Fig. 3a, and in agreement with previous studies.”®

This qualitative understanding holds for relatively small Re
(Re < 10) even the secondary flow for a single particle starts to
deviate from the analytical solution when Re is larger than 5 (see
e.g. Fig. 1). Indeed, the flow fields generated by the dual spinners
at Re = 0.64 and Re = 10.67 exhibit similar patterns (Fig. 3a and
b). For an aspect ratio of o = 0.5, our results show good agreement
with previous studies®® (closed blue and open black circles in
Fig. 3c). The translational motion is evident from the increase of
the translational Reynolds number Rer, which increases with Re
(Fig. 3c). It reaches a maximum value around Re = 7, after which
it begins to decline. At higher Reynolds numbers, our simula-
tions show deviations from ref. 20, which may likely be attributed
to factors such as periodic boundary effects, numerical resolu-
tion, or the surface distance between the spheres.

To gain insight into the effects of the dimer geometry, we also
conducted simulations for additional aspect ratios o = 0.5...0.875
(Fig. 3c). In all the cases, we observed directional movement along
the spinning axis and in the direction given by the larger
sphere. Furthermore, it was observed that the optimal spinning
frequency for locomotion corresponds to a Reynolds number of
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approximately 7 for all aspect ratios considered (Fig. 3c). Further-
more, our results show that when the aspect ratio exceeds 0.625,
the translational velocity decreases (Fig. 3c), suggesting that the
optimal « value for maximum translational performance lies
between 0.5 and 0.625. This behavior can be understood through
symmetry considerations. A small o makes the configuration more
similar to a single sphere with radius R,, while a larger o value
gives the system a dumbbell-like shape R; ~ R,. At both limits,
increasing the dimer symmetry reduces the flow asymmetry
between the front and rear of the snowman dimer. This leads to
a reduction of its net translational velocity.

Interestingly, the data in Fig. 3c show that when Re increases
well beyond Re ~ 7 the translational velocity decreases, eventually
reaching zero for « ~ 0.875 around Re =~ 11. This suggests the
possibility of reversing the direction of locomotion.

To further investigate the effects of the aspect ratio « and the
spinning frequency, we extend our simulations up to Re = 65
(Fig. 4). The simulations reveal that the direction of motion
depends on the aspect ratio « for a given Reynolds number. For
Re > 20, the spinner moves in the direction from the smaller
sphere towards the larger one when o = 0.875, while, for
smaller values of o, the motion reverses its direction (Fig. 4c).

Unlike in lower Re, where the single particle secondary flows
dominate, the flow at higher Re becomes more complex and is
primarily driven by a jet originating near the equator of the
larger spinner (Fig. 4a and b). This jet pushes the dimer forward,

(b)

IVI/Vimax

d 2 ‘ \ |
Re=53.33

(a) The dimer moves downward (from the larger sphere to the smaller one) when o = 0.5625 at Re = 53.33. (b) The dimer moves upward (from the

smaller sphere to the larger one) when o = 0.9375 at Re = 53.33. (c) The translational Reynolds number Ret is plotted as a function of the rotational
Reynolds number Re for various values of . (d) The translational Reynolds number Rer is plotted as a function of « at a fixed rotational Reynolds number

of Re = 53.33.
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and its direction depends strongly on the geometry. For a
smaller aspect ratio «, the jet is located at the equatorial region
of the larger particle and slightly tilted upward, away from the
smaller particle (red region in Fig. 4a). For larger o, two eddies
appear near the larger spinner, and the fluid jet at the equatorial
region tilts slightly downward (towards the smaller sphere). This
reverses the locomotion direction from the direction towards
the smaller particle (Fig. 4a) to motion in the direction of the
larger colloid (Fig. 4b), when the aspect ratio is modified for a
fixed Re ~ 53.

A more detailed study at Re &~ 53 reveals a critical « ~ 0.82 at
which the velocity direction changes (Fig. 4d). Below this critical
value (o < 0.82), the colloid moves from the larger sphere to the
smaller one, attaining a maximum velocity of around o = 0.7.
Above this threshold (o > 0.82), the colloid reverses the direc-
tion and moves from the smaller sphere toward the larger one,
reaching a maximum velocity near o = 0.94.

3.2. Two counter-rotating spheres

In the second scenario, we consider a torque and force-free
configuration. It consists of two spheres, driven by equal but
opposite internal torques (Fig. 5a). This makes the dual spinner

View Article Online
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an effective force-free swimmer. This configuration has been
experimentally and theoretically shown to produce self-
locomotion in viscoelastic fluids at zero Reynolds number,>2°
where more intricate coupling between rotation and translation,
as well as other swimmers created stresses can be expected.**?

In this configuration, each sphere experiences an equal and
opposite torque 7, causing them to rotate in opposite directions
(Fig. 5b). Under Stokes flow conditions, this results in an angular
velocity wq, = T/SnuRLf, where R; , corresponds to the radii of
particle 1 and particle 2, respectively. Thus the smaller particle is
expected to spin faster. This holds reasonably well for the
particles in the dimer as well. Considering an aspect ratio a =
Ri1/R, = 0.75 dimer, a ratio between the spinning frequencies |w,/
;| &~ 2.3 is observed (Fig. 5b), which agrees well with |w,/m,| ~
2.4 expected for isolated spinners. Consequently, the rotational
Reynolds number of an isolated spinner scales as Re ~ T/R. The
corresponding inertial secondary flow of an isolated spinner is
given using eqn (1)-(3). The radial component v, at polar regions,
cosy =1, scales as v, ~ Re*/R. This implies that for a fixed torque
T, the smaller sphere experiences a higher Re and generates a
stronger secondary flow in front of it, pulling the surrounding
fluid towards itself (see e.g. Fig. 1a). As a result, one can expect
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(a) A schematic of a swimmer composed of two coaxial spinners driven by equal and opposite internal torques. When the two spinners differ in
size and rotate at finite Reynolds numbers, the swimmer translates along the direction indicated by the arrow. The streamlines illustrate a typical flow field
around the swimmer. (b) The angular velocity and (c) the translational velocity of each particle in the swimmer, for an aspect ratio « = 0.75 and Re ~ 5.
(d) The translational Reynolds number Ret as a function of the rotational Reynolds number Re for various aspect ratios «. (e) The same Rer data, rescaled
by the factor o®/(1 — o), plotted against Re. (f and g) The flow field generated by the swimmer at different Re values for o = 0.75.
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that the dual-spinner swimmer translates in the direction of the
smaller sphere. This agrees with the simulation results (Fig. 5a).
At the steady state, both the spheres are bound together via a
mutual attraction arising from the secondary flow at the polar
regions and translate in the direction of the smaller sphere
approximately at equal velocities (Fig. 5¢).

A scaling argument based on the secondary flow suggests
that the net force driving the swimming motion arises from the
difference in the radial flow components at the front and rear of
the colloidal dimer. The swimming speed can be approximated as:

Re 12 R€22
u Rl R2 .

Expressing this in terms of the translational Reynolds num-
ber Rey = pRu/u and the rotational Reynolds number Re =pR*w/
u, using the radius of the larger sphere (R = R,), yields:

3

o
Rer - 3NR62,
l—a

where o = Ry/R, < 1 is the aspect ratio.

Fig. 5d shows the behavior of Rer measured from the simula-
tions as a function of Re for different values of «. The translational
velocity increases with Re, and greater asymmetry (smaller «) yields
higher swimming speeds (Fig. 5d). When we rescale the plot by o’/
(1 — o) and use a log-log format, the data for Re < 5 collapse onto
a single curve (Fig. 5e), supporting our scaling analysis.

At a larger Re, the flow field deviates from the asymptotic
solution. As shown in Fig. 5e, the main features related to aspect
ratio still hold, but the data indicate two distinct regimes for a
higher Re. For 5 < Re < 20, the dimer is pulled by the fluid at the
front, though this pulling flow splits into two streams and shifts
laterally as the Re increases (dark regions in Fig. 5g). Once the Re
exceeds about 20, the propulsion mechanism changes. As illu-
strated in Fig. 5h for Re = 51.7, jets form on the side of the
smaller sphere, pushing the swimmer forward. Contrary to what
is observed with the forced snowman dimer (Fig. 3), no reversal
of the swimming direction is observed. The internally driven
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(a) A time series illustrating the positions of two particles when particle 2 is rotating. The passive particle (particle 1) is drawn toward the rotating
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force-free swimmer continues to swim along the direction given
by the smaller sphere.

3.3. One rotating and one passive sphere

Finally we investigate the possibility of cargo transport using the
inertial flow fields. We consider a single spinner at finite Re.
Although a single spinner does not move on its own, including
another object can break the symmetry and lead to locomotion.
To test this, we placed a passive colloidal particle behind the
spinner and along the spinning axis (left panel in Fig. 6a). The
spinning particle creates a secondary flow that advects the fluid
towards itself at the polar regions. This creates an attraction
between the spinner and the cargo. Now the two particles
approach each other (vt < 600 in Fig. 6a and b). Once a contact
is established, the spinner and the passive sphere translate
together, moving in the direction from the passive sphere
towards the spinning particle (wt > 600 in Fig. 6a and b). This
behavior is observed to hold for various sizes of the passive
loads. However, the translational speed of the dimer does not
vary monotonically with the aspect ratio o (the ratio of the
passive sphere radius to the spinner radius). For a fixed Re =~
1.9, the a ~ 1.25 dimer is observed to translate at a higher speed
compared to the « ~ 0.75 and o ~ 1.75 dimers (Fig. 6b). This
suggests that for a given Reynolds number, there exists an
optimal payload size.

To study the effects of the o and Reynolds number for the
cargo transport in more detail, we carried out simulations of
the hydrodynamically bound dimer for « &~ 0.5...2.5 and Re ~
1.6, 3.2, 16, 32 (Fig. 7). Increasing the Re was observed to
increase the translational speed of the dimer (Fig. 7b). The o
dependence shows non-monotonic behaviour with a clear
maximum (Fig. 7b). Starting from «, initially speed of the dimer
increases with increasing o, for all the Reynolds numbers
considered. After reaching an optimal aspect ratio o* the speed
is observed to decrease. Our results show that the maximum
velocity appears when o lies between 1.2 and 1.5, and this
optimal value is observed to increase with Re (Fig. 7c). One
should also note, that locomotion is observed for a o« ~ 1

dimer, in contrast to the externally and internally driven
®) 0.025 ‘ . ‘
Particle 1 -
0.02+ Particle 2 — | 4
o=1.25 Re=1.92

H

0.015¢ P mo=175
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w/oR,
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particle by hydrodynamic interactions. Once they come into contact, the two particles move forward together. (b) The velocity of the resulting two-
particle assembly is shown for different size ratios o = 0.75, « = 1.25, and « = 1.75. In each case, a constant velocity is eventually reached in the final state.
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a) Flow fields at relatively small Reynolds number (Re = 1.6) for various aspect ratios o &~ 0.5, 1.0, 1.5, and 2.0. (b) Flow fields at a relatively large Re

of ~32 for the same set of aspect ratios. (c) The translational velocity in the final steady state, plotted as a function of « for different values of Re.

snowman dimers, where the symmetrical dumbbell is expected
to be stationary for symmetry reasons.

To understand the non-monotonic behaviour, one can con-
sider two competing effects. On one hand, a larger passive
sphere introduces greater asymmetry, potentially enhancing
the propulsion. On the other hand, a larger sphere also adds
more fluid drag. These opposing influences lead to an optimal
translational velocity at an intermediate aspect ratio.

Finally, the locomotion mechanism is observed to also
depend on the Reynolds number. As in the previous cases, when
Re is small, the locomotion is dominated by fluid pulled in at the
front of the spinner (Fig. 7a), whereas at higher Re, jets formed by
the spinner provide a pushing mechanism (Fig. 7b). Despite these
different propulsion regimes, the optimal velocity still arises from
the trade-off between propulsion and hydrodynamic drag.

4. Conclusions

Throughout this work, we have explored how rotating colloidal
particles, ranging from single spinner to two-sphere assembly,
behave under varying Reynolds numbers (Re). Our simulations
demonstrate how the secondary flow created by spinning
particles at finite Reynolds numbers can hydrodynamically
bind the particles together. When a size asymmetry between
the particles is introduced, locomotion along the spinning axis
can be realised.

We started by examining a single rotating sphere, which,
due to its symmetry, experiences no net translational motion. As
the rotational Reynolds number Re increases, secondary flows
arise but do not break the inherent symmetry of a single sphere.

When a second spinner or a passive “‘cargo” is introduced,
however, asymmetry emerges, and the combination becomes
motile. We studied the locomotion in three distinct configura-
tions: (i) an externally driven snowman dimer, (ii) an internally
driven force and torque-free swimmer, consisting of two spin-
ners driven by equal but opposite torques, and (iii) a spinner
with a passive load particle. We carried out the exploration for
various aspect ratios between the particles and a wide range of
Reynolds numbers Re & 0...100. Our simulations revealed that
an externally driven snowman dimer can reverse its locomotion

This journal is © The Royal Society of Chemistry 2025

direction as a function of the aspect ratio and Reynolds
number. Furthermore, cargo transport was demonstrated using
a single spinner where a passive payload was hydrodynamically
attached to the spinner. Here, the locomotion arises from the
broken head-to-tail symmetry similarly to the externally and
internally driven dimers.

Typically in experiments, confining walls are present. A single
spinning sphere at finite Re is attracted to a flat no-slip wall along
its spinning axis due to the inertial hydrodynamic flows.*” This is
likely true for our dimers as well. Near a confining surface, the
dynamics is likely dominated by an intricate balance between the
wall-spinner and spinner-spinner hydrodynamics. This could
lead to the dissolution of the hydrodynamically bound snowman
dimers. One possibility could be to use solid particles with
broken head-to-tail symmetry.®

Finally, our simulations revealed two distinct propulsion
mechanisms depending on the rotational Reynolds number Re.
At low Re, the propulsion mechanism is primarily a “pulling”
effect where the fluid is advected primarily towards the swim-
mer at polar regions. At a higher Re, jet-like flows form at the
equatorial region of the spinner, creating a “pushing” mecha-
nism. Despite this transition, the same fundamental principle
for the propulsion applies: breaking the head-to-tail symmetry,
either by size asymmetry or by introducing a passive load, leads
to a different fluid flow at the front and the rear of the dimer,
resulting in a net fluid force and, consequently, sustained
propulsion along the spinning axis of the particles.

Overall, these findings provide insight into designing self-
propelled systems and micro-swimmers driven by rotational
motion, highlighting how the aspect ratio and inertia collec-
tively shape their hydrodynamic behavior.
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