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Sensitive particle shape dependence of
growth-induced mesoscale nematic structure†

Jonas Isensee ab and Philip Bittihn *ab

Directed growth, anisotropic cell shapes, and confinement drive self-organization in multicellular

systems. We investigate the influence of particle shape on the distribution and dynamics of nematic

microdomains in a minimal in silico model of proliferating, sterically interacting particles, akin to

colonies of rod-shaped bacteria. By introducing continuously tuneable tip variations around a common

rod shape with spherical caps, we find that subtle changes significantly impact the emergent dynamics,

leading to distinct patterns of microdomain formation and stability. Our analysis reveals separate effects

of particle shape and aspect ratio, as well as a transition from exponential to scale-free size distributions,

which we recapitulate using an effective master equation model. This allows us to relate differences in

microdomain size distributions to different physical mechanisms of microdomain breakup. Our results

thereby contribute to the characterization of the effective dynamics in growing aggregates at large and

intermediate length scales and the microscopic properties that control it. This could be relevant both for

biological self-organization and design strategies for future artificial systems.

1 Introduction

Ensembles of passive particles can be grouped and character-
ized as classical phases of matter such as solids, fluids or
glasses. In active matter, the particles possess some form of
inherent activity that drives the behaviour. Depending on the
form and strength of activity, the resulting dynamic processes
may cause aggregates to resemble classical phases1–4 or to take
on new forms such as self-propelled5 or rotating aggregates.6

One type of activity that is not only highly relevant in biology
but can also crucially influence the properties of soft matter is
growth combined with cell division.7–9 Energy is injected in the
form of microscopic building materials to permit assembly,
leading to self-crowding induced confinement that can mediate
self-organisation.10 Example systems are cells replicating
within tissues, bacteria or, in the future, even proliferating
synthetic droplets for which only parts of the required mechan-
isms have been successfully implemented so far.11–13

What makes growing active matter particularly interesting is
that it violates some of the most fundamental symmetries of
classical matter, namely mass and number conservation. Systems
where mass is conserved but the cell number increases14 include

the development of embryos inside hard eggshells. Due to the
importance of embryonic development in understanding the
origins of life, a multitude of experimental and theoretical
studies are contributing at various levels, identifying mechan-
isms of shape formation through morphogen gradients,15,16 or
through inference and impact of mechanical stresses,17–21 to
only name a few. Different dynamics emerge from growth when
the symmetries are broken locally but conserved on average. In a
tissue of a single species of cells one can consider homeostatic
turnover and when different cell types are introduced manually
or by random mutation, competition for shared space may
emerge, where different mechanical mechanisms have been
investigating, including differing division rates,22 homeostatic
pressure,23 and competition via passive remnants of cells.24

Thirdly, when mass and number conservation are fully
broken, large-scale expansion is an inevitable consequence.
Cells growing in volume can expand isotropically, however
(binary) division naturally requires a symmetry breaking
and therefore some anisotropy on the particle scale.25 In
fact, many microorganisms in nature such as bacteria expend
energy to maintain their preferred shapes against external
influences.26 Biological mechanisms to achieve this include
the production and localization of curvature proteins that
deform the cell membrane27,28 in a balance with surface
tension.29 On the inside, cells can have cytoskeletal dynamics
controlled by motor proteins acting on a scaffold of actin
filaments, microtubules, and intermediate filaments to intern-
ally support shape changes, and on the outside active force
generation through substrate adhesion and intracellular forces
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and interactions with the extracellular matrix is used to build
cell shapes.26

More recently, experimental studies have also linked cell
shapes to competitive advantages30,31 and irrespective of the
concrete mechanisms,32 actively maintained shapes combined
with growth and division of the constituent cells are known to
cause striking emergent behaviour. Studying the most com-
monly found explicitly maintained shape, the rod with circular
caps, previous studies have explored the orientational align-
ment dynamics in experiments with, e.g., E. coli bacteria33–38 or
Bacillus subtilis39,40 and also using particle-based numerical
simulations. It has been shown that the alignment of such
growing rods is on average determined by the growth-generated
expansion flow field and that the strength of ordering further
depends on the division aspect ratio of the rods themselves:
When placed into micro-fluidic channels both in simulation
and experiment,34,41,42 one finds alignment along the channel
and with sufficiently large division aspect, the dynamics may
even produce columnar tip–tip patterns toward the channel
outlet. This transition to perfect order was found to be accom-
panied by a peculiar change in observed stress mechanics:42

while partially ordered systems always feature an excess stress
between walls and orthogonal to alignment as discussed in ref.
43, the opposite is observed in the columnar state with impor-
tant implications for the stability of highly aligned microdo-
mains even under excess compressive stress in the direction of
cell orientation. To some extent, this motivates why microdo-
mains are observed in freely expanding circular colonies in the
first place.33,36

Despite the numerous experimental and numerical works,
finding the most appropriate effective description is still a topic
being actively researched.36,43–47 As the rods have a 1801 rota-
tion symmetry, effective descriptions fall into the class of
nematic theories with a range of successful models on liquid
crystal physics to build upon.48–53 Consequently, the extant
continuum models of nematic growing matter use a Q-tensor
formulation with spontaneous order and Oseen–Franck elasti-
city terms.54,55 For example filamentous active nematics56,57

and bending rod-shaped bacteria58,59 feature smooth nematic
order parameter fields that can be studied using elastic con-
stants and topological defects. However, an important differ-
ence of the rigid growing rods from the typical application of
classical nematic theories is that the finite granularity of
growing rods is crucial. Orientational alignment is mediated
by concrete pressure and shape-dependent particle–particle
interactions rather than a background fluid and means that
the energetic penalty of disalignment remains finite even for
diverging gradients of the nematic director field. This moves
the dynamics to a different regime where the striking features
of the orientational field are highly ordered microdomains
separated by sharp disclination lines.

In this work we seek to provide another puzzle piece toward
a better understanding of this regime and in particular how it
depends of the microscopic shape details of the particles. On
top of the division aspect of rods, we introduce a shape
parameter called pointiness that allows a continuous variation

of the tip shape, enabling us to discuss the robustness of the
dynamics to small deviations from the simple circle-cap rod
shape and also explore the behaviour further from biologically
relevant shapes. Using a first-principles mathematical model,
we illustrate how the distribution of observed microdomain
sizes can be mapped to effective stability properties that hint at
distinct breakup mechanisms for microdomains. Beyond
informing the theoretical understanding of the emergent
dynamics, these results could have applications in future
design of artificial materials by tuning the shapes of micro-
scopic building blocks using synthetic scaffolds and curvature
proteins during self-assembly.

2 Methods
2.1 Agent-based modeling

For our numerical simulations, we consider agents of various
shapes that grow in length and divide. Each agent occupies the
space defined by its shape and the only interaction between
agents is volume exclusion. This is realized through the intro-
duction of surface-normal repulsion forces whenever agents
overlap as is illustrated in Fig. 1A. The precise definition of the
repulsion force depends on the shape details and is given in
Section S1 (ESI†).

Simulations are set in the over-damped limit. This makes
particle velocity vi = miFi instantaneously defined by the sum of
all pairwise interaction forces Fi and the particle size-

Fig. 1 (A) Illustrations of normal repulsion force between two touching
rods, (B) rounded rectangle rods, and (C) pointy rods. In each case the
interaction is implemented using the closest-point method based on line
segments. (D) The shape parameter pointiness P is used to parameterize
the tip-shape modification. (E–G) Snapshots of simulations at an early
stage with parameters (ad, P) = (4,1.8),(4,1),(3,0.8) in order with coloring to
emphasize (nematic) orientations as defined in the color wheel.
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dependent mobility tensor mi as explained in more detail in
Section S1 (ESI†).

Our implementation of these models is available online as
part of our in-house developed open-source framework for
agent-based simulations of interacting particles InPartS.60

2.2 Agent shapes

We define a set of particle models with the capacity for growth
and division but varying shape details. The most common model
for growing nematic bacteria is the rod model.33,34,36,42,44,47

There, particles consist of a fixed-width body with half-circle
caps at opposing ends as shown in Fig. 1A. A necessary require-
ment for all models with (indefinite) growth and binary divisions
is that particle volume approximately doubles during its life-
time. In the case of the rod model, the width stays fixed while the
body length between the caps increases to reach its division
aspect ad at which point the particle instantaneously divides in
the middle to produce two new particles. Inspired by research on
formation of smectics in liquid nematic crystals61 we define a
generalization of the rod model with a tip shape that can be
continuously varied from flat to pointy as shown in Fig. 1D with
a control parameter pointiness P. The pointiness takes values in
the open interval P 2 ð0; 2Þ where a value of 1 recovers the
original rod model. For P � 1 the outline becomes a rounded
rectangle (Fig. 1B) with corner radius rc¼RP with R the cap
radius of the original rod shape. For P � 1, the agents gain
a (rounded) triangular cap (Fig. 1C) with corner radius rc ¼
R ð2�PÞ and side lengths scaled to preserve the bounding box.
Note that both outer limits of the pointiness, P ¼ 1 and P ¼ 2,
lead to non-rounded actual corners in the model that are not
studied as part of this work. Further details on our modeling
approach are presented in Section S1 (ESI†).

2.3 Setup

A key challenge in characterizing emergent dynamics in models
describing growth processes is to correctly identify or separate
the emergent bulk dynamics from boundary effects (e.g.
confinement)42 and history dependence (initial conditions).

Similar to previous research33,36 we work without explicit
confinement and consider a freely‡ expanding aggregate which,
independent of the precise initial condition, quickly takes on a
circular disk shape. To also ensure access to stationary
dynamics, we implement an indiscriminate removal of parti-
cles reaching a specified radial distance from the domain
center. For length scale comparisons across parameter varia-
tions, we define the area of newly created agents (approximated
by their bounding rectangle) as a unit area. Unless specified
otherwise, the disk domains have a diameter of 150 allowing for
E104 agents at a time. Example configurations found in an
early stage of the evolution are shown in Fig. 1E–G and snap-
shots of full-size simulations are displayed in Fig. 2A.

3 Results

The simulated dynamics spontaneously produce patches of
highly aligned rods depending on division aspect and tip shape.
Examples of different combinations are shown in Fig. 2A. While
no average global nematic order develops, the mesoscopic
nematic structures show marked differences across the para-
meter space: Short regular P ¼ 1 rods (I) form no structures but
short rectangular P ¼ 0:5 agents (II) do form structures similar
to much longer rods (IV) with P ¼ 1. Increased pointiness
reduces the size of emergent structures at large division aspect
(III) while the combination of low pointiness and large aspect
yields the largest microdomains (V).

3.1 Clustering

As mentioned above and visually evident from the snapshots in
Fig. 2A, the agents group into highly aligned microdomains of
characteristic parameter-dependent size. To identify clusters, we
construct an undirected graph with particles as vertices and add
edges between interacting particle pairs whose orientations are
approximately equal. A standard connected-component analysis
then yields the assignment into microdomains. For the original
rod model a similar analysis was done by You et al.33 In general,
the results of any clustering analysis will depend crucially on the

Fig. 2 (A) Example snapshots for varied agent shapes. The pointiness P

has values (1, 1/2, 3/2, 1, 1/2) in I–V and the division aspect ad are 2 in I & II
and 5 in III–V. The full time evolution of these examples is animated in the
ESI† Movies 1–5. (B) A growing and breaking microdomain is tracked over
time with Dt = 0.5 between snapshots. (C) Cluster size distributions p(s) for
rods with division aspect ad = 3,4, and 5. (D) Average cluster size s for
varied pointiness P and division aspect ad.

‡ Motion is opposed by surface friction. Any expansion flow needs to be
continuously driven by an internal pressure buildup.
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choice of tolerance. However, separately testing the effects of
tolerance (done in Fig. S6, ESI†) and subsequently keeping it
constant for further analysis still allows for many conclusions
to be made. All analyses shown here use a tolerance of 0.02 rad
E 1 deg. An example of a microdomain growing over time and
subsequently breaking up into smaller pieces is shown in
Fig. 2B. While the clustering works on instantaneous configura-
tions only, the continuity was recovered by tracking the consti-
tuent cells and their descendants in time.

Probability distributions of cluster sizes are shown in Fig. 2C
for a range of parameters. For agents that form relatively small
clusters (here ad = 3) we find approximately exponentially
distributed sizes. This is in line with the results by You
et al.33 Interestingly, for large division aspect ad the scaling
gains heavy tails resembling a power law distribution and, as
will be shown below, the same is true for low pointiness values.

To summarize the distributions, Fig. 2D shows the mean
cluster size as a function of pointiness for division aspect ad = 3,
4, and 5. The average cluster size increases the more boxy
agents get P! 0ð Þ leading to significant cluster formation
even for the shortest (ad = 3) agents. Pointy tip shapes inhibit
the formation of large clusters.

Pursuing a better understanding of the mesoscopic
dynamics, we will point out important aspects of the emergent
size distributions.

3.2 General properties

In a first step, we view radially resolved stationary size distribu-
tions computed using the clustering algorithm introduced
above. Up to some boundary region, the size distribution is
uniform in space as shown in Fig. 3A where the probabilities of
different size ranges are displayed as a function of the relative
radial position. The radial position of each cluster is deter-
mined as its centroid, and consequently the center of large
clusters can never reach the outer cutoff. Beyond this geometric
constraint, the distribution is not only homogeneous in space
but also becomes stationary after a short transient at the largest
cluster sizes. This is visualized in Fig. 3B where a set of
subsequent instantaneous size distributions is computed from
10 independently initialized developing colonies. Initially, only
very few agents are present but the domain becomes fully filled
at time t E 12. Up until that point, one observes a preference
for tangential alignment of cells positioned at the periphery of
the expanding colony. This was previously reported in ref. 36
and we reproduce this finding in Section S4 (ESI†). Once the
domain is fully covered and particles begin to flow out the
domain perimeter, this boundary effect vanishes, and the
microdomain size distribution quickly converges, with the
largest cluster sizes being the last to fully saturate (Fig. 3B).

When changing the overall system size, we find that the
power-law type distribution tails, where present, scale accord-
ingly. As a consequence, the average size of observed clusters
remains approximately constant for division aspect ad = 3 and
increases with domain size for higher division aspects as shown
in Fig. 3C. The general shape of the distributions of the
microdomain size s shown in Fig. 3D on the other hand

remains similar. Only the cut-off beyond the power-law-like
tails moves to larger sizes. To further emphasize the variations,
Fig. 3E displays the same data rescaled by s2 and normalized by
the left-most values. A positive slope indicates a local decay rate
of the size distribution that is slower than p s�2 while for
negative slopes it is faster. Comparing this to the log–log data
above, we identify the first local maximum with the exponential
decay at small sizes and what follows is a power-law type decay
with exponent 4 �2 ended by a domain size dependent cut-off.

3.3 Shape variation

With these general observations in hand, we can now turn to
the parameter dependence of these distributions in more
detail. Fig. 4A shows the measured sizes for P ¼ 1 rods with
division aspects ad varied from 2 to 7. To visually emphasize the
differences between various distributions p(s) we additionally
display p(s)s2/Z in Fig. 4B with constant scaling Z = p(smin)smin

2

and the quadratic size s2 to bring the distribution tails into
focus. For all parameters, the distributions are well approxi-
mated by the sum of an exponential decay and a power law

p(s) = c1e�s/g1 + c2s�g2 (1)

except for the limits of the observed sizes where finite-size and
finite-number effects dominate.

Short particles predominantly show exponential decay. The
fit parameters in Fig. 4C for the power-law term yield large pre-
factors but large decay exponents as well, indicating only small

Fig. 3 Size distribution properties of rodcells. (A) Cluster size distribution
p(s) as a function of radial position for division aspect ad = 5 discretized on
colorcoded intervals. (B) Cluster size distribution over time with ad = 5.
(C) Average cluster size for varied division aspect ad and domain size. (D)
Size distributions p(s) for varied domain size at ad = 6, and (E) also shown
multiplied by s2 to emphasize changes in scaling and the distribution tails.
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corrections at the smallest sizes. An increase in division aspect
ad first increases the decay length scale g1 but also drives a
transition towards power-law scaling. With increasing division
aspect ad, both the exponential decay length g1 and the power
law exponent g2 move towards longer distribution tails. Inter-
estingly, this process saturates at division aspect ad E 5 with
the distributions seemingly converging both in length scale and
amplitudes. This is invariant under changes of the domain size,
in line with results from above.

Similar trends can be observed in Fig. 5 where both division
aspect ad and pointiness P are varied. While pointy tip shapes
P4 1 inhibit the formation of large clusters, an increased
division aspect still drives the distribution toward power-law tails.
For sufficiently low pointiness (e.g. P ¼ 0:5), the distributions
become heavy-tailed at all division aspects. The precise distribu-
tion shapes differ slightly from those of regular rods and are not
described as well by eqn (1). Instead, this trend is summarized in
Fig. 5B where tail weight is approximated using the cluster size s
for which p(s) = 10�4 is reached. Parameters where exponential
decay dominates appear dark, as the target probability is reached
for comparatively small cluster sizes, while increased division
aspect or lower pointiness move the target probability toward
larger sizes. A non-obvious result is that the largest clusters are
found in the bottom left corner of Fig. 5B (for low pointiness and
small division aspect) rather than in the top left corner. This
indicates the existence of an optimal trade-off between maximized
division aspect and absolute width of the tips. These are not
independent, as the average area is conserved.

3.4 A master equation for microdomains

In the previous section we found that the emergent dynamics
yield a stationary distribution of microdomain sizes. Impor-
tantly, the shape of the distributions varies from exponential to
predominantly power-law distributed. To better understand the
implications of this change, we neglect all spatial dynamics and
set up a master equation for the likelihood of finding micro-
domains of different sizes. Microdomains consist of growing
and dividing agents, leading to exponential growth of each
microdomain. When considering the area fraction A(s,t)ds p

sp(s,t)ds of clusters of size s, time t, and number distribution
p(s,t), growth can be expressed as an advection term with a
velocity s in size space due to the exponential nature of growth.
Here, time is rescaled to absorb the growth-rate dependence.

The only additional process allowed for this calculation is
microdomain breakup. When numerically determining the
time evolution of microdomains from particle simulations,
we observe a range of different breakup scenarios owing to
the finite granularity of the particles, as illustrated in Fig. 2B.
Here, we try to describe the fundamental aspect of the
dynamics and therefore consider the most simple and tractable
mechanism that is breakup into equal halves with a size-
dependent rate b(s). In the area fraction description, this turns
into a non-local coupling and the full equation yields

qtA(s) + qs(sA(s)) = �b(s)A(s) + 2b(2s)A(2s) (2)

where the last term is evaluated at 2s and also has a factor 2
from the measure at 2s. Due to chosen units for A(s,t) no
additional factors are needed and the distribution stays nor-
malized automatically.

Both the rate b(s) and distribution A(s,t) are a priori
unknown. However, we are specifically interested in under-
standing the dynamics involved in producing stationary expo-
nential and power-law (number) distributions. Assuming a
specific stationary A(s), we can solve for the corresponding

Fig. 4 (A) Size distributions p(s) for rods with varied division aspect ad. (B)
Distributions multiplied by s2 and normalized to give 1 at the left-most data
point to emphasize the distribution tails. (C) Fit parameters of eqn (1) to the
data shown in Fig. 4A. Side-by-side plots of data and fitted function can be
found in Fig. S7 (ESI†).

Fig. 5 Cluster size distributions p(s) for varied pointiness P. (A) Distribu-
tions multiplied for pointiness P 2 ½0:5; 1:1:5� split into separate panels.
Coloring indicates division aspect ad. (B) Distribution tail weight repre-
sented as the size s at which the probability density crosses p(s) = 10�4.
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b(s). For an exponential number density we require A(s) p se�s/a.
Plugging this into eqn (2) yields

0 ¼ �2þ s

a
� bðsÞ þ 4bð2sÞe�s=a

and is solved by

bðsÞ ¼
X1
n¼1

2

4n
� s

8na

� �
exp

s

a
1� 1

2n

� �� �
(3)

as derived in Section S3 (ESI†). In contrast, requiring a number
density with power-law decay A(s) p sg+1 leads to

0 = �(g + 2) � b(s) + b(2s)2g+2

and is solved by the constant decay rate

bðsÞ � b ¼ gþ 2

2gþ2 � 1
: (4)

In the former case of an exponential number distribution,
we find a size-dependent decay rate. It is visualized in Fig. 6A
and features an increasingly large decay rate beyond the
characteristic size a. This is in line with the notion that
microdomains beyond their stable size eventually buckle under
their self-generated load.

Power-law distributions, shown in Fig. 6B, on the other hand
yield a constant decay rate independent of cluster size. This
indicates that the buckling instability is no longer the domi-
nant process and, instead, the dynamics are better described by
breakup through stochastic input from the surrounding bath
(of other microdomains).

An interesting observation in the data gathered from agent-
based simulations is the bimodal nature of p(s)s2 in, e.g.,
Fig. 3D. By definition, this means that the local decay exponent
varies above and below � 2. In the context of the decay model,
this can be understood as an effective size-dependent variation
in stability. To emphasize this point, Fig. 6A shows a hand-
crafted decay rate function b(s). It consists of an exponential
region (i, compare Fig. 6A) for small sizes, two power-law

regimes (ii & iii) with varied expected exponent and a large size
cut-off in (iv). The analytically expected power-law scalings
computed using eqn (4) were added in blue in both Fig. 6B
and C.

At small cluster sizes, there is a natural limit imposed by the
agent-based simulations that no clusters with fractional cell
numbers may exist. The largest possible clusters are bounded
by the finite simulation domain, however, in practice, no such
clusters are ever observed. This imposes a bound on the valid
regime of power-law decay exponents. The parameter fits in
Fig. 4 revealed an asymptotic exponent g2 o 2. If this scaling
continued to infinite sizes, the average size would diverge and
numerical observations should never reveal more than a single
globally aligned patch. As this is clearly not the case, an
exponent g2 o 2 must be accompanied by a large size cut-off,
as also added in Fig. 6C.

4 Conclusion

Our work shows that subtle differences in similarly spirited
systems can yield surprising differences in the emergent
dynamics. Modifying the tip shape to be flat-spotted or more
strongly pointed has a strong impact on the stability of tip–tip
interactions that regularly occur after cell divisions and are a
crucial ingredient in microdomain formation. This extends the
observations of Boyer et al.34 who described the buckling
instability of ordered bacterial colonies due to circular tip
interactions.

Lowering the pointiness and hence turning the rods into a
rounded rectangle shape allows the agents to form long identi-
cally aligned columns prior to buckling. This phenomenon
enables the formation of large microdomains even with divi-
sion aspects that normally do not exhibit meaningful self-
organization.

Increased pointiness on the other hand inhibits the for-
mation of large clusters. However, it enables an additional
efficient packing configuration where neighboring rows of
aligned agents are displaced by half a particle width. This kind
of behaviour has also been reported by King & Kamien61 and
anecdotal evidence of this in our simulations is shown in
Fig. S5 (ESI†). We found that the right combinations of tip-
shape and division aspect can stabilize alignment to effectively
inhibit self-buckling, leading to a change in the size distribu-
tions toward power-law as argued in Section 3.4. Beyond this
point, only the total domain size appears to change the emer-
gent distributions by setting a cut-off for the large-size power-
law scaling. This is a non-trivial observation. Despite all inter-
actions in the model being local pairwise repulsion forces, the
domain boundaries manage to control a spatially homoge-
neous microdomain size distribution. This rules out the sim-
plest hypothesis that the total pressure field might be the sole
mediator and more analyses possibly on varying geometries
might be able to determine the mediating field.

In previous work,33 You et al. discovered that the character-
istic length scale of microdomain size distributions can be

Fig. 6 Numerical steady state solutions of eqn (2) for varied prescribed
decay rate functions b(s) in panels (A), (B), and (C). Solutions, scaled with
the squared size s2, are shown above their corresponding b. Roman
numerals are placed in Fig. 6C to label the (i) exponential, (ii) steep
power-law, (iii) shallow power-law, (iv) long-range cut-off, regimes.
Expected power-law scaling computed using eqn (4) is highlighted in blue.
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described by the ratio of an emergent bending stiffness of the
ordered phase and an active stress extracted from an aniso-
tropic average co-rotational stress tensor. This is different in
language but similar in spirit to the stability of ordered
domains under anisotropic stress discussed in ref. 42. Notably,
according to their analysis in ref. 33, both emergent quantities
are proportional to the excess density, leaving the length scale
constant. This is in agreement with our observation that the
distribution of microdomain sizes is constant in the bulk and
does not change with radial position, though it is also incom-
plete, as we find the mean cluster size to increase with simula-
tion domain size. Reversing the relation of microdomain sizes
and bending stiffness, we conclude that an increased pointi-
ness P4 1 should reduce the material stiffness, while rounded
rectangular Po 1 particles would produce an increased stiff-
ness. Despite the appeal of a single parameter dependent
bending stiffness that could be related to the Oseen–Franck
constants of a nematic continuum theory, it is important to
point out that the measured stiffnesses are only meaningfully
defined for the perfectly ordered state found within microdo-
mains. At interfaces between microdomains, one finds sharp
disclination lines at the particle length scale, a feature that is
obvious from the particle simulations but difficult to capture in
a continuum formulation based on stiffness constants, as it
would require highly non-linear terms. However, this is where
this work on shape variations can lend inspiration for future
work. Particles within growing colonies experience a grow-
generated stress and all particle motion follows stress gradients
to reduce it. A local pathway of reducing isotropic pressure is
through the reorientation of particles to maximize the fraction
of occupied space. Keeping in mind the continuous growth and
resulting polydispersity of particles, it becomes clear that this
should on average favour the nematically aligned state. Further-
more, this process crucially depends on the particle shapes.
Rounded and low aspect ratio shapes rotate easily, but rectan-
gular P! 0ð Þ particles can pack the space most efficiently
when ordered. Coupling the material density to nematic order
was already mentioned in ref. 35 and we show evidence of
shape-dependent packing fractions in Section S4 (ESI†). View-
ing alignment from this perspective then allows us to conclude
that the size distribution of microdomains should naturally
depend on shape parameters like the division aspect and the
pointiness as they tune the geometric stability of the nemati-
cally ordered state. This brings us back to the microdomain
master equation model. Neglecting all spatial dynamics and
considering divisions into equal halves with a size-dependent
division rate, we formulated a mathematical model that is
analytically tractable and still captures the essence of the much
more complex spatio-temporal particle dynamics. Calculations
based on these assumptions then allowed us to interpret the
changing size distribution shapes as variations in mechanical
stability, thus complementing the above discussion on the
microscopic origins of stability of the ordered state in
microdomains.

Due to our simple modeling assumptions, the phenomen-
ology observed in this work can only scratch the surface of the

dynamics possible in experimental analogues. However, this
approach allowed us to connect the striking dynamics of
microdomains with distinct disclination and specific length
scales to the microscopic shape details of the constituent
particles. The results thus contribute to a more comprehensive
understanding of the effective processes involved in the growth
and division of rigid rod-shaped particles and may also provide
useful context in future designs of self-assembling synthetic
materials.
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