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Disordered fibrous matrices in living tissues are subjected to forces exerted by cells that contract to pull on
matrix fibers. To maintain homeostasis or facilitate disease progression, contracted cells often push on matrix
fibers as they recover their original sizes. Recent advances have shown that matrix geometry encodes loading
history into mechanical memory independently of plasticity mechanisms such as inter-fiber cohesion or fiber
yielding. Conceptualizing cells as inclusions undergoing sequential contraction and recovery, prior work
documented matrix remodeling surrounding a solitary recovered inclusion. However, because the remodeling
induced by the contraction of multiple inclusions differs from that caused by a single contracted inclusion,
we investigate how matrix remodeling occurs when multiple contracted inclusions recover simultaneously, a
scenario that more accurately reflects real tissues containing many closely spaced cells. Using mechanics-
based computational models of fibrous matrices embedded with clusters of inclusions, we studied the
mechanical remodeling of the matrix during the simultaneous recovery of inclusions after contraction. The
results revealed permanent mechanical remodeling of the matrix within the cluster, with stiffening observed
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in areas of the matrix enclosed by closely spaced inclusions. This stiffening was driven by microstructural
changes in matrix geometry and was corroborated in experiments, where collagen matrices permanently
DOI: 10.1039/d5sm00087d remodeled by the contraction and recovery of closely spaced embedded cells also exhibited stiffening. By

enriching the understanding of memory formation in fibrous matrices, this study opens new possibilities for
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Introduction

Fibrous matrices, constituted of randomly organized fibers, are
widely prevalent in natural environments, manifesting in
diverse forms, including the cellular cytoskeleton,' tissue
extracellular matrices,* blood clots,” neurofilaments,® and bio-
materials such as silk proteins,’ mycelium,8 and bamboo,’
among others. These matrices, regardless of the specific con-
stitutive model of the individual fibers, exhibit nonlinear
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estimating cell forces on matrix substrates and refining metamaterial design strategies.

elasticity under deformation.'®'" This nonlinear elasticity

arises from a complex interplay between stretched and buckled
fibers, leading to either strain stiffening'>?® or strain
softening®**® of the matrix. Most mechanics models,>*™° which
treat matrix fibers as elastic beams while excluding traditional
plasticity mechanisms such as inter-fiber cohesion or the possi-
bility of fiber yielding, assume that matrix responses remain
elastic, with fibers returning to their original orientation and
stress-free state once deformation is removed. However, recent
research,>? including our own,*® challenges this elasticity
assumption by showing that the intricate geometry of these
matrices encodes signatures of past loading histories to estab-
lish a mechanical memory independent of traditional plasticity,
similar to that observed in granular and amorphous materials.>*

Biopolymer fibrous matrices in tissues contain closely
spaced cells that act as mechanical actuators, applying tension
by pulling on matrix fibers.****>” To study this mechanical
interaction, previous theoretical and experimental studies have
modeled cells as contracting inclusions.>**%3¥*3 The contraction
of a solitary inclusion can either soften or stiffen the matrix.**°
When multiple contracting inclusions are present, the matrix
typically softens,” unless the constrained external boundaries of
the matrix drive a stiffening response.***> In some contexts, the
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mechanical interactions between cells and the matrix are further
complicated by contracted cells expanding to recover their origi-
nal pre-contraction size, thereby pushing on the matrix. This
phenomenon is commonly observed in cancer cells during the
onset of invasion.*®*” Likewise, in functional tissues such as
muscle and adipose, sequences of cellular contraction followed
by recovery are essential to maintain homeostasis.***° Concep-
tualizing cells as inclusions, our recent work®® demonstrated that
the recovery of a solitary contracted inclusion activates a
geometry-driven microstructural deformation mechanism within
the matrix, distinct from traditional plasticity, which contributes
to the permanent mechanical remodeling of the matrix. However,
these insights remain incomplete, as real tissues typically consist
of many closely spaced cells rather than solitary ones. Predictions
of matrix remodeling surrounding a single recovered inclusion (or
cell) cannot be directly extended to multiple recovered inclusions
(or cells) due to the nonlinearity and complexity of memory
formation in matrices, particularly given the prior understanding
that multiple contracted inclusions remodel the matrix very
differently than a single contracted inclusion.>* Consequently,
the mechanical response of the matrix when multiple contracted
inclusions recover simultaneously remains uncertain, necessitat-
ing further investigation.

In this study, we employed mechanics-based computational
models of inclusion-matrix systems to examine how the simul-
taneous recovery of multiple contracted inclusions influences
the mechanical remodeling of the matrix. Clusters of contrac-
tile inclusions mimicking cells were embedded in fibrous
matrix models designed as an intricate network of fibers to
replicate the structure of fibrous collagen, with fibers modeled
as linear elastic beams in finite element software (similarly to
ref. 23,50,51) enabling the analysis of mechanical properties in
the matrix regions enclosed by the inclusions within the
cluster. By assessing the deformation and stress states of the
constituent fibers during inclusion recovery, our investigations
revealed permanent mechanical remodeling of the matrix
inside the cluster, wherein the centers of inclusions moved
closer together. This remodeling occurred independently of
traditional plasticity mechanisms and was attributed to geo-
metric confinement generated by a microstructural gradient
formed in the matrix during inclusion contraction surrounding
the cluster, facilitating the remodeling of the matrix within the
cluster during inclusion recovery. Notably, as a cluster of closely
spaced inclusions contracted and recovered, the remodeled
matrix within the cluster consistently exhibited a stiffening
response. We corroborated this model-predicted stiffening in
experiments, where floating collagen I matrices permanently
remodeled by the contraction and recovery of closely spaced
embedded cells exhibited a stiffening response.

Results and discussion
Establishing minimal inclusion-matrix models

To gain an understanding of the mechanical response of a
fibrous matrix during the simultaneous recovery of multiple
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embedded contracted inclusions, we employed minimal inclusion-
matrix models (Fig. 1). The matrix was modeled as a quasi-two-
dimensional discrete fiber network resembling fibrous matrices of
collagen with randomly organized fibers, building on an estab-
lished algorithm.”**"**"* Within the matrix, approximately three
fibers were permanently welded at each node, each node being
capable of transmitting both forces and moments. Embedded
within the matrix were several circular contractile inclusions, each
with a diameter twice the average fiber length (Lg) of the matrix,
mimicking the typical length scale of contractile cells in soft tissue
extracellular matrices.>® These minimal inclusion-matrix models
were chosen due to their documented efficiency in capturing the
evolving microstructures and nonlinear mechanical responses
characteristic of three-dimensional fibrous matrices.***"** In
finite element simulations, matrix fibers were linear elastic
Timoshenko beams, highly susceptible to bending, stretching,
and buckling, while contractile inclusions were continuum linear
elastic bodies. To preclude any plasticity mechanisms, no cohesive
interactions were allowed between fibers, and it was ensured that
stretched fibers did not yield. The simulations involved two
quasistatic load steps: first, the inclusions contracted; second, they
recovered to their original sizes, with inclusions maintaining
kinematic compatibility and force equilibrium with the matrix in
both steps. The external boundaries of the matrix remained free
throughout both steps. In the deformed matrix, we characterized
the kinematic states of the fibers, focusing especially on fiber
buckling because of its importance in dictating the mechanical
response of matrices, as we will explore further in subsequent
subsections. The extent of buckling in fibers—referred to as
defects in this study—was quantified by measuring their excess
length, defined as the difference between each fiber’s contour and
its node-to-node distance.'®'***%> More intricate details about
the finite element model and the characterization of matrix fibers
and matrix states are provided in the Methods.

Extending this framework to more complex scenarios, as
prior studies have shown, when embedded inclusions form a
closely spaced cluster in the matrix (e.g., Fig. 1(a)), they mod-
ulate the mechanics of the matrix they enclose.>*>® Building on
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Fig. 1 Matrix with a cluster of inclusions. (a) A representative
matrix containing a cluster of inclusions, each with a diameter of 2L,
spaced ~3.5L; apart. (b) Simplified matrix model used in this study,
showing a cluster with four inclusions, each spaced ~3.5L¢ from their
nearest neighbors. The inclusions first contracted simultaneously and then
recovered, while the external edges of the matrix remained free. L denotes
the average matrix fiber length.
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our prior work,** which demonstrated that a matrix containing
an isolated inclusion undergoing sequential contraction and
recovery induces buckling-mediated mechanical instabilities in
matrix fibers, here we found that matrices with multiple inclu-
sions introduce even more instabilities, posing numerical
challenges and increasing computational cost (see Methods,
with details in Supplemental Notes, ESIf). To address these
challenges while maintaining numerical efficiency and ensur-
ing that the model captures the essential mechanics of the
confined matrix, we employed a cluster of four closely spaced
inclusions (Fig. 1(b) and 2(a)), each with a diameter of D = 2Ly,
positioned =~3.5L¢ apart. This spacing closely resembled
the inter-inclusion spacings considered in dense clusters inves-
tigated in previous studies.>****” These inclusions underwent
sequential contraction and recovery, with the external bound-
aries of the matrix remaining free. The matrix region confined
by these four inclusions (Fig. 2(b)) served as a representative
system for understanding the mechanics of the matrix within a
larger inclusion cluster, establishing it as our region of interest
for mechanical analysis.

before contraction of inclusions
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Matrix mechanics under tension from multiple contracted
inclusions

To facilitate subsequent analysis aimed at understanding the
mechanical response of a fibrous matrix during the simultaneous
recovery of multiple contracted inclusions, we initially sought to
reproduce the established behavior of matrices during inclusion
contraction, as outlined in prior studies.”**®** Simultaneous
contraction of inclusions, applying radial strains (¢,) ranging from
4% to 60%, induced tension in the matrix. Matrix fibers oriented
radially toward each inclusion (Fig. 2(c) and (d)), resulting in
visible alignment between adjacent inclusions along lines con-
necting their centers. These fiber reorientations occurred simulta-
neously with axial compression and pronounced fiber buckling
circumferential to the inclusions, especially in regions between
the inclusions (Fig. 2(d)). As the inclusions contracted, they moved
closer together (9; < 5 Fig. 2(a), (c) and (e)), consistent with a
previous study,>* and the spacing between inclusions decreasing
as ¢ increased (Fig. 2(e)) as expected. The translation of
the inclusion centers, reflecting the fidelity of our model in
which contracted inclusions maintained force equilibrium and
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Fig. 2 Foundational insights as cluster of inclusions contracts. (a), (b) Enlarged view of a representative matrix (from Fig. 1(b)) surrounding the inclusion
cluster before contraction, with panel b highlighting the region of interest between inclusions (indicated by a purple diamond in panel a). J,ef denotes the
initial inter-inclusion spacing. (c), (d) Representative matrix after inclusions contracted 60%, with panel d showing the region of interest. Inter-inclusion
spacing reduces to d;. (e) Relative decrease in spacing between nearest inclusions (31/5,ef < 1) as inclusions contract. (f) Total length of defects (&.)
produced in the region of interest at various inclusion contraction levels (g,). Values of . were normalized by L. Color bar indicates inclusion contraction
levels (¢,) for the data points in panels e and f. An alternative representation of §1/d,ef and £./Ls with ¢, on the abscissa is shown in ESI, T Fig. S3a and b. Data
points in panels e and f represent means from seven independent matrices. ESI, T Fig. S4a and b shows the spread of the data. Background colors in panels
a—d are employed solely to enhance the graphic contrast of matrix fibers.
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kinematic compatibility with the matrix, promoted fiber buckling
between inclusions. Fiber buckling represents mechanical instabil-
ities, which we consider as defects in this study. These defects,
quantitatively defined by the excess length of fibers, were aggre-
gated from all fibers within the region confined by contracted
inclusions to calculate the total length of defects (&.). At elevated
levels of ¢, these defects intensified (Fig. 2(f)) and contributed to
the densification and mechanical softening of the confined matrix
(ESLt Fig. S1), corroborating prior studies.>*?*%°

Recovery of inclusions drives matrix remodeling

As the contracted inclusions expanded to recover their original
size (Fig. 3(a)(d) and ESLj Fig. S2), two key observations
emerged. First, the inter-inclusion distance after recovery
remained similar to that at the onset of recovery (J, ~ 04;
Fig. 3(e)), indicating a permanent reduction in the inter-
inclusion spacing compared to the reference spacing (d,/0rer <
1; Fig. 3(f)). Second, the recovery process produced new buckling-
mediated defects (&;; Fig. 3(g)), relative to the contracted state,
within the region of interest between the inclusions (Fig. 3(d)).
Both the decrease in J,/0..r and the increase in ¢, intensified as

after contraction of inclusions
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the levels of inclusion contraction (¢;) increased, despite the
absence of explicit plasticity mechanisms in the model such as
inter-fiber cohesion or fiber yielding. Recovery-induced defects
(&,) superimposed those generated during inclusion contraction
(& Fig. 2(f)) to form cumulated permanent defects (&; Fig. 3(h)).

The production of defects during inclusion recovery, evi-
denced by an increase in the excess lengths of individual fibers
(A& > 0; Fig. 3(i) and (j)), resulted in permanent deformation
indicative of the permanent mechanical remodeling of the
matrix. This phenomenon conceptually aligns with findings
from our recent study,* which demonstrated that the recovery
of a solitary contracted inclusion similarly remodeled the
surrounding matrix.

To investigate the mechanisms contributing to the persistence
of defects in the matrix, we examined the matrix microstructure
during inclusion contraction and recovery. Prior to contraction,
the matrix fibers were randomly oriented (Fig. 2(a)). Upon con-
traction, the matrix surrounding and between the inclusions
assumed distinct alignments (Fig. 3(a)). Closer inspection revealed
two categories of fiber alignment near the cluster: the first
occurred between adjacent contracted inclusions, where fibers

after recovery of inclusions
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Fig. 3 Recovery of the contracted inclusions. (a), (b) Representative matrix with inclusions contracted by 60%, showing reduced inter-inclusion spacing
(81). Panel b highlights the region of interest between inclusions. (c), (d) Matrix after inclusions have recovered, with inter-inclusion spacing (d,) remaining
similar to d;. Panel d depicts the region of interest. (e) Ratios of inter-inclusion spacing after recovery (d,) to before recovery (44). (f) Ratios of inter-
inclusion spacing after recovery (d,) to the spacing in the reference matrix (d,er). (9), (h) Total length of defects produced during the recovery process (¢,
panel g) and total length of permanent defects (&, panel h) within the region of interest (from panel d). Both ¢, and ¢ are normalized by L¢. Permanent
defects (&) represent the sum of defects produced during inclusion contraction (&.; Fig. 2(f)) and inclusion recovery (&,). The color bar adjacent to the plots
in panels e—h represents the inclusion contraction levels (¢,) for the data points, while an alternative presentation of the data points plotted against ¢, on
the abscissa is provided in ESI, 1 Fig. S3c—f. (i, j) Increase in the buckling-mediated defects in fibers during recovery of inclusions (A& > 0), highlighted in
red, with intensity (color bar) reflecting the extent of the increase in defects; darker red fibers are more buckled than lighter red ones. Panel i depicts the
area surrounding the recovered inclusions, while panel j focuses on the region between recovered inclusions; values of A& are normalized by L. For
panels ¢, d, i, and j, the recovered inclusion diameter of 2L serves as the scale bar. Background colors in panels a—d are used solely to enhance visual
contrast. Each data point in panels e—h represents averages from seven independent matrices; ESI,1 Fig. S4c—f shows the spread of the data.
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aligned along the axis connecting their centers, and the second
involved fibers surrounding the inclusion cluster, which adopted
radial alignment relative to the geometric center of the cluster.

We sought to understand the spatial changes in the matrix
microstructure surrounding the contracted cluster. To achieve
this, we quantified the microstructural state by measuring the
radial alignment of fibers surrounding the cluster relative to its
center using an order parameter S (see Methods and ESIL
Fig. S5) and evaluated the spatial gradient of S with respect to
the radial distance r from the cluster center (|dS/dr|; Fig. 4(b)),
referred to here as the microstructural gradient. Across all
levels of inclusion contraction assessed in this study, we
typically observed a pronounced gradient in the region imme-
diately surrounding the contracted cluster extending from r ~
2.5L¢to r & 5.5L¢ (highlighted in yellow in Fig. 4(a)), with higher
inclusion contraction leading to a higher gradient (Fig. 4(b));
see Supplemental Note 1 (ESIt) for the rationale behind select-
ing this specific region surrounding the cluster.

During the recovery of inclusions, the high microstructural
gradient surrounding the cluster (Fig. 4(a)—(c)) exerted a con-
fining pressure (grey arrows, Fig. 4(d)-(h)), which gradually
increased as the recovery of inclusions progressed (Fig. 4(i)).
This confinement restricted the outward radial movement of

after contraction of inclusions
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fibers, creating a compressed region surrounding the cluster
where compressive axial strain built up in the fibers, ultimately
leading to their buckling. This process was evidenced by the
progressive increase in the proportion of compression fibers
(colored blue) as the inclusions expanded toward their recov-
ered state (Fig. 4(d)-(g)). At full recovery (Fig. 4(h)), some
tension fibers re-emerged both surrounding and within the
cluster, a phenomenon attributed to post-buckling distortions
in already buckled fibers, with severely distorted fibers transi-
tioning to tension, as detailed in the next subsection. Further
confirming the buckling collapse and subsequent postbuckling
distortions of fibers, slight disruptions in the radial alignment
of fibers immediately surrounding the recovered cluster were
observed (ESL,T Fig. S6).

The microstructural gradient surrounding the cluster
induced geometric confinement that, by restricting the movement
of radially aligned fibers during the recovery process, prevented
the inclusion centers from reverting to their original positions
prior to contraction. The immobilization of inclusion centers
during recovery helped preserve the buckling-mediated defects
generated during contraction (.) within the region of interest
between the inclusions. Additionally, the recovering boundary of
the inclusions intensified the geometric confinement, akin to
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Fig. 4 Recovering inclusions amidst gradient in microstructure. (a) A representative matrix with fibers surrounding the cluster showing pronounced
radial alignment with respect to the cluster center (highlighted in yellow). In this case, the inclusions contracted by 60%. (b) Normalized microstructural
alignment gradient, |dS/dr], calculated in the region immediately surrounding the cluster, spanning r ~ 2.5L¢ to r ~ 5.5L; from the cluster center (region
highlighted yellow in panel a), for different levels of inclusion contraction (see color bar). The magnitudes of the gradient emulate a sharp reduction in
radial fiber alignment moving radially outward from the cluster. (c) Matrix in the immediate vicinity of the 60% contracted inclusions, showing both the
region between the inclusions and surrounding the cluster (zoomed-in view of the highlighted region in panel a). Fibers are color-coded to indicate axial
compression (blue) or tension (orange), with the majority under tension. (d)—(h) Matrix between and surrounding the cluster as inclusions gradually
recover to their original size. Grey arrows highlight the radial confinement imposed by the microstructural gradient. Surrounding the cluster, the number
of fibers in compression (blue) increases progressively as inclusions recover from panels d to h. (i) Evolution of the confining pressure (force per unit
peripheral length; grey arrows in panels d—h) as the inclusions progress toward recovery. Each data point in panel b represents averages from seven
independent matrices, with the standard error of these averages provided in ESI, Fig. S5.
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Fig. 5 History-dependent behavior in the matrix, reflected as the micro-
structural gradient (|dS/dr|) surrounding the contracted cluster (Fig. 4(b)),
which is driven by the level of inclusion contraction, modulates the extent
of permanent defects (£) produced within the recovered cluster (ie.,
between the recovered inclusions). ¢ is normalized by L¢. Each data point
represents the mean from seven independent matrices, with error bars
showing the standard errors of these means. The color bar indicates
inclusion contraction levels (g,) prior to recovery.

biaxial compression, further exacerbating fiber buckling within
the region between the inclusions (Fig. 4(d)-(h)). This exacer-
bated buckling led to increased fiber excess lengths (defects),
with new defects (£,) superimposing existing ones (&) to form
permanent defects (£). Permanent defects (£) within the cluster
increased with the increase in the microstructural gradient
surrounding the cluster at the onset of recovery (Fig. 5). As this
geometric gradient was determined by the level of inclusion
contraction prior to recovery (Fig. 4(b)), greater inclusion con-
traction resulted in more pronounced permanent defects within
the cluster after recovery (Fig. 5). This phenomenon underscores
a history-dependent response of fibrous matrices in multi-
inclusion systems.

These history-dependent permanent defects in the matrix,
arising without the activation of explicit plasticity mechanisms,
resonate with a recent continuum model*"** suggesting that
fibrous materials may inherently retain loading history through
geometry alone. The mechanism we uncovered, wherein the
persistence of fiber buckling is facilitated by the geometric
gradient pursuant to the loading history of the matrix, offers a
nuanced perspective on mechanical memory formation in
disordered fibrous materials.

A summary of the analysis framework, outlining the for-
mation and persistence of defects during inclusion recovery, is
provided in Table 1 (Appendix A) for clarity.

Defects tune matrix properties within the recovered cluster

Next, we explored how permanent defects (¢) influence the
properties of the matrix between the recovered inclusions.
Within the region of interest encompassed by the recovered
inclusions in the cluster (e.g., Fig. 3(d)), we considered perma-
nent buckling-mediated defects (£) as an internal variable that
carries the mechanical memory of fiber kinematics, building on
our prior study.*® The greater the inclusion contraction ()
prior to recovery, the greater the permanent defects (¢), leading
to increased matrix density (p; Fig. 6(a)) and a greater

This journal is © The Royal Society of Chemistry 2025
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impartation of geometric randomness in the matrix topogra-
phy, measured as heterogeneity (y; Fig. 6(b)). We define p as the
fiber density and y as the total spectral energy of the permanent
displacement field, both measured in the matrix region
between recovered inclusions as detailed in the Methods.
Under biaxial compression due to the confinement of recovered
inclusions, the matrix confined between the inclusions (e.g.,
Fig. 3(d)) exhibited typical compression behavior. The extent of
permanent defects, determined by inclusion contraction levels,
dictated whether the matrix exhibited a softening or stiffening
mechanical response, indicated respectively by a negative or
positive value of incremental bulk stiffness (k; Fig. 6(c)). Adopt-
ing an incremental measure of stiffness, as detailed in the
Methods, focused our analysis on how variations in £ modulate
the bulk internal resistance of the matrix within the defined
region of interest. Softening (k < 0) typically occurred when ¢,
< 10%, driven by fiber buckling dominating matrix mechanics.
In contrast, stiffening (k > 0) arose from pronounced boundary
effects of advancing inclusion boundaries, marked by a buildup
of tension within severely post-buckled fibers (a parallel
measurement of incremental shear modulus also exhibited this
stiffening; see ESL T Fig. S7). Representative configurations of
permanently deformed matrix states, depicted in Fig. 6(d)-(f)
(also ESI,t Fig. S8), demonstrate the buildup of the proportion
of tension fibers (L.s/L) as the levels of ¢, prior to recovery
increase; this increase in tension fibers was associated with
elevated matrix stiffness (Fig. 6(g)). In capturing the role of
permanent defects on matrix properties, increasing permanent
defects (£) were accompanied by enhancements in both hetero-
geneity (y; Fig. 6(b)) and stiffness (k; Fig. 6(c)), suggesting that
escalating matrix heterogeneity contributes to the observed
stiffness enhancements (Fig. 6(h)). This trend is further sup-
ported by the density of states of the remodeled matrix (Supple-
mental Note 2, ESIT), which characterizes how the mechanical
states of the matrix are distributed across soft and stiff states.
Lower heterogeneity levels were associated with an abundance
of soft states dominated by buckling defects, manifested as a
peak in the density of states (ESIL,1 Fig. S10). As heterogeneity
increased, this peak diminished, marking a mechanical transi-
tion toward stiff states, where postbuckled fibers under con-
finement governed the response. Further underscoring the
importance of defect-mediated heterogeneity in driving stiffen-
ing, the observed stiffness values far exceeded the theoretical
bound expected from mere densification®® (ESIL,t Fig. S11).
Therefore, as demonstrated in a matrix with a cluster of four
closely spaced inclusions (Fig. 1-6), the contraction and sub-
sequent recovery of each inclusion led to a marked reduction in
inter-inclusion spacing, inducing multiaxial compression
within the matrix between inclusions. As the inclusions con-
tracted, the inclusion centers moved closer together, and a
geometric gradient emerged in the surrounding matrix, gen-
erating confining pressure that prevented the inclusions from
moving apart during recovery (Fig. 4(h)). This compressive
confinement exacerbated fiber buckling within the encom-
passed matrix between inclusions and helped trigger severe
postbuckling distortion in fibers. As the inclusions continued

Soft Matter, 2025, 21, 3314-3330 | 3319
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Fig. 6 Defects modulate matrix properties between recovered inclusions. (a),

(b) Higher inclusion contraction (g,) leads to greater permanent defects (),

densification (p; panel a), and increased geometric heterogeneity (z; panel b). Density is normalized by the density of the reference matrix, prer, and
heterogeneity is normalized by the heterogeneity at the lowest ¢, yo. To avoid singularity, y was normalized by yo at the minimum ¢,, as by definition y = 0
when ¢ = 0 (see accompanying text and Methods). (c) Permanent defects dictate the incremental bulk stiffness (k) of the matrix. The matrix stiffened at ¢,
> 10%. Stiffness is normalized against the maximal mean stiffness (kmax) oOf the independent matrices studied. ¢ is normalized by L¢ in panels a—c. (d)—(f)
Representative matrix between the recovered inclusions, showing fibers under axial tension (orange) and compression (blue). As inclusions underwent
greater contraction prior to recovery, more tension fibers developed in the matrix, as seen from panels d to f. (g) During stiffening (k > 0), the proportion
of fibers under tension (Leg/Ly) increased. (h) Elevated heterogeneity (panel b) is associated with increasing stiffness (panel c). Each data point in panels a—
¢, g, and h corresponds to means from seven independent matrices (standard errors of data in ESI,{ Fig. S9). Error bars in panels ¢, g, and h represent
standard errors. The color bar indicates inclusion contraction levels prior to recovery for data points in panels a-c, g, and h.

to recover against increasing confining pressure (Fig. 4(i)),
additional strain energy was transferred into the encompassed
matrix due to the work done by the recovering inclusions
against the confining pressure. The encompassed matrix
attempted to redistribute this strain energy within fibers. The
minimally deformed buckled fibers of the encompassed matrix
could no longer gain additional strain energy from axial com-
pression. Furthermore, the low bending rigidity of fibers (see
Methods) posed a limiting constraint on the storage of bending
strain energy. To accommodate the excess strain energy arising
from the compressive confinement, a subset of postbuckled
fiber segments, highly distorted by geometric confinement,
began to take on axial tension (Fig. 6(e) and (f)). This mechan-
ical transition is a natural consequence of energy balance in
light of the fibers’ inability to sustain further compression or
bending, making axial tension in confined segments of dis-
torted fibers the only viable energy storage option (Supplemen-
tal Note 3, ESIf). The emergence of axial tension in fiber
segments drove the stiffening mechanical response of the
encompassed matrix between the recovered inclusions
(Fig. 6(g)). Although this stiffening draws parallels to a prior
study,’® in which stiffening was driven by fiber tension induced
by steric repulsion between inert inclusions when the inclu-
sions were externally forced closer together, our mechanism is
fundamentally different. Rather than externally forcing the
inclusion centers closer, we imposed radial contraction

3320 | Soft Matter, 2025, 21, 3314-3330

followed by the recovery of inclusions, wherein a geometry-
driven confining pressure kept the inclusions from moving
apart during recovery. The encompassed matrix stiffened due
to tension in fibers that arose from the geometric confinement
of postbuckled fibers—thus revealing a novel stiffening mecha-
nism for fibrous matrices elucidated in this study.

To investigate whether the initial inter-inclusion spacing
(0rer) influences matrix stiffening between recovered inclusions,
we conducted a parametric study inspired by prior research on
the role of spacing in matrix remodeling."®*> The initial spa-
cing between inclusions was varied from 3.5L¢ to 5L¢ and 7Ly,
designated as cases 1, 2, and 3, respectively (Fig. 7(a), (c) and
(e)). Compared to the denser cluster (case 1), the contraction of
inclusions in sparser clusters (cases 2 and 3) induced a weaker
microstructural gradient surrounding the cluster (Fig. 7(g)) and
reduced the forces between inclusions, as predicted by a prior
study.>® Consequently, inclusion centers in sparser clusters
moved closer together less efficiently (ESL, T Fig. S12a). Further-
more, the relative increase in the matrix area enclosed by
inclusions in sparser clusters introduced a size effect, a factor
known to influence matrix mechanics.®*"*® Collectively, these
factors delayed the onset and reduced the extent of stiffening in
the matrix enclosed by sparser clusters compared to the denser
cluster; nevertheless, all cases eventually exhibited stiffening at
high levels of permanent defects modulated by the proportion
of tension fibers (ESL,T Fig. S12b-g), indicating that although
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the size effect influenced the degree of stiffening it did not
prevent the stiffening response.

Given that the stiffening trend in the matrix between recov-
ered inclusions was unaffected by matrix size, we rigorously
tested the influence of inclusion boundaries alone, indepen-
dent of size effects, on this stiffening mechanism. To this end,
we studied a constant region of interest size, equivalent to that
of the densest cluster (case 1; Fig. 7(a) and (b)), across the
sparser clusters (cases 2 and 3; Fig. 7(c)-(f)), thereby eliminat-
ing size effects and isolating the influence of proximity to
inclusion boundaries on the matrix. Results showed that the
stiffening observed between closely spaced inclusions at & >
10% (case 1) was absent when inclusions were sparsely spaced
in cases 2 and 3 (Fig. 7(h)). In these sparser clusters, a weaker
microstructural gradient resulted in less permanent defects,
leading to a softening of the matrix as the length of defects
increased. This softening was primarily due to fiber buckling,
without the severe post-buckling distortions that characterized
the matrix in the densest cluster (case 1; Fig. 7(h), inset). Thus,
the proximity to inclusion boundaries was crucial for achieving
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a compression-stiffening response, otherwise buckling-mediated
softening would prevail. Even fully constraining the remote
external boundaries of the matrix did not preclude this stiffening
response (ESL Fig. S13), further highlighting the dominant role
of local boundary proximity in driving compression-stiffening.

Recovery of cell forces stiffens biopolymer matrix

Our models demonstrated that when a dense cluster of four
inclusions underwent contraction and recovery, the matrix
between them typically stiffened. This history-dependent stif-
fening originated from compressive confinement exerted by the
surrounding matrix on the recovered cluster (Fig. 4). When
considered alongside findings from our recent study,*® which
demonstrated that even a solitary inclusion after recovery
experiences similar compressive confinement, this suggests
that the phenomenon is consistent across different cluster
Consequently, results suggest that larger
clusters containing more than four inclusions would similarly
experience compressive confinement during the recovery
of contracted inclusions, leading to the stiffening of the
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Effect of initial inter-inclusion spacing. (a)—(f) Matrices with inclusions at varying initial spacings: 3.5L¢ in panels a, b (case 1); 5L¢in panels c, d (case

2); and 7L¢ in panels e, f (case 3). Panels a, ¢, and e show matrices before inclusion contraction, while panels b, d, and f display matrices after inclusion
recovery. In these representative examples, inclusions contracted by 60% prior to recovery. (g) Compared to case 1, greater initial spacings (dref) in cases 2
and 3 resulted in weaker microstructural gradients (|[dS/dr]) in the regions spanning ~ 3L; immediately surrounding the cluster (see insets). The selection
of this specific region surrounding the cluster across cases follows the rationale in Supplemental Note 1 (ESIT). (h) As permanent defects () accumulate,
case 1 demonstrates strain stiffening (k > 0), whereas cases 2 and 3 exhibit softening (k < 0). Inset: Stiffening associates with the proportion of tension
fibers (Leg/Ly), with a high likelihood of buckled fibers transitioning to tension in case 1 due to severe distortion. knax corresponds to maximal stiffness in
case 1. Each data point in panels g and h (including inset) represents averages from seven independent matrices. The color bar indicates inclusion
contraction levels prior to recovery for data points in panels g and h. ¢ is normalized by L¢ in panel h.
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encompassed matrix within these larger clusters. Building on
these predictions, we designed an experiment to verify whether
such history-dependent stiffening could be observed in real
materials. Using sparse random fibrous matrices of collagen I
(2 mg mL™') embedded with cells mimicking contracting
inclusions, we sought to replicate the responses observed in
the models. To facilitate this, we optimized the cell seeding
density to 0.5 million cells per mL, ensuring it was high enough
for measurable stiffening yet low enough to prevent inter-cell
contact and to avoid reaching the maximal density threshold of
the matrix, as established by a prior parametric study.®®
Experimentation commenced with NIH 3T3 fibroblasts
embedded in disk-shaped matrices with free external bound-
aries, measuring 20 mm in diameter and 1.3 mm in thickness.
We prepared two categories of cell-embedded matrices in
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which cell behavior was modulated using the cell force inhi-
bitor, blebbistatin, which permeated the matrices to reach
the cells.

In the first category of cell-embedded matrices, blebbistatin
was added immediately after cell seeding, rendering the cells
inert and preventing them from contracting and exerting ten-
sion on the matrix. Consequently, the cell-embedded matrices
retained their original diameter of 20 mm and thickness of
1.3 mm as cast (Fig. 8(a) and (b)).

In the second category of cell-embedded matrices, after
allowing the cells to contract and apply tension for 48 h,
cell tension triggered global volumetric contraction of the
cell-embedded matrices. The expulsion of water from the
cell-embedded matrices as they were contracting was rapid,
facilitated by the use of sparse matrices with large pore sizes
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Fig. 8 Cell-mediated history response in biopolymer matrix. (a) Cell-embedded matrix of collagen (2 mg mL™?) with free external boundaries embedded
with 3T3 fibroblasts at a seeding density of 0.5 million per mL; cells were prevented from contracting by immediate application of blebbistatin after
seeding. (b) Representative confocal microscope image of matrix fibers from panel a. (c) Matrix from panel a showing permanent radial contraction of
53% after 48 h of cellular contraction, followed by release of cell forces by blebbistatin. (d) Representative confocal microscope image of matrix fibers
from panel c, indicating densification. (e) Schematic of a shear rheometer showing the matrix with relaxed cells (green) mounted between parallel plates
(grey), separated by glutaraldehyde-treated coverslips (blue) to prevent slippage. The top plate axially twists the cell-embedded matrix to apply a shear
strain of y = 0.35% at the outer edge, measuring the shear modulus Gg of the cell-embedded matrix. The diameters of the disk-shaped matrices,
measured from their digital images using Imaged software, were smaller than the 25 mm diameter of the rheometer plates, as shown. (f), (g) After 48 h of
contraction by 3T3 cells, followed by the release of cell forces, the permanently deformed matrix exhibited an increase in modulus Go (panel f) and an
increase in geometric heterogeneity j (panel g). For a 48-h incubation, cell-embedded matrices were appropriately incubated (see Methods) before
being mounted between the rheometer plates. (h), (i) Modulus (Go, panel h) and heterogeneity (7, panel i) of matrices embedded with fibroblasts (3T3) and
myofibroblasts (MF) applying tension for 24 and 48 h, followed by cell force release by blebbistatin. (j) For permanently deformed matrices, stiffness
(panel h) increased at higher heterogeneity levels (panel ). In panels f and h, each data point represents at least four independent samples, and in panels g
and i, at least six independent samples. Error bars indicate the standard error of the mean. * and ** indicate significance with p < 0.05and p < 0.01,
respectively.
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containing water, unlike the hyaluronic acid prevalent in real
extracellular matrices.**®>”° As a result, the contraction of the
cell-embedded matrices remained quasi-static, akin to our
models. The contracted cells were subsequently treated with
blebbistatin, enabling them to expand and release the tension”*
on the matrix, akin to the recovering inclusions in our models.
The final result was a profound and permanent radial contrac-
tion of the cell-embedded matrices by ~53% (Fig. 8(c)) and a
reduction in thickness by ~35%, leading to a marked ~6x
densification of the matrix between cells (Fig. 8(d) and ESL ¥
Fig. S14, S15).

To assess the incremental shear modulus of cell-embedded
matrices from both categories, we mounted each cell-
embedded matrix on the parallel plates of a shear rheometer
(Fig. 8(e)) and applied a low shear strain of 0.35% through a
small axial twist (see Methods). This setup ensured that stiff-
ness measurements remained unaffected by potential size
effects,®® as the sizes of all cell-embedded matrices exceeded
40 fiber lengths. The shear modulus (G,) was 13 Pa in the
absence of cell tension in the first category of cell-embedded
matrices (e.g., Fig. 8(a)) and increased by ~11-fold to 139 Pa
after the release of cell tension in the second category (e.g.,
Fig. 8(c)), demonstrating significant stiffening (Fig. 8(f)). This
stiffening was not solely attributable to the densification of the
matrix between cells, as G, exhibited a stronger-than-linear
dependence on matrix density (ESI,¥ Fig. S15), exceeding the
theoretical bound predicted from the linear scaling of modulus
with density.®® Instead, the stiffening of a cell-embedded con-
tracted matrix arose as the matrix between inclusion-
mimicking cells stiffened (Fig. 6(c) and ESL{ Fig. S7), modu-
lated by severely post-buckled fibers between cells taking on
tension as predicted by our model (Fig. 6(g)).

With our model linking this stiffening (Fig. 8(f)) to fiber
defects from severe post-buckling distortion (Fig. 6(g)), we
sought to quantify in experiments the role of these distorted
fibers in orchestrating the stiffening. Challenged by the diffi-
culty of segmenting individual fibers in a highly heterogeneous
matrix’> to accurately measure fiber defects, we instead quan-
tified microstructural heterogeneity by analyzing fluctuations
in pixel-level image intensities, where higher fluctuations indi-
cate greater heterogeneity, drawing inspiration from previous
studies.”>”* Given the pronounced heterogeneity at sub-fiber
scales,”> we measured microstructural heterogeneity (7) at
approximately 0.2 fiber lengths (6.6 pm), both in the absence
of cell tension in the first category of matrices (e.g., Fig. 8(b))
and after the release of cell tension in the second category of
matrices following 48 h of cell-induced tension (e.g., Fig. 8(d)).
Results revealed an =~ 13-fold increase in heterogeneity (7;
Fig. 8(g)) of permanently deformed matrices (i.e., those in the
second category), corroborating the elevated heterogeneity
trends predicted by our models (Fig. 6(b)). This increase in
the parameter 7 is particularly sensitive to the heterogeneity
arising from the dense accumulation of defects in distorted
fibers, as confirmed by our additional study showing no
increase in y from mere densification through the deposition
of undeformed fibers (ESI,T Fig. S16). Therefore, in light of the

This journal is © The Royal Society of Chemistry 2025
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established understanding that cell-matrix interactions are
primarily mechanical with minimal collagen synthesis’® or
degradation’” during the 48-h incubation period, our findings
show that cellular tension resulted in enduring changes in
stiffness (Fig. 8(f)) and heterogeneity (Fig. 8(g)) that persisted
even after cellular tension had been released, thereby imparting
mechanical memory within the matrix.

Recognizing the cell-induced history responses of the matrix
in our experimental setup, we assessed the potential of this
system to empirically link these responses to the extent of cell
tension. We conducted repeated experiments with two cell
types of differing contractility—3T3 fibroblasts and highly
contractile intestinal myofibroblasts’® (Applied Biological
Materials Inc., T0565). In assessing the permanent mechanical
remodeling of the matrix after 24 and 48 h of cell-induced
tension and its subsequent release, we found that myofibro-
blasts consistently induced greater stiffening than the 3T3 cells
at both time points (Fig. 8(h)). Furthermore, increasing cell-
generated forces by extending the duration of cell contraction
from 24 to 48 h significantly enhanced matrix stiffness for both
cell types, highlighting that stiffening serves as a marker of
mechanical memory within the matrix, linked to the magnitude
of cellular forces exerted during its loading history, regardless
of cell type. Similarly to stiffness, microstructural heterogeneity
within the permanently deformed matrix also increased with
elevated cellular forces (Fig. 8(i)). This suggests that enhance-
ments in matrix stiffness were accompanied by increases in
heterogeneity (Fig. 8(j)), aligning with our model prediction
(Fig. 6(h)). Thus, the stiffening response of the matrix, driven by
closely spaced cells (mimicking inclusions) undergoing con-
traction and recovery, intensified with increasing levels of cell
contraction prior to recovery, reflected in the accumulation of
permanent defects that manifested as increased geometric
heterogeneity within the matrix.

While these findings substantiate the core predictions of our
model, we recognize that its simplifications and assumptions
necessitate a careful assessment of the model’s limitations.
First, real fibrous matrices exhibit plasticity mechanisms
absent from our model, including interfiber crosslinking under
mechanical forces, fiber yielding upon excessive stretching,”® %"
and fiber bundle opening under strain.?” These processes likely
contribute to mechanical memory in experiments, suggesting
that observed responses arise from both plasticity-driven
effects and the geometry-driven memory predicted by our
model. Second, our model, designed as a minimal system with
four closely spaced inclusions, captures the fundamental phy-
sics of the problem but does not yield an exact quantitative
match with experiments on multi-cell matrices. Future exten-
sions incorporating more inclusions and addressing numerical
challenges (see Supplemental Notes 4 and 5, ESI{) will enable a
broader exploration of mechanical memory in fibrous matrices.
Third, our simulations were quasi-two-dimensional, whereas
experiments involve fully three-dimensional matrices. The rigor
of our model ensures that the mechanisms of fiber buckling
and postbuckling distortions remain qualitatively similar, and
the predicted heterogeneity-driven stiffening was corroborated

Soft Matter, 2025, 21, 3314-3330 | 3323


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00087d

Open Access Article. Published on 31 March 2025. Downloaded on 2/9/2026 11:07:04 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

by experiments. However, the degree of stiffening was some-
what lower in experiments, likely due to the more localized
influence of distorted fibers. Fourth, in contrast to the quasi-
static conditions in our model and experiments, real biopoly-
mer matrices often consist of a composite of collagen fibers
and hyaluronic acid. This composition can suppress fiber
buckling®? and initiate a time-dependent mechanical response,
presenting challenges in directly comparing our quasi-static
predictions. Fifth, unlike our model’s fixed stiffness contrast
between inclusions and matrix fibers, cell stiffness in real
tissues varies with contraction and recovery,® complicating
the cell-matrix interactions. Despite these limitations, our
findings highlight the independent role of matrix geometry,
beyond conventional plasticity, in encoding mechanical mem-
ory within disordered fibrous matrices.

Conclusions

Our numerical studies revealed that when a cluster of closely
spaced inclusions underwent contraction and recovery, the
matrix between them stiffened. This remodeling arose from a
spontaneously formed alignment gradient in the matrix micro-
structure during inclusion contraction, which induced compressive
confinement on the inclusion cluster during recovery, leading to
multiaxial compression in the matrix within the cluster. This state
of compression was exacerbated when the initial inter-inclusion
spacing was small, bringing the matrix to a mechanical state
wherein it stiffens. While this stiffening behavior may resemble
prior studies where inert inclusions in fibrous matrices were forced
closer together under uniaxial compression,>®*” our approach
fundamentally differed. Here, the inclusion centers permanently
moved closer together without external forcing, driven solely by the
contraction and recovery of the inclusions.

Extending a recent study that suggested the contraction of
multiple closely spaced inclusions typically softens the matrix,*
our study demonstrated that the matrix stiffens as those contracted
inclusions recover. Combining our numerical findings with experi-
mental corroboration that stiffening occurs in disordered biopoly-
mer matrices with closely spaced cells upon the release of cell
tension, we demonstrate the potential of the matrix to record cell
loading history. These results underscore the pivotal role of matrix
geometry in driving mechanical memory formation, alongside
traditional plasticity mechanisms such as inter-fiber cohesion
and fiber yielding. Looking ahead, this geometry-driven mechanical
memory provides promising directions for estimating cell forces on
synthetic fibrous substrates lacking traditional plasticity mechan-
isms (for example, ref. 84) and refining design strategies for fibrous
metamaterials.®>%°

Methods

Inclusion-matrix models and finite element simulations

We used quasi-two-dimensional discrete fiber models to emu-
late fibrous matrices of collagen with randomly organized
fibers, employing an algorithm developed and validated in
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previous studies.
sions were embedded in the matrix (Fig. 1(a) and (b)) to mimic
contracting cells, following established modeling strategies.*®
The matrix-generating algorithm utilized a simulated
annealing-based optimization approach to move nodes and
swap fibers between different nodes in two dimensions, iterat-
ing until it achieved a prescribed average fiber length (L¢) and a
nodal connectivity of 3.4. This nodal connectivity is a subiso-
static value, below Maxwell’s isostatic threshold of twice the
system dimensionality,’” and is consistent with observations
from collagen imaging studies.’*®*® During deformation, matrix
fibers were allowed to cross without connecting, maintaining
the structural fidelity of three-dimensional collagen. The exter-
nal dimensions of the matrix models were set to 23L¢. The
algorithm to generate the matrix is freely available in a
public repository at the link provided in the Data and Code
Availability statement. These quasi-two-dimensional models
efficiently captured evolving microstructures and nonlinear
mechanical responses characteristic of three-dimensional
fibrous matrices,***'** consistent with the demonstrated appli-
cability of two-dimensional models for replicating the mechanics of
three-dimensional fibrous matrices.'®?*3%5%9

In finite element simulations, fibers were modeled as linear
elastic Timoshenko beams. To replicate the mechanical proper-
ties typical of fibers in collagen matrices,"®'*°"** the shear
stiffness of fibers was set to half the axial stiffness, with a
bending-to-axial stiffness ratio of 1 x 10~*, making the fibers
highly susceptible to bending. A mesh convergence study (ESL, T
Fig. S17) demonstrated that discretizing each fiber into two
three-node quadratic beam elements was sufficient to capture
essential fiber mechanics while preventing numerical locking.
Our prior work®***® also indicated the effectiveness of this
discretization approach, further supporting its adoption here.
Welded nodes connected the fibers, transmitting both forces
and moments. While nodes remained permanently welded, ensur-
ing no changes in the nodal connectivity of fibers, they were
permitted to translate spatially in response to mechanical strain;
this configuration enabled fibers to realign through both rigid
body movements and elastic deformations, such as axial stretch-
ing, compression, bending, and buckling. Circular inclusions with
diameter 2L, mimicking the typical size of cells in fibrous extra-
cellular matrices in soft tissues,*® were embedded using estab-
lished techniques.>*** Briefly, in order to maintain the structural
fidelity of the three-dimensional matrix, fibers intersecting the
inclusion periphery were trimmed, while those passing through
were preserved. The inclusions were discretized into three-node
continuum triangular elements, with two-node linear beam cross-
links rigidly connecting them to the matrix. Inclusions transfer
forces and moments to the surrounding matrix. To ensure that the
strain in each inclusion matched the strain on the matrix, we
assigned the inclusions and cross-links stiffness values tenfold
greater than the axial stiffness of the matrix fibers. An ill-
conditioning test confirmed that this setup did not skew stiffness
measurements in the permanently deformed matrix (ESL Fig.
S18). This design preserved the circular geometry of the inclusions
during their uniform radial contraction and recovery.

This journal is © The Royal Society of Chemistry 2025
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Finite element simulations were performed in Abaqus (Das-
sault Systemes), employing two load steps. In the first step the
inclusions contracted while in the second, they recovered to
their original sizes. Throughout both steps, the external matrix
boundaries remained free. The inclusions were modeled as
continuum linear elastic bodies, ensuring force equilibrium
and kinematic compatibility with the matrix during contraction
and recovery, consistent with ref. 24. This was achieved using
Abaqus’s thermal loading feature to impose a prescribed radial
strain on the inclusions. This approach contrasted with some
prior studies,””*>*# in which inclusion contraction was simu-
lated by moving boundary nodes to ensure kinematic compat-
ibility but without guaranteeing force equilibrium with the
matrix. Our method accurately captured inclusion-matrix
mechanical interactions under free external boundaries. Here,
engineering strain represent the radial strain (¢,) of the inclu-
sions, following practices from prior studies.>*>° The simula-
tions were conducted on an implicit dynamic quasi-static solver
with the nonlinear geometry option enabled to account for
large local deformations and mechanical instabilities within
the matrix, as described in prior studies.?®>**"7>% Further
justification for employing the implicit dynamic solver is
provided in Supplemental Note 4 (ESIT). While employing a
slightly underdamped system allowed physically relevant fiber
buckling events to occur without excessive smoothing, our
choice of damping parameters and adaptive time stepping
maintained quasi-static conditions by keeping the kinetic-to-
strain-energy ratio below x~5% for numerical stability, yet
above ~0.5% to avoid artificial viscoelastic effects (Supple-
mental Note 5 and Fig. S19, ESIt). Every simulation presented
in this study was conducted using seven independent
inclusion-matrix models, each created with a distinct random
seed for assembling the fibers within the matrix.

Characterizing matrix mechanics in numerical models

Fiber mechanical states. The extent of fiber buckling, where
buckled fibers are referred to as defects in this study, was
measured as the excess length between a fiber’s contour and its
node-to-node distance. The sum total of the excess lengths across
all fibers in a defined region of interest represented the total
length of defects, &., produced during inclusion contraction.
Similarly, during inclusion recovery, additional defects imparted
on individual fibers were quantified as the increase in excess
lengths, A&, and their sum across all fibers in the region of
interest represented the total length of defects produced by the
inclusion recovery process alone, ¢,. Finally, the total length of
permanent defects in the region of interest, £, was calculated as
the sum of the defects produced during inclusion contraction, &,
and those produced during inclusion recovery, &,. To report the
proportion of tension fibers in the matrix region of interest, the
total length of tension fibers, L., within the region of interest was
measured using established strategies*'*** and normalized by the
total length of all fibers, L, in the same region.

Microstructural gradient. To quantify changes in the matrix
microstructure following the contraction of inclusions, we
calculated the spatial variation in fiber alignment (S) with
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respect to the radial distance r from the geometric center of
the inclusion cluster. This spatial variation, referred to as the
microstructural gradient, is denoted as dS/dr. The parameter S
is defined as the average extent to which fibers align radially
with the cluster center, relative to their reference orientation,
within the region surrounding the cluster (ESLT eqn (S3)).
Absolute value of dS/dr was normalized by multiplying with
the average fiber length, L.

Several alternative methods exist for quantifying fiber orien-
tation in two-dimensional fibrous matrices, including mean
intercept length, line fraction deviation, Fourier transform
method, and structure tensor analyses, among others.”> While
these approaches primarily capture global orientation distribu-
tions or anisotropy, our parameter S quantifies the relative
radial alignment of fibers with respect to the cluster center,
providing a localized measure of orientation change due to
mechanical forces. Conceptually, S shares similarities with the
structure tensor in that both describe average fiber alignment.
However, whereas the structural tensor represents a second-
order orientation distribution, S is a first-order measure that
directly quantifies relative radial alignment and enables the
computation of its spatial gradient (|dS/dr|), allowing us to
track localized microstructural evolution.

Matrix density and heterogeneity. To assess matrix density,
p, we employed a kernel density estimation of material points
distributed along the fibers, where dense aggregations of
material points indicate high matrix density, building on
methodologies described in ref. 96. To evaluate the impact of
permanent defects on geometric randomness in the perma-
nently deformed matrix, we measured a heterogeneity para-
meter y, analogous to metrics used in prior studies to
characterize heterogeneous displacement fields in fibrous
matrices.>>”>%71% To quantify y, we performed the Fourier
transform of the absolute permanent displacement field within
the region of interest, calculating the energy of displacement
fluctuations across wave numbers. The sum of these energies
represented the total spectral energy of the displacement field
(ESL T eqn (S4)), reflecting the geometric heterogeneity induced
by the contraction and recovery processes of the inclusions.

Matrix stiffness. The incremental bulk stiffness (k) of the
matrix region of interest was determined after each load step
(i.e., following the radial contraction and subsequent recovery
of inclusions at a given contraction level) by calculating the
second-order derivative of the total strain energy of all consti-
tuent fibers with respect to their total defects (£), capturing
changes in internal resistance to incremental increases in fiber
defects (ESLT eqn (S5)). This method is inspired by ref. 101,
with broader conceptual parallels to incremental stiffness
measures used in architected materials design.'®

In fibrous matrices, the mechanical response is dictated by
the local kinematic states of individual fibers, necessitating
descriptors that extend beyond classical strain measures. Pre-
vious studies have introduced new internal variables to capture
fiber-level kinematics such as fiber rotation®" and fiber
buckling,* which influence matrix behavior at length scales
spanning multiple fibers. Building on this framework, we
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define ¢, the total excess length of all fibers due to their
persistent buckling defects, as an internal variable that char-
acterizes the evolving mechanical state of the matrix region of
interest.

Since the fibers of the encompassed matrix within the
cluster retain a random spatial organization throughout defor-
mation (Fig. 2(d) and 3(d)), defect accumulation occurs without
directional bias at the bulk scale of this encompassed matrix.
As aresult, ¢ serves as an isotropic microstructural descriptor of
bulk-like deformation in fibrous matrices. Consequently, the
second-order derivative of the strain energy with respect to ¢
provides a measure of the incremental bulk stiffness of
the encompassed matrix within the cluster, offering a bulk-
like stiffness descriptor that generalizes bulk modulus
concepts for disordered fibrous matrices in a physically
meaningful way.

Experiments on collagen matrices

Collagen matrix with embedded cells. NIH 3T3 fibroblasts
and intestinal myofibroblasts (Applied Biological Materials
Inc., T0565) were cultured in high-glucose Dulbecco’s Modified
Eagle’s Medium supplemented with 10% fetal bovine serum
and 1 x Penicillin-Streptomycin at 37 °C in a 5% CO, atmo-
sphere until they reached 90% confluency. For experiments in
the collagen matrices, cells were detached from the dish using
0.05% Trypsin-EDTA, centrifuged at 150g for 5 min, and
resuspended in fresh culture media prior to cell count mea-
surements using a hemocytometer. Each cell type was cultured
and processed separately in their respective experiments, with
NIH 3T3 fibroblasts or intestinal myofibroblasts seeded at a
density of 0.5 million per mL into neutralized rat tail collagen I
(Corning, Inc.) matrices with a final collagen concentration of
2 mg mL~" and an average fiber length of 32 um, based on prior
protocols.*”*® These cell-collagen mixtures were cast into
disks 20 mm in diameter and 1.3 mm in thickness on pluronic
acid-coated glass-bottom dishes in order to prevent fiber adhe-
sion to the glass. Following polymerization at 22 °C for 30 min,
the matrix formed a sparse, randomly organized fibrous struc-
ture (Fig. 8(b)). Cell culture media was added to help detach the
matrices from the glass surfaces. The cell-embedded matrices
were then incubated for either 24 or 48 h, as detailed in the
Results, to allow cells to adhere to the matrix and apply local
tension to fibers, thereby inducing global matrix contraction.
Following the specified incubation periods, matrices were
treated with blebbistatin (concentration 100 pM) in order to
release the cell-induced tension in the fibers.’®* A control set of
matrices was prepared in which the development of cell tension
was immediately inhibited after seeding the cells in the matrix
by applying blebbistatin.

Rheometry of the cell-embedded matrix. A commercial
rheometer (DHR-3, TA Instruments) characterized the stiffness
of the cell-embedded matrices, both with and without being
remodeled by cells, at 22 °C. The disk-shaped matrices were
firmly gripped between two glass coverslips that had been
functionalized with 0.5% glutaraldehyde and 0.5% (3-
aminopropyl)triethoxysilane in order to prevent slip. Coverslips
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were affixed to the 25 mm flat plates of the rheometer with
double-sided adhesive tapes. The spacing between plates was
zeroed for calibration, then adjusted to mount the sample
(matrix). The permanently deformed matrices varied in dia-
meter from 9-12 mm and thickness from 350-650 pm, con-
trasting with their original dimensions of 20 mm diameter and
1.3 mm thickness prior to cell contraction. Following a prior
study,® the matrices were probed using a step input low shear
strain of 0.35% by axially twisting them, as schematically
depicted in Fig. 8(e). This method introduced a controlled
incremental, low magnitude strain to the matrices that had
already exhibited residual deformation, ensuring that the
incremental response not only remained linear within the
viscoelastic limits but also stayed above the noise floor of the
rheometer'® (ESL Fig. S20b and c). The rheometer measured
the relaxation modulus as a function of time beginning when the
constant probing strain was applied, and these data were
fitted to the standard linear solid model to determine G,, the
modulus immediately after applying the probing strain. This
modulus, G,, reflects the linear tangent modulus—or the
incremental modulus—at the residual strain of the remodeled
matrix. This measure conceptually aligns with the incremental
measures of stiffness employed in our computational models.
Further details on the computation of G, are in ESLf
Fig. S20a and b.

Imaging matrix fibers. Matrix fibers were visualized using a
Zeiss LSM 710 confocal microscope equipped with a Ti-
Sapphire Laser (Spectra Physics Mai Tai). Second harmonic
generation confocal imaging was performed by exciting the
matrices with a two-photon laser tuned to 780 nm, using a 40 x
water immersion objective with a numerical aperture of 1.2
(Zeiss). To assess the heterogeneity of the matrix geometry,
image stacks were acquired with a step size of 1 um and
scanned at 1024 x 1024 pixels with a pixel size of 0.208 X
0.208 pm?, and recorded on Zen software. Matrix heterogeneity
was analyzed by subdividing each image into 32 x 32 pixel
subsets (6.6 x 6.6 um”) and computing the Fourier transform of
pixel intensities for each subset to quantify the fluctuation
energy of intensity across wave numbers. The aggregate of these
energy values provided the total spectral energy of the intensity
field for each subset, which was then averaged across all
subsets within an image to quantify the geometric heterogene-
ity of the matrix (7; ESL,T eqn (S6)), reflecting its permanently
remodeled state following the contraction and recovery of cells.
For each matrix sample, 7 was averaged across five representa-
tive images from distinct regions of interest. In the Results, 7
was normalized by the average matrix heterogeneity measured
under conditions of inhibited cell contraction.

Statistical analysis

Statistical analysis was performed using MATLAB R2023b, with
the Wilcoxon rank-sum test applied for comparisons between
two groups. This test was selected because it is suitable for
assessing differences between independent groups when nor-
mality cannot be assumed. Statistical significance was defined
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as p < 0.05, with * and ** denoting p < 0.05 and p < 0.01,
respectively.

Nomenclature

The following terms are used consistently throughout the paper.
Fibrous matrix (matrix)
Structure constituted by an intricate network of fibers.
Fibers (matrix fibers)
Fibers that constitute the fibrous matrix.
Mechanical remodeling
Mechanical strain-driven structural deformation of
the fibrous matrix, independent of biochemical activ-
ity. Permanent deformation arising purely from geo-
metric effects is referred to as permanent mechanical
remodeling.

Variables in numerical simulations

L¢ Average fiber length in the fibrous matrix.

& Inclusion radial contraction.

Oref Reference inter-inclusion spacing in the cluster.

01 Inter-inclusion spacing in the contracted cluster.

0y Inter-inclusion spacing in the recovered cluster.

e Total length of fiber defects (excess lengths) produced

by inclusion contraction within the cluster.

A&e Defect (excess length) in individual fibers produced
during inclusion recovery.

& Total length of defects inside the cluster produced
during inclusion recovery.

¢ Total length of permanent defects within the recov-
ered cluster.

Legs Total length of fibers under axial tension within the
recovered cluster.

L Total length of all fibers within the recovered cluster.

S Relative radial alignment of fiber with the geometric
center of the cluster.

r Radial distance from the cluster center.

P Physical fiber density of the matrix within the cluster.

X Geometric randomness imparted in the matrix due to
inclusion contraction and recovery.

k Incremental bulk stiffness of the matrix within the
cluster.

Data availability

The supporting data for this study are included in the main text and
ESLT The code for generating the fibrous matrix is publicly available
at https://github.com/jknotbohm/fiber_network_model. Scripts for
finite element input file generation and experimental image proces-
sing, along with representative examples, are available at https:/
github.com/mainak-git-cloud/inclusion_matrix_models.
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Appendix A

Table 1 Matrix mechanics during inclusion recovery

Step Description Key observations

Permanent reduction in
inter-inclusion spacing.
Inclusions recover

against increasing con-

Recovery of cluster Inclusions recover their
inclusions original size.
Geometric con- A high microstructural
finement sur- gradient generates con-
rounding cluster fining pressure sur- fining pressure, inducing
rounding the cluster, post-buckling distortions
leading to fiber buckling in matrix fibers within
during inclusion the recovered cluster.
recovery.

Recovery induces new
buckling-mediated
defects that superimpose
pre-existing defects from
inclusion contraction.
History-dependent The magnitude of per-

Defect generation
within cluster

Accumulation of perma-
nent defects.

Higher inclusion con-

response manent defects reflects traction and a steeper
the loading history of the microstructural gradient
matrix. result in more pro-
nounced permanent
defects.
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