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1. Introduction

Statistical mechanics of cell aggregates:
explaining the phase transition and paradoxical
piezoelectric behavior of soft biological tissues

*°¢ and Pradeep Sharma (2 *¢

Pratik Khandagale, 2 ° Hao Lin, ©2° Liping Liu
Piezoelectricity in biological soft tissues is a controversial issue with differing opinions. While there is
compelling experimental evidence to suggest a piezoelectric-like response in tissues such as the aortic
wall (among others), there are equally compelling experiments that argue against this notion. In addition,
the lack of a polar structure in the underlying components of most soft biological tissues supports the
latter. In this paper, we address the collective behavior of cells within a two-dimensional cell aggregate
from the viewpoint of statistical mechanics. Our starting point is the simplest form of energy for cell
behavior that only includes known observable facts e.g., the electrical Maxwell stress or electrostriction,
resting potential across cell membranes, elasticity, and we explicitly exclude any possibility of
electromechanical coupling reminiscent of piezoelectricity at the cellular level. We coarse-grain our
cellular aggregate to obtain its emergent mechanical, physical, and electromechanical properties. Our
findings indicate that the fluctuation of cellular strain (E) plays a similar role as the absolute temperature
in a conventional atomistic-level statistical model. The coarse-grained effective free energy reveals
several intriguing features of the collective behavior of cell aggregates, such as solid—fluid phase transi-
tions and a distinct piezoelectric-like coupling, even though it is completely absent at the microscale.
Closed-form formulas are obtained for key electromechanical properties, including stiffness, effective
resting potential, critical E2-temperature (or fluctuation) for solid—fluid phase transitions, and apparent
piezoelectric coupling in terms of fluctuation and electric potential regulated by active cellular

processes.

combined activities of numerous ion channels and molecular
pumps induce a long-term, steady-state electric potential
difference across the cell membrane.” The propagation of

Cell aggregates or tissues are composed of individual cells,
intricately organized with notable variability in their shapes,
sizes, and spatial arrangements. Each constituent cell is struc-
turally complex, featuring a bilipid membrane interspersed
with ion channels and molecular pumps. Enclosed within this
membrane are cytoskeleton, cytoplasm, and various organelles.
The hierarchical structures and complex interplay of biophysi-
cal processes within cells give rise to intriguing electromecha-
nical properties of single cells and cell aggregates. In particular,
the bilipid membrane and cytoskeleton provide shear resis-
tance and maintain the structural integrity of a cell;" the
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changes in transmembrane potentials mediates cellular signal-
ing and regulates critical biophysical processes.> Conversely,
mechanical deformations can regulate ion channels and
pumps, inducing cellular bioelectricity within cell aggregates.
These electromechanical couplings provide the funda-
mental physical mechanism underlying biological functions,
including cellular adhesion, migration, differentiation, and
mechanosensing.*”®

Cells in an aggregate interact with each other both mechani-
cally and electrically. The resulting electromechanical proper-
ties of cell aggregates or tissues are derived from the collective
behavior of individual cells, leading to properties and function-
alities that are significantly richer than those of a single cell.
For example, cell aggregates reversibly transition between a
rigid solid-like phase and a floppy fluid-like phase referred to as
a solid—fluid phase transition, which plays a critical role in the
biological function of living tissues.’®"” This phase transition
can be actively regulated by transmembrane potential.*>*
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Currently, several mechanisms have been proposed to
explain the solid-fluid phase transition in cell aggregates.
These include a topological transition which promotes tissue
fluidization by relaxing elastic stresses over longer time
scales;'%***? the sliding of coherent cells within the aggregate,
where external forces induce gradual rearrangements of cell
conformations;>" and transitions driven by the density of multi-
cellular vertices (rosettes) and intracellular tensions.”* Within a
tissue, cellular deformation and electric potential exhibit con-
siderable fluctuation and variability. The fluctuation in cellular
shape and size can be readily quantified, providing valuable
insight into the physiological stage of the tissue.>*

The true nature of the electromechanical behavior of soft
biological tissues has attracted repeated controversy. Claims
have been made regarding the piezoelectricity of these tissues
¢f. Fukada and reference therein®® and even the presence of
ferroelectricity.>® Convincing counter-arguments have been
made against this by Lenz et al.,”” who argue that the obser-
vable electromechanical coupling is due to Maxwell stress or
electrostriction. In an interesting turn of events, in a more
recent work, we turn full circle where Ikushima et al.*® high-
light ultrasound experiments that do appear to indicate the
presence of piezoelectricity in aortic wall tissue.

Existing approaches to modeling cells and their aggregates
can be broadly divided into three categories: agent-based
models, continuum models, and statistical models. The
agent-based approach treats a single cell as a homogeneous,
isotropic, elastic, and spherical body.”**> While this approach
is valuable for studying the interaction of individual cells with
each other and with their environment,*3* its applicability to
the macroscopic behavior of cell aggregates remains limited.
Continuum models for cell aggregates,>***' by contrast, are
well-suited for modeling large-scale phenomena where aggre-
gate properties vary smoothly over length scales spanning
several cell diameters. These models effectively capture the
macroscopic response of cell aggregates and can be extended
to incorporate additional physical phenomena such as inter-
cellular interactions and formation of cell aggregates.*”> For
instance, a continuum description of cell motility, driven by
cell-cell and cell-ECM (extracellular matrix) interactions, was
developed using a non-local interaction term to account for
adhesion between cells and between cells and the ECM.**™*
Despite these successes, continuum approaches fall short in
capturing the inherent variability in cellular deformation
and electric potential within tissues. In contrast, statistical
models provide a robust framework for addressing these
limitations.***® By applying the framework of statistical
mechanics to cell aggregates, we can effectively describe the
mechanical and electrical fluctuations observed in tissues,
bridging the gap between microscopic cellular properties and
macroscopic tissue behavior. As discussed below, this approach
also allows for a quantitative analysis of deformation and
electric potential fluctuation, offering deeper insights into the
emergent electromechanical properties of cell aggregates.

The method of statistical mechanics has been employed in a
number of studies on cells and their aggregates. A recently
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developed theory>>*" addressed the active processes in cells to
provide insights into cell size distribution. They extended that
work to include electrical fields to establish the threshold
electrical fields that can be sensed by a cell.>® The work'® based
on non-equilibrium statistical mechanics and a 2D vertex
model was able to capture mechanical instabilities in cell
aggregates. The study in ref. 53 for active matter (living cells)
focused on steric and aligning interactions and interactions
driven by shape changes. The impact of thermal fluctuations in
polarization on the renormalization of the flexoelectric cou-
pling coefficient of cell membranes has also been studied using
statistical mechanics.’® However, none of the existing models
incorporate both the mechanical and electrical fluctuations
and inter-cellular interactions for cell aggregates.

In this work, we propose an electromechanical model to
describe both single cells and cell aggregates based on struc-
tural symmetries and derive its macroscopic continuum limit.
Notably, our starting point for the microscopic model (at the
cell level) does not include any piezoelectric behavior and
simply takes cognizance of the fact that there is a resting
potential across the cell and the presence of electrostriction
(which is exhibited by all materials). Fluctuations in geometric
parameters, such as cell area and aspect ratio, can be effectively
quantified through the analysis of tissue micrographs. Notably,
the fluctuation in strain—later referred to as the E*
temperature due to its analogous role to absolute temperature
in classical thermal physics—serves as a quantitative measure
of the inherent system variability.>> Our resulting coarse-
grained electromechanical model for cell aggregates is particu-
larly well-suited for applications to epithelial tissues, which
consist of flattened, tightly packed cell layers. However, our
insights are broader and transferrable to other tissue config-
urations. Based on the coarse-grained model, we investigate the
macroscopic electromechanical behavior of cell aggregates,
demonstrating that effective electromechanical coupling and
solid-fluid phase transitions arise from the collective cellular
interactions. These resolve the existing paradox in the litera-
ture. The emergent properties depend on the E>-temperature.
The quantitative dependence of effective resting potential,
tissue stiffness, T1-transition rate, viscosity, and critical point
for solid-fluid phase transition on the E*-temperature could be
validated by experimental observations. Such comparisons
open the door to understanding how fluctuation and variability
contribute to tissue behavior in different biological contexts,
making the E>-temperature an experimentally testable concept
for linking microscopic fluctuations with macroscopic emer-
gent properties.

1.1. Central premise

Following the paradigm of statistical mechanics, we treat a cell
aggregate as a canonical ensemble of many cells. We borrow
the terminologies and methodology from statistical mechanics
with the caveat that the fluctuation or variability of the system
mainly arise from biological active processes (e.g. growing,
diffusion, etc.), defects, inhomogeneities, among others,
instead of the actual thermal agitations. Therefore, the

This journal is © The Royal Society of Chemistry 2025
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benchmark energy scale (kT = 1/f) used in this work is a
phenomenological constant; the fluctuation or variability in
cellular states arises not only from thermal agitations but also
from many other passive and active processes that entail
“equilibrium” of the system at the observation time-scale.
The collection of cellular strains and electric potentials in a
cell aggregate are assumed to describe the microstates of the
system. For their collective properties in a cell aggregates, we
first propose a single-cell Hamiltonian based on the underlying
structural symmetries and experimental observations of
their electromechanical responses. We employ the mean-field
approximation, which allows for an analytical solution of the
model and yields a closed-form expression for the effective free
energy of cell aggregates. Based on this effective free energy, we
present several experimentally testable predictions, including
the macroscopic electromechanical properties, the solid-fluid
phase transitions observed in cell aggregates, and their depen-
dence on the E>temperature and average electric potential
regulated by active processes.

2. An electromechanical model for cell
aggregates

We are interested in the macroscopic electromechanical
response of a cell aggregate as illustrated in Fig. 1(a). We first
introduce independent state variables for describing physical
and geometrical configurations of cells and their aggregates.
Fig. 1(a) shows a schematic of a typical amorphous cell aggre-
gate. We idealize the cell aggregate as a tessellation of a plane
by equal-area polygons as illustrated in Fig. 1(b). Denote by
C;=R? the polygon/domain occupied by the ith cell, A the area

®)

Fig. 1 Cell aggregate and single cell. (a) A typical cell aggregate (plated
Madin-Darby Canine Kidney cells, Courtesy of K. Irvine). (b) Geometrically,
a cell aggregate is regarded as a tessellation of a plane by polygons. (c)
Schematic of a single cell occupying a regular hexagonal domain (n = 6)
and (d) a deformed hexagon, where ¢, x;, y; is the position of the centroid of
the cell, the jth vertex of the cell in undeformed and deformed configu-
ration, respectively.

This journal is © The Royal Society of Chemistry 2025
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of the polygon C;, and ¢; the spatial positions of the centroids of
cells. For simplicity, we assume that each cell precisely occupies
the Voronoi cell associated with {c;: i = 1, ..., N}.°® Though it is
tempting to employ the centroids of cells as the fundamental
state variables, a reasonable physical model or Hamiltonian for
the tessellation in terms of {c;: i = 1, ..., N} must be interacting
and permutation invariant, and hence not amenable to sys-
tematic perturbation methods. On the other hand, for cell
aggregates illustrated in Fig. 1(a), we see that the shapes of
cells and statistical properties of aspect ratios are good indi-
cator of different physiological stages of cell aggregates (or
tissues) which, presumably, dictate the physical properties of
cell aggregates as well.>>*”® Therefore, we choose the defor-
mation or strain as one of the independent state variables for
the cell aggregate.

Unlike crystalline solids for which there exists a natural
reference configuration (i.e., crystalline lattice), at least locally,
for defining the deformation and strain, a cell aggregate is
amorphous whose deformation or strain, strictly speaking,
cannot be defined for a single current configuration. Never-
theless, neglecting the compatibility requirement for neighbor-
ing cells, “strain” could be defined for each individual cell by a
few alternative procedures. The essence of these procedures is
such that the introduced strain tensor E € Rfyﬁ is a measure of
orientation and aspect ratio of individual cells and the under-
lying arrangement of cells. In particular, we require that the
strain tensor E € R satisfy the following.

(R1) The strain E = 0 if the cell is a regular polygon.

(R2) For small strains with |E| « 1, the ratio of eigenvalues
of strain tensor E € IRZan% measures the “aspect ratio” of
the cell.

(R3) For small strains with |E| « 1, the eigenvectors of
strain tensor E € ngﬁ defines the “orientation” of the cell.

As a tessellation of a plane, cells in aggregates occupy
polygonal domain C with n vertices y; (j = 1,.. .,n). As illustrated
in Fig. 1(a), typically n = 4, 5, 6, 7 from experiments. Suppose a
cell occupies an irregular hexagon as in Fig. 1(d). We choose the
regular hexagon of the same area in Fig. 1(c) as the reference
undeformed configuration.

Below we introduce two procedures to identify the strain
tensor E associated with a single cell in the regime of small
strain (|E| « 1).

(i) Let x; (j = 1,...,n) be vertices of the regular n-gon centered
at the origin:

{ 2n . 4]'275}
X; = rom;, m; = |cos—, sin—|,
n n

(1)

1
where r (Ao :Enrozsin(Zn/n)) is such that the area of the

regular n-gon equals the area of the cell. By the method of least
square, we can in general define a deformation gradient F €
R?**? and a translational vector u, € R? for the cell:

min{L(EuO) = Z ]yj - Fx; — u0|2:F eR>2 u) € Rz}.
=1
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Let u; =y; — x; be the displacement of the ith vertexand H=F — I
the unsymmetrized strain (I € R**? is the identity matrix). We
write L(F, u,) as
n
L(H, uy) = Z [\u,— —ug|*—2(u; — up) - Hx; + x; - H'Hx;|.

i=1

By the first-order necessary conditions we have

8L n

=55 = —u; + Hx;) + nuy,
28[10 ;( ) 0
8L n n

ozﬁ:7Z(u,-fu0)®x,»+HZXf®Xh

i=1 i=1

which imply that

1 n 1 n
Uy :;;“/7 F:I—i-%;u;@mj'

From classical continuum mechanics, the linearized sym-
metric strain for the cell can be written as

1 1§
E=p(F+F)—I=g 2 (womtmou). @)

(ii) A second procedure to determine the strain tensor is
through the normalized second moment of the current position
vector. For a polygon C illustrated in Fig. 1(d), without loss of
generality we assume the centroid is at the origin: ¢ =
Joyda=0. Then the normalized second moment tensor is

given by
1
B = —J y ® yda, 3)
Jnle
nr04 . . .
where J, = K(“ sin(2n/n) + sin(2n/n)) is the second moment

tensor of a regular n-gon of the same area (cf. Fig. 1(c)). Suppose
that the current shape C is obtained by deforming the regular n-
gon Cy with vertices given by x; in (1), i.e., y; = Fx;. The second
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normalized moment tensor is given by

B= ij (Fx) ® (Fx)da = FFT.
e,

Then the strain tensor may be defined as
E=(8)" -1, (4)

which clearly fulfills the previously mentioned requirements
(R1)-(R3).

We remark that strains defined by (2) and (4) coincide to the
leading order for small strains with |E| « 1 and both of them
have been used to quantify experimental and numerical
results.”>”” Also, for hexagons the shape index®” or perimeter
(p)-to-sqrt of area (\/Z) ratio can be expressed as a function of
strain E:

9

5 \/§<6+1—6
~ 3
34

EF)
~ 3.72 4+ 0.35|E|%. (5)

>
i
N

2.1. Strain from rearrangement of cells

As for crystalline solids, significant strain can be generated by
structural rearrangement of cells from the viewpoint of cen-
troid positions. Such a transformation strain cannot be char-
acterized by the two definitions ((2) and (4)) of strain tensor. As
illustrated in Fig. 2, in a rearrangement process called T1-
transition commonly observed in the development of epithelial
tissues, neighboring cells exchange their positions through a
reorganization of intercellular junctions without significant
changes in the shape of individual cells. Though the final
configuration in Fig. 2(c) in Ti-transition is a deformed
configuration relative to the initial configuration in Fig. 2(a),
the strain calculated by either (2) or (4) vanishes for every cell.
To remedy this issue, we observe that, as a cluster of cells, the
final configuration in Fig. 2(c) can be obtained by compressing
(and stretching) the initial configuration in Fig. 2(a) in

o o

0[:>ool:>00

o o

Fig. 2 Ti-transition in cell aggregates. Cell aggregates undergo rearrangement in which neighboring cells exchange their positions through a
reorganization of intercellular junctions without significant changes in the shape of individual cells and transition from (a) initial configuration to (b)

intermediate configuration to (c) final configuration.
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y-direction (in x-direction). The strain associated with this
deformation process may be identified as

=22y O ©)

where the T1-transition strain y* ~ 1 is beyond the regime of
small strains and will be determined later from empirical data.

To summarize, we note that both definitions of the strain
tensor, (2) and (4), encounter difficulty in consistently captur-
ing the local structural rearrangements of cells. This limitation
arises from the inherent complexity of cellular configurations.
In this work, we take a pragmatic approach and treat the strain
tensor E as an “order parameter” as in the framework of
Landau’s phenomenological theory.>®®® In this context, the
precise mathematical definition of strain tensor E beyond the
regime of small strain is secondary, as long as it qualitatively
reflects the key geometric characteristics—namely, the shape
changes and structural arrangement of the underlying cells. By
adopting this perspective, the strain tensor serves as a con-
venient and effective state variable for quantifying the geometry
and arrangement of cells in a cell aggregate and can be
confidently computed by either (2) or (4) in the regime of small
strain.

In addition to elasticity, we will consider electric interac-
tions between cells. Cell aggregates, in spite of adhesion
between them, in general, are immersed in an extracellular
matrix (ECM) whose electric potential may be assigned as the
ground potential. Ionic channels, i.e., specialized protein struc-
tures embedded in the cell membrane, allow selective passage
of ions (e.g., Na*, K", Ca®", Cl, etc.) across the membrane. This
selective transport ensures and maintains a resting membrane
potential ¢&*, which is essential for numerous biological
functions.” For simplicity, we assume the interior of each cell
is of equipotential. The actual potential of the ith-cell, denoted
by ¢&;, could be significantly different from the resting potential
&* due to electromechanical coupling and other passive or
active transport processes in cell aggregates.

In summary, for a phenomenological model of cell aggre-
gates we assume that the state of the cell aggregates are
completely described by the strain tensor and electric potential
of cells:

(E;, &) €D , &) e R¥2 x R, TrE = 0}

sym

{(E, )(E )

where the constraint TrE = 0 arises from the incompressibility
of cells. For brevity and future convenience, denote by s, 5, s’ the
collection of state variables of N-cells, the average, and their
deviations:

s ={E;, &}, e D,

| X
= NZ (E;, &) eD, 8
=1

"= g—5eDV.

i)
I
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2.2. Energetics

In line with standard practices in physical modeling, we
formulate the electromechanical model for cell aggregates via
an energy function. As illustrated in Fig. 1(d), we consider a
single cell from the aggregate with strain-electric potential
(E, &) € D and propose that the cellular energy is given by

6*)|E|2>A7
)

where A is the area of the cell, and g, y* (~1),¢, 4 > 0and &%, K
are constant model parameters. Physically, the energy terms in
(9) are motivated from the following consideration. The first
term characterizes the strain energy; the specific expression is
the minimal form that is isotropic, thermodynamically stable,
and admits the regular hexagonal tessellation (¢f. Fig. 2(a)) and
its equivalent configuration after T1-transition (¢f. Fig. 2(c)) as
the strain-energy minimizing states. In particular, the constant
u may be recognized as the shear modulus (for small strain).

P(E, &) = (VTZ\E\Z(\E\Z =) (e — VK (E -

The second term ﬁ(ﬁ &)? is the electric field energy with &

being the resting potential (at the absence of electromechanical
coupling, i.e., K = 0), ¢ the dielectric constant, and 1 a length
scale comparable to the thickness of cell membrane. The
electric field energy penalizes the deviation of interior cellular
potential from the resting potential. The last term K(¢ — ¢¥)|E|*
is for capturing the coupling between electrical field and
mechanical strain. We remark that the proposed single-cell
energy (9) represents the minimal isotropic electromechanical
model that achieves the following: (i) it effectively reproduces
the observed T1-transitions in cell aggregates, featuring with
the characteristic rearrangements during tissue remodeling,
and (ii) it incorporates nontrivial electromechanical coupling,
allowing for a meaningful interplay between mechanical defor-
mations and electrical responses. This balance of simplicity
and functionality makes the proposed model (9) a robust
foundation for exploring the electromechanical properties of
tissues.

We next consider cell aggregates that are nonuniformly
deformed or charged. Let Z; be the index set that contains all
neighboring cells in contact with the ith cell. In account of
nonuniformity, we postulate that the interaction energy for the
ith cell is:

;l’zjelaﬂt Z|E E: | +2 lzJelect Z!él f, , (10)

JETi J€ETi

Hint(s)

where the length scale [/ is comparable to the overall size of a
cell, and constant j*** > 0 (resp. J** > 0) measures the
increase of energy when the strain (resp. electric potential) of a
cell is different from that of neighboring cells. In the context of
the Ising model, J°'*** and J°'°°* are referred to as the exchange
constants. Combining (9) with (10), we identify the Hamilto-
nian of an N-cell system as

N
(5) = W(E, &)+ (11)
i=1

N
ZHint(Ei7 éi)v
i=1
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which serves as the foundation for our statistical mechanics
model.

We will follow the standard procedure of statistical
mechanics to analyze the cell aggregate. In the classical statis-
tical and thermal physics, the critical concept of (absolute)
temperature reflects the fluctuation of energy associated with
microstates of the system, whereas entropy measures the
number of accessible microstates of the system. In thermal
equilibrium, the probability distribution over all admissible
microstates of the system is dictated by the Second Law, which
can then be used to determine macroscopic properties and
thermodynamic relations of the system. To apply this approach
to the electromechanical model (11) of a cell aggregate, we start
from the following hypotheses.®*

(H1) The variability or fluctuations in state variables (E, ¢)
are macroscopically homogeneous within the system (a cell
aggregate) and can still be characterized by a single benchmark
energy scale kzT = 1/6.

We remark that unlike the classical systems such as ideal
gases, the stochasticity in cell aggregates has many contribu-
tions including but not limited to thermal agitations, passive
and active biological processes (e.g., growing, diffusion, etc.),
among others. Therefore, the benchmark energy scale k3T = 1/f
should be understood as a phenomenological parameter
instead of the actual thermal energy scale that originates from
the oscillations of constituent molecules or atoms. Neverthe-
less, for physiological relevance we can still interpret T as the
absolute temperature of the system. Meanwhile, &y should be
regarded as an empirical constant in parallel to the classical
Boltzmann’s constant. Similar ideas have been used in the
literature to describe novel phenomena in a range of physical
systems, including granular media®® and plasticity in polycrys-
talline materials.®!

(H2) In quasi-static processes, the cell aggregate may
exchange energy with the environment and stay in instanta-
neous equilibrium with a constant and uniform temperature 7,
and hence follows the Boltzmann distribution:

p(s) oc e PHO), (12)
where s = {E;, £}, € D" represents an admissible microstate
of the cell aggregate and p(s) is the probability of the aggregate
in the microstate s.

Based on these hypotheses, we consider a canonical
ensemble of the system at a constant temperature T and
upscale from the microscopic model described by the Hamil-
tonian (11) to a macroscopic coarse-grained model. Denote
the collection of all microstates with prescribed average

(E, &) by

N
D?{’;g) = {S € DNI%Z(E;', &) = (E, f)} (13)

i=1

For a coarse-grained macroscopic model, we aim
to calculate the effective free energy (per cell) with a
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prescribed average:

-1

eff (7 zZ. _

log Z(E, & B), (14)

where, by (12), the partition function with prescribed average
is identified as

28,60 = | | ew(-pHE)ES. ()

(£8

We remark that the effective free energy defined in (14) is
such that the partition function without prescribed average is
given by

Z::J e*/‘Hst:J J e PHO)ds dE:J Z(E, & p)ds
DN D|JDN D

(E)
_ J e NI EER g5
D

(16)

where the last equality justifies the terminology of ‘““effective”
free energy that governs the macroscopic coarse-grained
properties of cell aggregates.

3. Effective free energy by mean-field
approximation

For an N-cell aggregate in equilibrium, presumably cells
would stay at the resting potential £* and tessellate the plane
by regular hexagons to minimize the total energy. However,
the presence of passive and active noises, size dispersion,
topological defects, and thermal agitations give rise to varia-
bility and randomness in cell aggregates. From the postu-
lated Boltzmann distribution (12), we can (i) identify the
temperature or energy scale 1/ = kyT from the fluctuations of
states of cell aggregates, and (ii) predict the macroscopic
measurable effective material properties (e.g., shear modulus
and electromechanical coupling coefficients) and how they
depend on the fluctuations or, equivalently, the energy scale
ksT. For these purposes, we need to evaluate the partition
function (15) and the effective free energy (14) for
some prescribed average/macroscopic strain and potential

(E, ¢).

3.1. Mean-field approximation

As for a standard Ising model, an exact solution to (15) is still
an open problem for nontrivial interactions (encoded by the
index set Z;). A widely accepted approximation method is the
so-called the mean-field theory, which simplifies the problem
by neglecting the contribution of interaction energy from
fluctuations. More precisely, we rewrite the interaction energy
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of cell aggregates in (11) as

N 14
ZHim(E,-,ﬁ[) Z lejelastZ|E E| +212]CIeth i—&
=1

2}
JETL; JETL;

212 elastZ| E)|2

JEZL;

>l

i=1

1 A Jelect Z ’

JEL;

A elast - |2 A elect >
%f]ﬁJ ’ Z|Ei*E| +qu] ZK[‘*
i= i=

=9I

(17)

where ¢ is the number of neighboring cells (i.e. the size of the
index set Z;) which is assumed to be independent of i. Denote
by

E’f:Ef—Eandc’i/:@—Z

the deviation from the average strain and average electric
potential, respectively. In general, a Hamiltonian can be
decomposed into three parts: the first depends only on the
averaged or coarse-grained state variables, the second only on
the deviations or high-frequency microscopic fluctuations, and
the third on both. For instance, within the mean-field approxi-
mation (17) the Hamiltonian (11) of the cell aggregate can be
written as

H(s) = Ho(3) + Hy(s") + Hy(s'; 3), (18)
where, by direct calculation, we find that
Ho(s) = N¥(E, §),
) = S (r(e &)+ 2 A A )
N
Ho(s55) = D (V(E; +E, & +&) — W(E, &) - P(E, 0))
- (19)

We remark that the Hamiltonian (18), albeit anharmonic, is
non-interacting because of the mean-field approximation. The
associated partition function (15) and free energy (14) can be
approximately evaluated by perturbation methods. To this end,
we insert (18) and (19) into (14) and obtain

—/i’Hz(s’:E)e—

Feff(E7 E; ﬁ) _ ﬁHl(s’)dS/

(20)

Further, upon neglecting the constraint in the integration
domain, ie., replacing Df‘(’]‘(,) by DY, we can write F defined
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above as
M 1 ¥7 o2l R OE
FE, & p) = ——log“ e MESEOE, &),
B D
P(E, &, E, &) =¥Y(E +E, & +& - ¥(E, & (21)
JcldstA JclccA
+q ‘E/‘Z q 12 ‘5/‘2.

Two remarks are worth noting here. First, the replacement
of Df\é‘()) by DV can be justified a posteriori. As will be shown
shortly, the expected value of the deviations in our subsequent
calculations does satisfy (E’) = (£') = 0. Second, the reduction of
the integral over the high-dimensional space DV to D is
possible due to the mean-field approximation (18), which
accounts for interactions between neighboring cells by mean-
fields.

3.2. Variational perturbation method

We now evaluate the effective free energy (F°), i.e., the integral
(21), using the variational perturbation method. However, the
presence of anharmonic terms like |E’|* and |E’|® in ¥ (c¢f. (9))
defies an exact closed-form solution to (21). One approach to
making progress is through the standard perturbation method.
To this end, we choose a comparison energy function V. =
Y. (E', £') and denote by

1 !zl [
_ ) (Zc _
Zc JD

p.(E, &)

,[;“PCEc E/df) (22)

the probability distribution function (PDF) associated with the
comparison energy function ¥.. The statistical average using
PDF (22) is defined as
O =] (B 2)aE . (23)
D
Then the Bogoliubov inequality®® asserts that for any energy

function of E' and &', e.g., the function y/(E’, &; E, &) defined in
(21), we have

HE, & p) < FUE, & B) = Fe + (W(B', &5 E, &) — YolE', &),
(24)
1
where F, = ——logZ, is a constant independent of coarse-

grained state variables (E, &).
We now analytically evaluate the right-hand-side of (24) by
choosing a quadratic comparison energy function:

lPC(E,7 él) = A(Hc‘El‘z + ch,z + K('é/ (E;I + E/lz))7 (25)

where yi., . > 0 and k. € R are some constants that guarantee
positivity of (25) and will be fixed later. For the best upper-
bound estimate of F*, by (20) we may set

FU(E, & ) = (B, &) + min{FU(E, & f): uene > 0, ke € R},

(26)

where the minimization problem is over all reasonable Gaus-
sian distribution (22) or positive harmonic comparison energy
function . (E’, &).
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In this work, we consider a planar model in which the
fluctuating strain E’, average strain E can be written as

E E
E = | Eu 12 }
{Eb —Ep

£y, ] i {E 1
, E=

—Ey En

The quadratic nature of the comparison energy turns integrals

in (23) into Gaussian-type integrals which can be analytically

evaluated. In particular, we are interested in evaluating the
(E, &)-dependent terms on the right-hand side of (24), i.e., (Y(E/, &;

(27)

E, &).. From (9) and (21),, we find that
1. o= = Jelast _ .
SPE,EE G = (it T+ KE - O)IEP
€ qJ 2 /
2KE(E-E
+ (st P+ 2KEE B
_ 2
~Mgpep e 4 L
Y b v
8,u 3u, =
—(E-E')? + |EP[E*
7
12;(

A (E-EP(EP +[EP)

+%WWWHWK&E&
(28)

where OT(E/, ¢'; E, £) represents terms that are odd in (E/, &), and
hence will not contribute to (/). By tedious but straightforward
calculations, we find that

(LR, 8), = i+ 2K () B K (P (E &)

o _ . I2uE).
+ i |EP +E-CE+ p, [E* + “‘ 2uEF g ¢k,
(29)

where i, includes all terms that are independent of (E, &),
and

4u 3u
= *VT<|E,|2>C+72<|E,\4>N
/12
C = <_8_/:E/ QFE + 12,11‘E | i el B E/> (30)
7 ¢
A / / 3u "2
C:<E ®E>C7 M4:,V72<‘E| >c’
and
212 4#0 2
<‘ ‘ >C = kO’ kO:ZZﬁA(“'}/]C'MC_KC)’
I 1
Ke
g ; 31
Kl (31)
8nct
E/ 2 2 E/ 2 + El 2 cltc
<| | >g [( 11 >c < 12 >c} ﬂcko

5662 | Soft Matter, 2025, 21, 5655-5668

View Article Online

Soft Matter

Further, we find that the fourth-ordetensor C satisfies that

<QE/QT ® QE/QT>C:
v Q €50(2),

J E © Ep(E, ¢)dEdS = (E' 0 E),
D

meaning that the fourth-order tensor C is isotropic and
such that

_ A 1 _
E-CE = 5<|E'|2>C|E|2. (32)
Inserting (30)-(32) into (29), we obtain the closed-form upper
bound estimate for the effective free energy F*'(E, & ) defined
n (26) as

1

P (E, &)~y + P(E, &) + <?’ (E, &5 E, §)),

~pd B + uSTIEL + }%mﬁ +OT(E— &) (33)

+ 55— &) K (E - &) ER,

where higher-order terms beyond 0(|E|6,(Eff*)2,%) and

immaterial constants are neglected, and the relevant effective
properties are given by

= (1= SR, ). o = K(EP),

2u 9
ff __ 2
it =5 (- )

We remark that the effective free energy function, as defined in
(33), governs the macroscopic electromechanical properties of
cell aggregates.

(34)

4. Results and discussion

In this section, we explore biophysical implications of the
coarse-grained model (33), with a particular focus on under-
standing how fluctuations impact the electromechanical beha-
vior of cell aggregates. To facilitate meaningful comparisons
with experimental results and numerical simulations, we select
relevant model parameters in (9) such that their values lie
within the physiological range. Specifically, the resting
potential is chosen as &* = —60 mV,'>®* the range of change
in electric potential of a single cell as (¢ — &) e [-200 mV,
200 mV],"*>*'®'7:%* the thickness of cell membrane as 4 =5 nm,*
shear modulus as u = 200 Pa,**"* the relative permittivity of a
single cell as & = 20,%° and the electromechanical coupling

constant for a single cell is chosen as K ~ 0. 12 For simpli-

&I

city, we focus on scenarios of simple shear with

E:{O y} and |E|? =2y
7 0

Upon neglecting an (E, &-independent constant, we rewrite the
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effective free energy function (33) as

U e, o
08 = (T K(E )2 4T

A
¢ 2
8, € (3 .. QR
+VT2V +ﬁ<€*€ + .

(35)

4.1. Characterization of relevant energy scale

As demonstrated in ref. 55 and 57, the fluctuation (|E’|?). can
be directly obtained from experimental and numerical images
of tissues. By (31), we see that the relevant energy scale

o = o (IET) (36)
p c

Aside from a proportionality constant, the fluctuation (|E’|*).
plays exactly the same role as the temperature in the classical
statistical mechanics and is referred to as the E>-temperature in
ref. 55. E>-temperature characterizes stochasticity (or fluctua-
tions) in cellular strains contributed by complex active and
passive biological processes. Therefore, E>-temperature should
be understood as some kind of empirical parameter or effective
temperature®’°”7? instead of the actual thermal temperature
that originates from the vibration of atoms in classical thermo-
dynamics. Subsequently, we study how macroscopic electro-
mechanical properties of the cell aggregate depend on the E>-
temperature (or fluctuation).

4.2. Renormalized resting potential

At the absence of external mechanical loading, the equilibrium
state of the cell aggregate is determined by the principle of
minimum free energy:

min F¥1(7, &) = . ) = 0and (. €) = 0. (37)

(¢:0) ’ oy
It is easy to see that a local small-strain minimizer is given by

Qeff/12
—_ T

(V’ Z) _ (07 é*eff) and é*eff _ é*

K2?

=& —ZHEP), (58)
Depending on the sign of K in the single-cell Hamiltonian (9),
the E*temperature (|E'|?). effectively lowers (if K > 0) or
increases (if K < 0) the resting potential. We remark that this
effective resting potential £**® does not account for active
processes of living cells. Biological processes, including ionic
transport through channels and pumps, metabolic activities,
and other cellular interactions, can significantly alter the
electrical state of the cell.

4.3. Solid-to-fluid phase transition

It has been widely shown that cell aggregates may undergo a
phase transition from a rigid solid-like phase to a floppy fluid-
like phase, depending on the degree of “deviations” from the
regular hexagonal tessellation."®'”>>*7 In the current setting,
we interpret this transition as the critical point such that the
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small strain local minimizer (38) loses its stability, meaning
thatt

2
8_Feff (ﬂ 7 Z)

e =0 = wH+KE"-¢)=0 (39

(ngﬂ')

By (34) and (38), we find the critical E>temperature to be the
one at which the cell aggregate at resting condition (i.e., no
external shear stress), transits from a solid-like phase to a fluid-
like phase as

K229\ !
V) . (40)

EP).. =2 (1
(e =g\ 1+ 5,

Bi et al. (2016”°) show that the solid-fluid phase transition
occurs at the critical shape index p.. = 3.81 at the absence of
electromechanical coupling. By (5) we may fix y* ~ 2.0 for
consistency.

Moreover, living cells are capable of regulating their trans-
membrane potentials. At the presence of electromechanical
coupling, tissues can actively regulate their stiffness and
solid-to-fluid transition by manipulating their electric poten-
tials. This capability allows them to adaptively respond to
varying environmental conditions and physiological demands.
Suppose that the average electric potential of a cell aggregate is
fixed at & via certain active biophysical processes. By (35) we
find that the apparent shear modulus as

apparent __

_a_zFeff('\ Z)
,U - 4A a,yz /7 y=0
3 _
— (1= ), ) + KE- )

The critical E*temperature (or fluctuation) for solid—fluid
phase transition at this prescribed potential & is identified as
that at which the apparent shear modulus p*PP***"* of the cell
aggregate vanishes:

Gep) =t (145 o).

(41)

(42)

Fig. 3 shows the phase diagram for solid-to-fluid phase
transition governed by the coarse-grained model (35). The black
solid line shows the phase boundary. The region below and
above the phase boundary corresponds to the rigid solid-like
phase and floppy fluid-like phase, respectively. At a fixed
applied electric potential &, an increase in E>*temperature
(|E’|?). would transform the cell aggregate from a rigid solid-
like phase to a floppy fluid-like phase. Similarly, at a prescribed
E>-temperature, an increase in electric potential & would trans-
form the cell aggregate from a fluid-like phase to a solid-
like phase.

4.4. Energy barrier

The effective free energy function (35) is anharmonic and
admits multiple critical points in y for a prescribed average

+ We assume that the phase-transition is of the 2nd order type. Some evidence
supports a first-order type transition. Our framework may be extended to address
the latter scenario if desired.
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Fig. 3 Phase diagram for solid-to-fluid phase transition in cell aggregates.
For chosen numerical values in this work, the range of non-dimensional
x-axis corresponds to the range of change in electric potential as (£ — £*) e
[-200 mV, 200 mV] consistent with the physiological range; the y-axis
represents the E2-temperature (IE’IZ)C.

potential &. Graphically, as y increases from 0, we observe that
the first critical point (y = 0) and the third critical point (yr,) are
locally stable while the second critical point is unstable, reflect-
ing the T1-transition illustrated in Fig. 2. To find the energy
barrier between the two stable equilibria, we consider the
equations for critical points:

.unstable

9 _
—Feff(% H=0 = y , VT1-

» =0
Ay ) )
By (35) we find that the unstable small-strain solution to the
above equation is approximately given by

(& KE-2)

_4I’Lftff

unstable
~

Therefore, by (35) the energy barrier between the stable equili-
bria y = 0 and y = yr4 is given by

Eff-i—l((g— é*))z

ORI = P (3, B)] e~ .8,y AV EE S
a 7 —_ M4

8 K :
1—— 112 _— _ g%

8 9
1——(|E]2
3B,

The energy barrier can be used to quantitatively assess the rate
of T1-transition. Following the classical Kramer’s model,”* we
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may postulate the rate k of T1-transition per unit volume as

k o exp(_ﬁUbarrier)

apparent 2
=exp| -0 (a 9/ﬂ) ; (43)
E/|2 1—-—(|E/?
CENEECTN
where the  positive  dimensionless constant 0=

2

Wy (8npte — 1)
16#(:(4770”0 - Kcz)
remark that (43) is consistent with the physical interpretation
of solid-to-fluid phase transitions determined by (41). In parti-
cular, the transition rate k « 1 if the fluctuation (|E'|*). « 1
whereas k ~ 1 if y*PP*™*™ = 0. Moreover, the rate of transition
may be identified as the self-diffusivity which, by the Stokes-
Einstein’s relation, implies that the viscosity # of the cell
aggregates should satisfy

> 0 follows from the last equality in (31). We

N z o eXp(ﬂUb‘uner).

4.5. Electromechanical responses

Finally, we consider the electromechanical properties of the cell
aggregate in the solid phase. Suppose that the cell aggregate is
under the application of external shear stress ¢°. By (35), we
observe that the external shear stress can alter the average
cross-membrane potential ¢. Conversely, changes of the aver-
age transmembrane potential & can influence the overall shear
strain of the cell aggregate. These interactions highlight a two-
way coupling between mechanical and electrical responses
within the system. Furthermore, both responses are signifi-
cantly modulated by E>-temperature (or fluctuations) of the
system. For a fixed applied shear stress ¢°, average potential &,
and E*-temperature, we obtain the equilibrium shear strain y*4
by the principle of minimum free energy:
7% = argmin, (%F <My, &) — 26%1). (44)

That is, 7°? is the solution of the following nonlinear algebraic
equation (cf. (35)):

((ugff +K(E=&))4y + 1605 + 4875«/5 - 2a°> =0. (45)

7
In general, the above nonlinear equation admits multiple
solutions. We are only interested in the “small-strain” solution,
which we numerically compute using MATLAB.

We first consider the dependence of strain on the external
stress under different E>temperature (|E’|*).. As an example,
we set the average electric potential the same as the effective
resting potential &* in (38): & = &+, Fig. 4 shows the stress—
strain relation of cell aggregate at different E*>-temperatures (or
fluctuations) below the critical E>temperature in (40). We
observe that the macroscopic elastic response of the cell
aggregate is generally nonlinear and matches the typical range

This journal is © The Royal Society of Chemistry 2025
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Fig. 4 Macroscopic non-linear elastic response of cell aggregate for
known fluctuation and applied electric potential & = &+,

for cell aggregates.® We also notice that an increase in E>-
temperature (or fluctuation) softens the macroscopic elastic
response, consistent with the effect of thermal temperature for
classical crystalline solids.

Next, we consider the dependence of strain on the average
cellular potential. Fig. 5 shows the equilibrium shear strain 4

K £ £k
plotted against normalized applied electric potential M
u
0.08 ‘
- (|E"*)c. =0
= (|E'|?). = 0.0125
0.07 (|E'|?). = 0.0375
+(|E'|?). = 0.0625
0.06

0.05
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Fig. 5 Macroscopic inverse piezoelectric-like response of cell aggregate.
Equilibrium shear strain y°9 is plotted against normalized applied electric
potential along x-axis. For chosen numerical values in this work, the range
of non-dimensional x-axis in the plot corresponds to the range of change
in electric potential as (€ — &*) € [-200 mV, 200 mV] consistent with the
physiological range.
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0.02u and different E* -temperatures (|E'|*).. We
observe that as the average electric potential increases, the
equilibrium shear strain decreases nonlinearly, showing a non-
linear piezoelectric response for cell aggregates. For a given
average electric potential, the equilibrium shear strain is higher
for higher E>-temperature. We also observe that the changes in
equilibrium shear strain due to changes in average electric
potential are more significant at higher E>temperature. Physi-
cally, this implies that a softer cell aggregate possesses an
enhanced electro-mechanical response, making its shape
changes more significant and more sensitive to the changes
in transmembrane electric potential. This observation is con-
sistent with the solid-to-fluid phase transition for cell aggregate
(¢f Fig. 3) that for a given average electric potential, an increase
in E>-temperature (or fluctuation) brings a solid cell aggregate
closer to the solid-to-fluid phase transition point.

for ¢¢ =

5. Concluding remarks

In this work we first established the concept of strain tensor
that characterizes the shape and orientation of individual cells
and local arrangement of cells in amorphous cell aggregates.
Based on the underlying structural symmetry and T1-transition
experimentally observed in tissues, we proposed an electrome-
chanical model for single cells and their interactions. For
collective behavior of cell aggregates, we employed the
approach of statistical mechanics and achieved a coarse-
grained model for macroscopic electromechanical properties
of cell aggregates. Fluctuation in cellular strains can be pre-
cisely quantified, which is referred as the E>-temperature for its
analogous role as the absolute temperature in a conventional
statistical model. The closed-form expression of the effective
free energy enabled us to predict the macroscopic electrome-
chanical properties of the cell aggregate. In particular, we
derived the renormalized mechanical and electromechanical
coupling coefficients and highlight how the average electric
potential and E*temperature can independently regulate the
electromechanical properties and solid-fluid phase transitions
in cell aggregates. Our work resolves the controversy of whether
soft biological tissues are piezoelectric. The answer is simple.
They are not intrinsically piezoelectric since they lack an
underlying polar structure however, due to the electrostriction
(or Maxwell stress) behavior of a single cell, and the resting
potential, the aggregate or collective behavior of cells can
mimic piezoelectric-like behavior.

There are several possible future directions: (i) the devel-
oped theory for living cell aggregates could be extended to
explicitly account for the active processes (e.g., effects of active
protein forces) by using the principles of non-equilibrium
statistical mechanics.’®’>’® (ii) The derived effective free-
energy may be used to explore the rich instability and bifurca-
tion behavior in soft tissues cf. ref. 77 and 78 (iii) We have
ignored the electromechanical coupling mechanism of
flexoelectricity® or rather its possible emergence at the tissue
scale. Prior work appears to indicate that flexoelectricity, at
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least at the cellular level, is implicated in a variety of biophy-
sical phenomena such as the hearing mechanism cf. ref. 79-81,
and may also have consequences for energy extraction at the
coarser level ¢f ref. 82. An approach similar to outlined in this
work may be used to address this mechanism. (iv) The devel-
oped theory can be augmented to include the non-local inter-
cellular interactions®~®” by going beyond the nearest-neighbor
interaction assumption used in this work.
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