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Protein–membrane interactions with a twist†

Jordan Klein, a Lorène Schad,a Thérèse E. Malliavin *ab and
Martin Michael Müller *a

Within a framework of elasticity theory and geometry, the twister mechanism has been proposed some

years ago for describing the interaction between a biofilament containing a twisted hydrophobic strip

and a lipid membrane: this mechanism is capable of inducing deformations of the membrane, which

can lead to its opening. The present work intends to extend this model to the interactions between a

membrane and protein regions conserving their folds using coarse-grained molecular dynamics

simulations. The protein region is modeled as a cylinder stabilized by a tensegrity scheme, leading to an

elasticity similar to that observed in real proteins. Recording molecular dynamics trajectories of this

cylinder in the presence of a fluid lipid bilayer membrane allows investigation of the effect of the

positions of the hydrophobic parts on the interaction with the membrane. The entire configuration

space is explored by systematically varying the hydrophobic strip width, the twisting of the strip as well

as the range of hydrophobic interactions between the cylinder and the membrane. Three different states

are observed: no interaction between the cylinder and membrane, the cylinder in contact with the

membrane surface and the cylinder inserted into the membrane with a variable tilt angle. The variations

of the tilt angle are explained using a qualitative model based on the total hydrophobic moment of the

cylinder. A deformation pattern of the membrane, previously predicted for the filament–membrane

interaction by the twister model, is observed for the state when the cylinder is in contact with the

membrane surface, which allows estimation of the applied torques.

I. Introduction

Biological membranes are important players in physiological
and pathological processes as they allow the separation of cells
into different compartments, the protection of cells from the
outside as well as the trafficking of ions, biopolymers and
ligands.1 Traffic across the membranes is often mediated by a
wide variety of transmembrane proteins or protein complexes.1

In addition, some water-soluble proteins are capable of trans-
locating across the membrane.2

Numerous water-soluble proteins interacting with the mem-
brane undergo conformational transitions in order to adapt to
the hydrophobic environment of the membrane’s interior. The
3D structure of water-soluble proteins is generally built around
a hydrophobic core, with hydrophilic sidechains pointing
towards the aqueous environment.3,4 A simplistic view of the
transition into the membrane would be that the structure
switches in order to position the hydrophobic sidechains

towards the hydrophobic tails of the lipids. This principle is
globally exact, but there are numerous ways to achieve this goal,
and no method is universally acknowledged that can predict
the conformational transition of a protein in contact with a
membrane. In particular, some protein regions may unfold
when in contact with a membrane which complicates enormously
the description of the transition due to the huge number of
conformations populated by the system.

Several a-helical water-soluble proteins interact with mem-
branes, such as the pore-forming proteins,5 the engrailed homeo-
domain,6 or various toxins7 and anti-microbial peptides.8 Killing
target cells using pore-forming toxins (PFTs) is a common viru-
lence mechanism in a wide range of pathogenic bacteria.9 PFTs
generally fold into water-soluble, monomeric structures which
oligomerize and change their conformation upon binding to
specific receptors in the membrane of target cells to form
transmembrane pores. The structural biology of PFTs has revealed
numerous structures of soluble monomers of such toxins along
with the corresponding pore structures (see ref. 9–11 for surveys).
Examining these structures, one is struck by the fact that con-
formational transitions involve only limited parts of the structure.
Numerous conformational changes involve rotations of a helices,
as for example in the cytolysin A family,12,13 fragaceatoxin,14 and
the Yersinia YaxAB system.15 Modeling the interaction of a helices
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with the membrane would thus be an important step for the
understanding of the conformational transitions of soluble a
helical proteins during their interaction with the membrane.

Recent numerical studies of peptide–membrane systems have
focused on the case of interactions and pore formation by
antimicrobial peptides.16–23 These interactions are also studied
using coarse-grained molecular dynamics simulations.18,24,25

The simulation of conformational transitions for monomeric
toxins to form a pore26 requires the knowledge of the final pore
state. Physics-based inverse design27 as well as cross-para-
metrization of peptide–membrane interactions28 have also
been proposed to infer models of interactions from experi-
mental measurements.

In these coarse-grained models, the successive amino-acid
residues in the peptides are replaced by a few beads gathering
backbone and sidechain atoms. In the case of a protein con-
taining several secondary structure elements, the use of a
coarse-grained model requires the application of long-range
restraints to keep the tertiary structure of the protein.29 Impos-
ing such tertiary constraints makes it difficult to study the
conformational transition of proteins. In the present work, we
intend to propose another model in which secondary structure
elements are modeled using a tensegrity scheme, allowing
reduction of the configuration space of the studied system.
We focus on one of the simplest secondary structure elements,
the a helix or the a helix bundle.

The distribution of hydrophobic patches on a helix surfaces
influences their interactions with membranes. For example, an
amphipathic helix displaying hydrophobic residues on one side
and hydrophilic residues on the other leads to a large so-called
hydrophobic moment,30 and is known to insert itself parallel to
the membrane surface.31 Nevertheless, the relative positions of
the hydrophobic residues of an a helix are not always ordered
in this simple way. A systematic study of the interaction
between a membrane and an a helix for any organization of
hydrophobic residues is still missing. The mesoscopic twister
model32 suggests that an asymmetric distribution of hydro-
phobic residues in a filament can deform a membrane via the
application of torques, leading to the insertion of the filament.
This potentially provides a generalization of the amphipathic
case. In the present work, we present the results of coarse-
grained molecular dynamics (MD) simulations of the a helix-
membrane interaction investigating systematically all possible
helical distributions of hydrophobic residues. The coarse-
grained model of the cylinder is similar to the model in ref. 33
in which pore-forming peptides were studied. The cylinder
shape is maintained during the simulation using an original
tensegrity scheme. The membrane model is the one proposed
by Cooke and Deserno, where each lipid molecule is modeled
with three beads.34,35 They showed that lipids with properly
tuned pair-wise interactions between their beads sponta-
neously self-assemble into a fluid membrane without the need
of an explicit solvent. This initial work was recently extended to
the case of asymmetric membranes.36,37

In the following, we will first present details of the modeling
together with the interaction pair potentials and a wide range of

distributions of the hydrophobic residues on the cylinder. The
analysis of the simulations provides the configuration space of
the cylinder–membrane system as a function of the residue
distribution as well as the strength of the hydrophobic inter-
actions. The configurations of the cylinder inserted into
the membrane are analyzed and related to the hydrophobic
moment, and the corresponding membrane deformation is
described. In particular, the analysis of systems in which the
cylinder interacts only with the membrane surface allows
obtaining a surface deformation pattern similar to that pre-
viously deduced with the twister model.32

II. Simulation models
II.A Membrane model

The membrane is a fluid bilayer as described by the Cooke
model.34,35 Each lipid is represented by three beads: one bead
for the hydrophilic head of the lipid and two beads for the
hydrophobic tail (Fig. 1) denoted LI1 and LI2 with LI1 located
in the middle of the lipid.

Next neighbor beads in one lipid are connected with FENE
bonds (Fig. 1a, green springs) whose potential depends on the
distance r between the beads’ centers:38

VFENEðrÞ ¼ �
1

2
kFENEr1

2 log 1� r

r1

� �2
" #

(1)

Fig. 1 (a) Composition of the system: lipid and cylinder beads with different
types of interaction. In the lipid, the polar head is colored in blue and the
hydrophobic tail beads L1 and L2 are in yellow. In the cylinder, the non-
hydrophobic beads are colored in gray and the hydrophobic ones in red.
FENE and harmonic potentials describe the bonded interactions within the
lipid. The non-bonded attractive interactions are denoted with green arrows
and the non-bonded repulsive interactions (Weeks–Chandler–Andersen
(WCA) potential) are denoted with orange arrows. The parameter w̃c refers
to the attractive cos 2 potential. (b) Examples of cylinders with different strip
geometries. For a = 0, the next neighbors on the outside of the cylinder lie
on a line parallel to the cylinder axis. For small positive a this line becomes a
helix. (c) The tensegrity structure of one cylinder. The beads are in gray,
the compressed bonds in magenta and the stretched ones in blue. The
definition of a0 and possible values of a are indicated at the bottom.
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with a divergence length rN = 1.5s and a spring constant
kFENE ¼ 30E

�
s2 where E and s are the energy and the length

scale, respectively (see below). An additional harmonic bond
(Fig. 1a, brown spring) is added between the head bead and
bead LI2 to ensure the alignment of the beads within the lipid:

VbendðrÞ ¼
1

2
kbendðr� 4sÞ2 (2)

with kbend ¼ 10E
�
s2.

To model the repulsion between the head beads and
between a head and a tail bead, we apply a Weeks–Chandler–
Anderson (WCA) potential (Fig. 1a, orange arrows):

VWCAðrÞ ¼
4E

b

r

� �12

� b

r

� �6

þ1
4

" #
; r � rc

0; r4 rc

8>><
>>: ; (3)

where b = 0.95s and rc = 21/6b.
The interactions between lipid tails are modeled with an

attractive potential (Fig. 1a, green arrows) between the beads of
the hydrophobic tails:34,35

Vcos 2ðrÞ ¼

4E
s
r

� �12
� s

r

� �6� �
; ro rc

�E cos2 p r� rcð Þ
2wc

; rc � r � rc þ wc

0; r4 rc þ wc

8>>>>>>><
>>>>>>>:

(4)

with rc = 21/6s. The parameter wc determines the range of the
attractive part of the potential which allows us to tune the
cohesion between the beads. In the following we will use its
dimensionless form w̃c = wc/s. For r o rc the potential Vcos 2(r)
corresponds to a Lennard-Jones potential. Note that s and e are
nothing but the reduced units of this potential.

Setting w̃c = 1.6, e = kBT/1.1, and s = 1 nm results in the
spontaneous self-assembly of a fluid membrane with properties
that are close to experimental values:35 the thickness of the
simulated membrane is about 5 nm, the membrane area per
lipid is 1.1 to 1.5 nm2 compared to that of 0.75 nm2 in experi-
ments on fluid membranes. For w̃c = 1.6 and E ¼ kBT=1:1, the
obtained bending rigidity k of the membrane is k E 13kBT E
0.56 � 10�19 J with temperature T = 310 K (see Fig. 7 of ref. 35).
This value agrees well with the typical bending rigidity of a fluid
membrane, which lies between 0.24 and 2.3 � 10�19 J.

III.B Protein model

The protein is modeled as a cylinder (Fig. 1b) composed of six
disks stacked on top of each other.33 Each disk consists of
seven beads: one in the center and six peripheral beads
arranged on a circle, forming a hexagon. The beads are of
two types: hydrophobic beads (Fig. 1, red beads) and non-
hydrophobic beads (Fig. 1, gray beads) with a diameter of rc =
0.95s. The attractive potential of the membrane model, eqn (4),
is used to model the interaction between the hydrophobic
beads of the cylinder and the hydrophobic tail beads of the
lipids (Fig. 1a, green arrows). In the present study, we vary the

parameter w̃c of this potential used to model the attraction
between the cylinder and membrane in the range of 1.00 to
3.25. Moreover, we apply a Weeks–Chandler–Anderson (WCA)
potential, eqn (3), between the non-hydrophobic beads of the
cylinder and all lipid beads (Fig. 1a, orange arrows).

The hydrophobic beads are placed on a helical strip of a
certain thickness (Fig. 1b). The aim of this work is to study how
the relative positions of hydrophobic and non-hydrophobic
beads on the cylinder influence cylinder–membrane interac-
tions. Variations in the positions of the hydrophobic beads on
the cylinder are described using two parameters: (i) the helicity
of the hydrophobic strip of the cylinder, which will be set by the
nominal angle a A [0,1801] in steps of 101, defined as the angle
between the vectors connecting the central bead and the
peripheral bead in the middle of the hydrophobic strip in two
successive disks (Fig. 1c); (ii) the thickness of the hydrophobic
strip given by the number d A {1,2,3,4} of hydrophobic beads
per disk. At small angles a, this cylinder model allows investi-
gating the membrane–cylinder interaction in the framework of
the twister model.32 By contrast, at larger values of a or large
strip thickness d, the cylinder model results in a description of
the cylinder solubilization within the membrane. Note that
high helicities 1801 o a o 3601 can be mapped to a A [0,1801].

The stability of the cylinder is enforced by the use of
tensegrity,39 which does not depend on whether the bead is
hydrophobic or not. Due to the hexagonal symmetry of each
disc, it is sufficient to consider cylinders with an helicity angle
a0 varying between 0 and 301. This angle is the angle between
the vectors connecting beads 0 (central bead) and 1 (peripheral
bead) in two successive disks (Fig. 1c, bottom). It is defined in
the following way:

a0 = |b � 301|, (5)

where b = (a � 301) mod 601.
In the tensegrity framework, the beads are connected by

harmonic bonds with the corresponding potential:

VcylðrÞ ¼
1

2
kcyl r� req
	 
2

; (6)

where kcyl ¼ 200E
�
s2 ¼ 778 pNnm�1 is the spring constant and

req is the equilibrium length of the bond. When req is larger
than the geometrical distance r0 between the beads at the
beginning of the simulation, the bond is compressed (Fig. 1c,
magenta bonds), when it is smaller than r0 the bond is stretched,
(Fig. 1c, blue bonds) respectively.

Stability is ensured by a delicate balance between com-
pressed and stretched bonds (Table 1). Beads of the same disc
are connected by compressed harmonic bonds. The state of the
bonds between beads located in two adjacent disks depends on
the beads’ positions. When one bead is at the center and the
other is peripheral, the bond is stretched ((1) in Table 1),
whereas it is compressed when the beads are both located at
the centers ((2) in Table 1).

For the bonds between two peripheral beads of adjacent
discs ((3) in Table 1), the distances between all beads of the two
peripheries are calculated and sorted from the smallest to the
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largest. For a0 a 301 we generate three types of bond (Fig. 1c):
when the two beads are first neighbors corresponding to the
smallest distance, the bond is compressed. In the case where
the distance between the two beads is the second smallest
(2nd neighbors) or third smallest (3rd neighbors), the bond is
stretched.

The case a0 = 301, which corresponds to a = 301, 901 and
1501, is special due to its symmetry: the number of first
neighbors doubles and the corresponding bonds are com-
pressed. To ensure cylinder stability, one needs a balance
between stretched and compressed bonds. Too many stretched
bonds, however, make the construction unstable as well. Several
simulations of different configurations showed that it is sufficient
to add stretched bonds to half of all possible second neighbors to
obtain a stable cylinder (see also Section III.A).

Illya and Deserno33 have used a similar description for the
cylinder. However, one should notice that they have restricted
themselves to the case of a0 equal to zero, which simplifies the
mechanical system and allows to set req = 1.2rc.

For small values of a, the hydrophobic beads are located on
the same side of the cylinder and the non-hydrophobic beads
on the opposite side (Fig. 1b). This configuration is analogous
to the one of amphiphatic a helices of a protein.30 We thus call
the corresponding cylinders amphiphatic cylinders.

II.C Molecular dynamics simulations

The coarse-grained MD trajectories were recorded using version
4.1.2 of the software ESPResSo (Extensible Simulation Pack-
age for Research on Soft Matter: https://espressomd.org/word

press)40 with a timestep of 0.005t, where t ¼ s
ffiffiffiffiffiffiffiffi
m=E

p
is the

instantaneous timescale.33 The system temperature was con-
trolled using a Langevin thermostat, with a temperature T such
that kBT ¼ 1:1E, and with a friction g set equal to m/t.35 We
used a modified Andersen barostat,41 with friction gV = 10�4m/t
and the mass of the piston Q = 5 � 10�4 m as in ref. 33. The
barostat was applied in the x and y directions parallel to the
membrane surface. In this way, the lateral tension of the

membrane could be fixed to zero by setting the external
pressure to zero. During the MD simulations, the equations
of motions were integrated using the Verlet scheme.42,43

In each simulation, 1498 lipids were positioned in a box of
30 � 30 � 100s3 with periodic boundary conditions. Additional
systems with boxes of 35 � 35 � 100s3 and 40 � 40 � 100s3

were built using respectively 2038 and 2664 lipids (see the
ESI†). All trajectories were recorded over 20 000 steps, and only
one iteration out of 10 was saved, i.e., 2000 iterations were
analyzed subsequently. For the box of 30 � 30 � 100s3, two
independent runs were used to obtain the analyzed observables
of Section III and the trajectories were recorded for a A [0,1801]
in steps of 101, for d A {1,2,3,4}, and for w̃c A [1.00,3.25]. The
averages of the analyzed parameters were calculated over the
last saved 500 iterations. Most of the analyses used the tools
from the MDAnalysis44 and matplotlib45 python libraries.

Further analysis of the trajectories in which the cylinder was
inserted in the membrane required superimposing the cylinder
positions along all frames. This was realized by translating the
system along the x and y axes in order to place the cylinder’s
center of mass in the middle of the membrane plane, i.e.,
at x = y = 0, and by rotating the system such that the long axis of
the cylinder was located in the (xz) plane.

III. Results
III.A Torsional rigidity of the cylinder

According to the twister model,32 a cylinder with a helicoidal
distribution of hydrophobic regions can apply local torques on
the membrane to which it adheres inducing a deformation of
the membrane surface. By principle of action and reaction,
torques of equal strength but of opposite direction act on the
cylinder. The torsional rigidity of the cylinder is thus an
important parameter to estimate the ability of the cylinder
to keep its structure when interacting with the membrane.
In addition, in the perspective of modeling proteins with
cylinders, it is necessary to know whether the tensegrity model

Table 1 Equilibrium lengths req used to define the cylinder tensegrity (see eqn (6)). The state of the harmonic bond depends on whether req is smaller or
larger than the geometrical distance r0 between the beads at the beginning of the simulation. The parameters of the bonds between the peripheral beads

of adjacent disks depend on the angle a0 obtained from eqn (5) with R1 ¼ 2rc sin
a0
2

, R2 ¼ 2rc sin
60� � a0

2
, and R3 ¼ 2rc sin

60� þ a0
2

. Note that R1 = R2 for a0 = 301

Beads r0 req State
Within the same disk rc 1.2rc Compressed
Within adjacent disks
(1) Center and peripheral

ffiffiffi
2
p

rc 1.2rc Stretched
(2) Center and center rc 1.2rc Compressed
(3) Peripheral and peripheral
a0 a 301
1st neighbors

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð Þ2þ R1ð Þ2

q
1:05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð Þ2þ R1ð Þ2

q
Compressed

2nd neighbors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð Þ2þ R2ð Þ2

q
0:95

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð Þ2þ R2ð Þ2

q
Stretched

3rd neighbors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð Þ2þ R3ð Þ2

q
0:95

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð Þ2þ R3ð Þ2

q
Stretched

a0 = 301
1st neighbors

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð Þ2þ R1ð Þ2

q
1:05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð Þ2þ R1ð Þ2

q
Compressed

2nd neighbors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð Þ2þ R3ð Þ2

q
0:95

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð Þ2þ R3ð Þ2

q
Stretched
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proposed here in connection to the force field parametrization
of Deserno and coworkers33,34 reproduces well the orders of
magnitude known for the stiffness of proteins in the framework
of mechanical continuous media.

To estimate the torsional rigidity of the cylinder, MD trajec-
tories were recorded using EsPreSSO 4.1.2 on an isolated
cylinder. The positions of the beads forming the first disk of
the cylinder were fixed, whereas a torque tcyl was imposed on
the disk located at the other end of the cylinder by applying a
tangential force A on each of the six peripheral beads:

tcyl = 6RcylAe, (7)

where Rcyl is the scaled radius of the last disk.
The induced cylinder deformation was monitored by calcu-

lating the rotation between the first and last disks. The resulting
torsional angle was determined by measuring the total angle

at = 5(a0 + da) (8)

between two radial vectors each connecting the central bead of
the corresponding disk with an equivalent peripheral bead of
the same disk. The variations da of the total angle at during the
application of the torque were analyzed as a function of
the applied tangential force A (Fig. 2) in order to determine
the stiffness.

One should notice that the tensegrity model we developed
here is different from the one of ref. 33, as it includes a twisted
geometry of the relative positions of the disks, described by the
specified angle a0 (see eqn (5), Section II.B). Because of this
twist, we had to define spring networks which differ for a0 a
301 and a0 = 301. In addition, the network of the diagonal
springs in the twisted geometries is loosing symmetry with

respect to the untwisted case (Fig. 1c). During the MD trajec-
tories, the specified geometry of the tensegrity model thus
slightly deforms. The resulting configuration exhibits shorter
cylinder lengths and slightly larger radii for each disk. But, the
da values observed for a vanishing torque (A = 0) (Table 2) are
smaller than 11 for all twisted geometries with a slight improve-
ment for a0 = 301. Thus, the nominal value of a0 can be used in
the following.

A closer inspection of Fig. 2 reveals a linearity between the
applied torque and the variations of at. For a perfect elastic
cylinder:46

da ¼ tcylL
5w

; (9)

where w is the torsional rigidity and L is the length of the
cylinder. A linear regression yields values of about 3000 pN nm2

for a0 a 301 and 2400 pN nm2 for a0 = 301 (Table 2). The
standard deviation sw is about 1% of the absolute value of w.
Moreover, despite the asymmetry of the twisted geometries, the
structure responds in the same way when inverting the direc-
tion of the torque. This implies that our model nicely mimics
an elastic cylinder.

Van Reenen and Janssen47,48 experimentally measured the
torsional rigidity of an IgC immunoglobulin using magnetic
particles attached to the protein. They find for the IgC protein
a torsional rigidity ranging from 500 to 5000 pN nm2. The
torsional rigidity values that we measured here in silico are of
the same order of magnitude than experimental data. The
cylinder representing the protein has therefore mechanical
properties in agreement with the literature.

III.B Configuration space

As described in Section II.C, we recorded 532 trajectories while
varying the parameters a, d and wc in order to explore different
geometries of hydrophobic strips and different ranges of the
hydrophobic attractive potential. We identified three possible
final states (Fig. 3): (i) the cylinder does not display a stable
state interacting with the membrane; (ii) the cylinder remains
on the surface of the membrane; (iii) the cylinder is inserted
into the membrane.

For each trajectory, the final state was determined by
monitoring the minimal distance dM between the cylinder
and membrane beads, and the minimal distance dQ between
the cylinder beads and the hydrophobic beads LI2 of the lipids
(Fig. 1a). These distances were averaged over the last 500 frames
of the trajectory. The states were then identified in the following

Fig. 2 Variations of the angle da as a function of the applied tangential
force A averaged over 200 trajectory frames for different values of the
nominal angle a0. The linear regressions are plotted as dashed lines. Error
bars correspond to the standard deviations of da.

Table 2 Torsional rigidity w and its standard deviation sw obtained from
the linear regression of the simulation results of Fig. 2 together with the
shift da from the nominal value a0 for vanishing external torque

a0 (deg) w (pN nm2) sw (pN nm2) da (A = 0) (deg)

0 2939 29 �0.01
10 2980 28 0.77
20 2956 28 0.73
30 2431 25 0.36
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way: no interaction dM 4s
	 


, cylinder at the surface dM � s
	

and dQ 4sÞ and inserted cylinder dM � s and dQ � s
	 


.
Fig. 3 shows that the values of d and wc have a strong

influence on the final state of the cylinder. A large value of wc

facilitates insertion into the membrane. Similarly, a large value
of d reduces the value of wc needed for insertion, since the total
number of hydrophobic beads is increased. In contrast, the
value of a has a lower influence on the insertion.

The transition lines between the different states (Fig. 3)
become flatter for increasing values of d. A region of surface
states (light grey) of the cylinder is observed for d = 1 only and
collapses for larger d. The cylinder with the tiniest hydrophobic
strip is thus the one displaying a larger number of surface
states, which can be seen as transition states between no
interaction and insertion.

Increasing the helicity of the strip, which is equivalent to
reducing the cylinder’s amphipathicity, reduces the propen-
sity of the cylinder to interact with the membrane. This is
reflected by the observation that increasing a at a constant d
increases the value of wc at which the transition between
the states take place. A system similar to the case where
a = 01 and d = 4 was considered by Illya and Deserno,33 where
the insertion was observed around w̃c = 1.4. It is interesting
to see that the present work qualitatively agrees with their
results.

The internal dynamics of the cylinder has been monitored
by calculating the value of a averaged along the trajectories.
Averaged and nominal values coincide within the determined
errors (Fig. S1, ESI†). The cylinders thus conserve their geome-
tries along the trajectories, which permits to use the nominal
values of a in the presentation of the results.

Repeating the simulations produces similar regions of the
phase diagram (Fig. 3). Nevertheless, variations are observed at
the transition lines for d o 4. The limits between different
states are thus prone to various fates depending on the
recorded trajectory. This behavior is reminiscent of the transi-
tion state ensemble observed in the unfolding of a protein.49

III.C Orientation of inserted cylinders

The position of the cylinder within the membrane was analyzed
by monitoring the angle y between the vector c defining the
long axis of the cylinder and the normal vector z of the
membrane plane. The vector c connects the centers of mass
of the first and last disks of the cylinder and is averaged along
the MD trajectory. The coordinates cx, cy and cz of c are averaged

to obtain y ¼ atan2 cz; cx þ cy
�� ��� �

. As the main axis of the

cylinder of our model has no specific orientation we restrict
ourselves to yA [01,901] by replacing values of y4 901 by 1801� y.

From the values of y averaged along the last 500 frames of
each trajectory (Fig. 4a and Fig. S2, ESI†), two main sub-states

Fig. 3 Configuration space (left) as a function of a and w̃c for different values of d. For each set of parameters the final state of two independent runs is
plotted with the following markers: J (no interaction between membrane and cylinder), � (cylinder at the surface), and K (cylinder inserted in the
membrane). When the result of the two runs is different, the two corresponding markers are depicted, whereas only one is plotted when the result is the
same. The different states are also indicated by gray levels. Note that the dashed lines are merely guides to the eye. On the right, three simulation frames
illustrate the different states of the configuration space.
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of the inserted state can be inferred: (i) cylinder parallel to the
membrane, i.e., the cylinder axis is located in the membrane
plane and y = 901 (Fig. 4c), and (ii) cylinder tilted in the
membrane: the axis of the cylinder has a non-zero component
along the normal of the membrane (Fig. 4d).

The angle y (Fig. 4a and Fig. S2, ESI†) displays two valleys
centered around a = 601 and 1201: the cylinder is tilted whatever
the values of w̃c and d. Around a = 901, a = 1501 and for small
values of a, we observe plateaus with maximum values of y close
to 901. When d or w̃c increases, the hydrophobicity of the
cylinder increases and the difference between the two states
is reduced. The cylinder in the tilted state tends towards a
parallel orientation (y = 901), which is reflected in a decrease in
the valleys’ depths in Fig. 4a.

Looking more closely at each trajectory, the angle y displays
variations as a function of time. Gibbs free energy profiles were
calculated from the logarithm of the density of orientation
states. Fig. 4b shows a series of such energy profiles as a
function of y and a for w̃c = 3 and d = 2. The energy barriers
for bimodal profiles are in the range of 1 to 2E, where E ¼
kBT=1:1 is the energy scale. The range of values sampled by
the Gibbs energy agrees with the fluctuations between meta-
stable states during the timescale of the simulations.

The positions of local maxima in the density of y states
corresponding to minima in the profiles of the Gibbs energy,
yp, have been determined (Fig. 5 and Fig. S3, ESI†). For the
unimodal distributions (Fig. 5a and Fig. S3a, ESI†), the histo-
gram of yp displays two sets of values: yp A (841–901) corres-
ponding to an inserted cylinder parallel to the membrane, and
yp A (401–801) corresponding to a tilted cylinder. These are the
two states of orientation observed in Fig. 4c and d. For the
bimodal distributions, two maxima are located at yp1 and yp2

with yp1 o yp2. The values of yp1 (Fig. 5b and Fig. S3b, ESI†)
range from 331 up to 871. The histogram of the values of yp2

(Fig. 5c and Fig. S3c, ESI†) displays a peak around 80–901,
which indicates that some of the bimodal distributions are
entirely located close to 901. One observes six values of yp2 o
701 in Fig. 5c and two in Fig. S3c (ESI†), corresponding to cases
where the cylinder oscillates around several tilted states.

The two peaks observed for each bimodal distribution in a
given trajectories are displayed together with the helicity of the
cylinder (Fig. 5d and Fig. S3d, ESI†). In most of the cases, yp2 is
located between 80 and 901 (red points), which shows that the
parallel position of the cylinder is populated. The cases where
the cylinder oscillates between tilted states display isolated
red points in the range 50–701. The corresponding parameter

Fig. 4 (a) Angle y between the membrane normal and the cylinder axis plotted for different values of a for the first run of the MD simulations (see Fig. S2
for the second run, ESI†). The four panels correspond to different values of d while the colors correspond to different values of the cohesion parameter w̃c.
(b) Gibbs free energy G as a function of y for different values of a for w̃c = 3 and d = 2. The profiles are colored according to the type of y distribution (Fig. 5 and
Fig. S3, ESI†). Unimodal distributions with a parallel cylinder are colored in black, unimodal distributions with a tilted cylinder in grey and bimodal distributions
in red. (c) and (d) Views of the possible inserted states of the trajectories. (c) Cylinder–membrane system with the cylinder in a parallel state (a = 901, d = 1 and
wc = 3.25). (d) Cylinder–membrane system with the cylinder in the tilted state (a = 601, d = 1 and wc = 3.25). Lipid polar heads are colored blue, hydrophobic
tails yellow, hydrophobic cylinder beads red, and non-hydrophobic beads gray. The direction of the hydrophobic moment is drawn in red.
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values (a,w̃c,d) are (401,2.5,2), (501,3.0,2), (601,2.0,3), (701,3.25,1),
(1101,1.5,4), and (1301,3.0,1) for Fig. 5d and (701,2.5,2) and
(1301,1.75,4) for Fig. S3d (ESI†). These points correspond to
helicity angles larger than 301 with either strips wider than 2 or
cohesion ranges larger than 3. The corresponding cylinders
thus display large surfaces of hydrophobic beads dispersed
in all directions: they are not so much amphipathic and dis-
play unsurprisingly a tendency to stay away from a horizontal
position.

For each trajectory with a bimodal distribution, the posi-
tions of the smallest and the largest peak were plotted on a two-
dimensional graph (Fig. 5e and Fig. S3e, ESI†). These sets
define two lines, one corresponding to cases where the largest
peak is located in the 80–901 region, and the other corres-
ponding to the isolated red points quoted above, in which the
cylinders sample different tilted states. The slopes of the lines
provide a simplified description of the relationship between the
position of the two maxima in y distributions, arising from the
underlying coarse-grained scheme used here for describing the
membrane–cylinder interaction.

III.D Relationship between cylinder orientation and
hydrophobic moment

The orientation of the inserted cylinders described in the
previous Section III.C can be investigated by examining the
competition between the various hydrophobic interactions
between the hydrophobic beads, within the lipids and between
the lipids and the cylinder (eqn (4)). The smallest value for
which the cylinder inserts into the membrane is w̃c = 1.25
(Fig. 3). A closer look at the phase diagram reveals inserted

cylinders for all helicities for w̃c Z 1.5 at d = 4. At smaller d the
cohesion range has to be larger to obtain the same effect. If the
cylinder was inserted horizontally (y = 901) in the middle of a
hypothetical undeformed membrane, the distance between the
surface of the cylinder and the polar membrane heads would
only be approximately 0.5. This value is smaller than the range
of w̃c for which the cylinder is inserted in the phase diagram
(Fig. 3), which induces a frustration between the various
hydrophobic attractions present in the system. This frustration
is at the origin of the two cylinder states (i) and (ii) found in the
simulations. To go further into the analysis, one identifies two
extreme cases of these states: an amphipathic cylinder in which
all hydrophobic beads are located on the same side (a = 01), and
a cylinder where the hydrophobic beads are distributed in
a balanced way on the surface of the cylinder (in particular
for a = 601, 1201 and 1801). In the first case, the cylinder orients
itself parallel to the membrane, which allows the hydrophobic
tails of the lipids to concentrate on the hydrophobic side of the
cylinder (Fig. 4c). In the second case, no direction perpendi-
cular to the axis of the cylinder is preferred. Nevertheless, the
cylinder will try to maximize the hydrophobic interactions with
the lipid tails. Consequently, the cylinder would prefer to orient
itself perpendicular to the membrane surface so that each
hydrophobic bead experiences the same environment. However,
since the cylinder is longer than the thickness of the hydropho-
bic part of the membrane, the cylinder tilts to stay inside the
membrane (Fig. 4d).

The presented observations can be correlated with the
hydrophobic moment of the cylinder. In analogy to the defini-
tion of the hydrophobic moment of protein a helices proposed

Fig. 5 Positions of maxima in the unimodal and bimodal distributions of the angles y describing the orientation of the cylinder inserted in the membrane.
For each trajectory, one or two positions of local maxima have been observed in the unimodal and bimodal distributions. (a)–(c) Histogram of maxima
positions for the unique peak of the unimodal distribution (a) as well as for the smallest (b) and largest (c) peaks of the bimodal distribution. (d) Plot of the
angle a together with the positions of the maxima yp1 (black dots) and yp2 (red dots) of each bimodal distribution. (e) Plot of yp2 as a function of yp1.
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by Eisenberg,30 the hydrophobicity of each hydrophobic bead is
defined as a vector Mi connecting the center of the central bead
of the disk and the center of the considered hydrophobic bead
i. Contrary to the Eisenberg model, the hydrophobic scale is
assumed to be constant for all beads. The total hydrophobic
moment M of the cylinder is defined as the sum of the
individual hydrophobic moments:

M ¼
X
i

M i: (10)

In the Eisenberg model, a larger norm of the total hydro-
phobic moment M := |M| corresponds to an a helix with a
higher attractive interaction with the membrane. To be generic,
we only consider the geometric effect of the arrangement of the
hydrophobic beads and not the cohesion parameter w̃c.

In an ideal cylinder geometry, the moments of all beads are
in the plane (x,y) perpendicular to the cylinder axis. We thus
replace the 3D problem by a 2D problem in which the hydro-
phobic moments of each disk are summed up in the (x,y) plane
to obtain the total hydrophobic moment. Fig. 6a shows how the
total hydrophobic moment of the cylinder (red arrows) results
from a vector sum of the individual moments of each disk (blue
arrows) for different values of a. The largest norms are observed
for small helicity a. In this case, the geometry of the cylinder
is close to an amphipathic geometry; all individual bead
moments almost point in the same direction and produce a
large resulting vector, as shown for a = 301 (red arrow in Fig. 6a).
The norm of the hydrophobic moment is zero for angles a of
601, 1201 and 1801 and is maximum for angles a of 01, 901 and
1501. Even when the hydrophobic moment is close to zero, the
individual moments of each disk are not zero (Fig. 6a).

A geometrical consideration yields an analytical expression
for the norm of M. We orient the moment of disk 0 along the

x axis. It is the vector sum of all moments of the disk:
m
0

� �
.

Summing up over the disks we obtain:

M ¼
1 0

0 1

 !
þ
X5
n¼1

cosðnaÞ � sinðnaÞ

sinðnaÞ cosðnaÞ

 ! !
m

0

 !

¼ m

1þ
P5
n¼1

cosðnaÞ

P5
n¼1

sinðnaÞ

0
BBBB@

1
CCCCA;

(11)

where the rotation matrices take into account that the orienta-
tion of the moment of a disk changes by a from one disc to the
next. If we normalize each individual moment defined by
linking the center of a disk and one hydrophobic bead of the
same disk, m = 1 for d = 1. For higher d the vector sum in one

disk yields m ¼
ffiffiffi
3
p

for d = 2 and 4, whereas m = 2 for d = 3. For
the norm M of M one obtains

M ¼ 2m cos
a
2

� �
þ cos

3a
2

� �
þ cos

5a
2

� �








: (12)

This equation was used to generate the plot of Fig. 6b.
Interestingly, the symmetry observed for the norm of the

hydrophobic moment (Fig. 6b) is the same as for the orienta-
tion of the inserted cylinders (Fig. 4a and Fig. S2, ESI†). When
the cylinder is in the parallel state, the norm of the hydro-
phobic moment displays its maximum values, as predicted by
the model described above. Conversely, when the norm becomes
smaller, or even zero, the cylinder tilts. In the case of individual
moments of constant norm (Fig. 6), the inclination of the cylinder
is thus essentially determined by the norm of the total hydro-
phobic moment.

III.E Membrane deformations

The physical and thermodynamical properties of membranes
can be modeled at different scales. The Helfrich model provides
a correct description at a scale of around ten nanometers by

Fig. 6 (a) Hydrophobic moment calculated from the cylinder geometry: in blue the hydrophobic moments of each disk, in red, the total hydrophobic
moment. The disk numbers (Fig. 1) are indicated next to the blue arrows. (b) Norm of the hydrophobic moment as a function of the helicity of the cylinder
(see eqn (12)).
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modeling the membrane as an elastic surface.50,51 To relate the
present work to this level of description, we determine the
bilayer midplane for the trajectories in which the cylinder is
inserted into the membrane. This midplane is defined as the
surface separating the two layers of lipids, where the lipids are
sorted between the two layers according to their up/down
orientation.52 The positions of the central lipid beads LI1 of
each monolayer are then interpolated (Fig. 1) using the class
SmoothBivariateSpline available in the python library SciPy.53

The resulting two interpolated surfaces are then averaged at
each point of the interpolation grid to produce the bilayer
midplane surface. To obtain a consistent result for each simu-
lation trajectory, the midplane surfaces are time-averaged using
the frames in which the cylinder is displaced in the middle of
the simulation box as described at the end of Section II.C.

The results obtained for w̃c = 3 and d = 2 (Fig. 7) display
typical patterns which are encountered for other sets of para-
meters corresponding to inserted cylinders. The different
patterns obtained as a function of the angle a are correlated
with the distributions of the angle y observed in Fig. 4. A very
pronounced invagination at the position of the cylinder is
observed for small values of a and y distributions close to
901. A similar configuration is observed for a equal to 901 and
1501 even though the invaginations are shallower. For other
values of a, we observe that the surface tends to form an
invagination (blue color) on one side of the cylinder and a
bump (red-orange color) on the other side.

The observed deformation patterns (Fig. 7) follow the same
symmetry as the orientation of the cylinder. When the cylinder
is inserted parallel to the membrane, it imposes an invagina-
tion of the membrane’s midplane whereas we obtain a

midplane which is antisymmetric with respect to the y axis
for the tilted cylinder state. Furthermore, in the case where the
cylinder is parallel, the depth of the invagination increases
with the norm of the hydrophobic moment (Fig. 6). For small
values of a, the hydrophobic moment is maximal as well as the
invagination depth.

For d = 1 a region of surface states is observed in the
configuration space (see Fig. 3). Fig. 8 shows the corresponding
midplanes for a = 201. At w̃c = 2 and 2.25 one observes a two-fold
symmetry for the surface states, for which the cylinder is not yet
inserted (crosses in Fig. 3). The symmetry reflects the presence
of a torque doublet which is due to the mismatch of the
orientations of the helicoidal hydrophobic strip and the origin-
ally flat membrane. This confirms the predictions of the twister
model.32

Increasing w̃c in Fig. 8 leads to the insertion of the cylinder
into the membrane reflected by the formation of an invagina-
tion. Note, however, that the two-fold symmetry and thus the
torque doublet persists as visible by the higher z values at the
lower left and the upper right corners as compared to the other
corners. This behavior can also be observed for the surface of
a = 301 in Fig. 7, where only inserted states are depicted.

For a \ 601 the hydrophobic part of the cylinder is not a
strip any more. The membrane cannot adhere to all hydro-
phobic beads of the cylinder due to the rigidity of the
membrane and the torque doublet ceases to exist. For small d
and large a the hydrophobic strip even vanishes.

The mechanical properties of the membrane have been
investigated by calculating the average scaled hydrophobic
thickness of the membrane h (Fig. 9 and Fig. S6, ESI†). The
bending rigidity of a uniform membrane is proportional to h2

Fig. 7 Central parts of the membrane surface (10 � 10 in scaled units) obtained by averaging the interpolated surfaces defined by the LI1 beads of the
lipids of each monolayer of the membrane. The surfaces have been determined for the set of trajectories recorded with w̃c = 3 and d = 2. The reference
height z = 0 is set to the mean height of the displayed surface. Similar surfaces with the same patterns have been interpolated for simulations recorded
with box sizes 35 � 35 � 100s3 and 40 � 40 � 100s3 (Fig. S4, ESI†).
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which implies that membrane thickening leads to more rigid
membranes.54

The hydrophobic thickness was calculated from the time-
averaged distance between the monolayers averaged spatially

Fig. 8 Central parts of the membrane surface (10 � 10 in scaled units) obtained by averaging the interpolated surfaces defined by the LI1 beads of the
lipids of each monolayer of the membrane. The surfaces have been determined for the set of trajectories recorded with a = 201 and d = 1. The reference
height z = 0 is set to the mean height of the displayed surface. Similar patterns exhibiting a two-fold symmetry have been observed for simulations
recorded with box sizes of 35 � 35 � 100s3 and 40 � 40 � 100s3 (Fig. S5, ESI†).

Fig. 9 Averaged scaled hydrophobic thickness of the membrane, h, as a function of a for the first run of the MD simulations (see Fig. S6 for the second
run, ESI†). The four panels correspond to different values of d while the colors correspond to different values of the cohesion parameter w̃c. The
thickness was calculated as the difference of time-averaged z coordinates of the interpolated monolayers obtained from the positions of the LI1 beads
and spatially averaged over a square of 5 � 5s2 located at the center of the membrane where the cylinder is situated.
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over a square of 5 � 5s2 in the center of the membrane. The
scaled thickness values close to 2.6 display very small standard
deviations and correspond to membranes not interacting with
the cylinder. Unsurprisingly, the standard deviations increase
for deformed membranes with a scaled thickness far from 2.6.

Increasing the cohesion parameter w̃c at constant number of
hydrophobic beads per disc, d, one observes a thinning of the
membrane as soon as the cylinder starts to interact. In this case
cylinders with a parallel orientation with respect to the
membrane are situated at the interface between the hydropho-
bic and the hydrophilic part of the membrane like in Fig. 4c.
For higher values of w̃c the cylinder inserts further inside
leading to an increase of the membrane thickness. For d 4 2
and large enough w̃c, it is surrounded by the membrane beads
and h lies above the hydrophobic thickness of the undeformed
membrane. A similar effect is observed for constant w̃c and
increasing d.

There is thus a cooperative effect between w̃c and d to
increase the membrane thickness related to the hydrophobicity
of the cylinder. Additionally, one observes minima of the
thickness related to the orientation of the cylinder (Fig. 4) for
large w̃c and a E 1201 (see Fig. 9 for d = 2 and w̃c = 3 as well as
for d = 4 and w̃c = 2).

III.F Estimation of the twister

The membrane midplanes allow us to estimate the torque
doublet induced by the cylinder at the surface for small values
of a. To this end we will exploit the results of ref. 32. However, a
word of caution is due here: several approximations and
simplifications will have to be done to apply the continuous
model used in ref. 32. The varying thickness of the membrane
close to the cylinder cannot be taken into account. Further-
more, the interpolation of the midplane surface from the
discrete positions of the lipid beads potentially introduces
additional errors. Ignoring these shortcomings, we can obtain
the torque doublet from the geometric properties of the mid-
plane, i.e., the position of the local minima. This simplifies the
necessary treatment considerably. Further interpretation of the
simulation results in the framework of Helfrich theory would,
however, risk to be too crude.

The deviation from a flat plane can be approximated by
the superposition of the deformations of two opposite point
torques and an invagination caused by the hydrophobic inter-
actions between the cylinder and the lipid tails of the
membrane. To estimate the value of the torques, we make the
strong assumption that the position of each surface minimum
at lowest order is due to a single point torque. For a point
torque t at the origin the scaled height above a flat reference
plane is given by:32

zðx; yÞ ¼ ty
4pk

1

x2 þ y2
�
K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
0
@

1
A; (13)

where KnðxÞ is the nth Bessel function of the second kind.
In our simulations k E 13kBT (see Section II.A), whereas t can

be inferred from the height and the position of the surface
minima.

The extrema of z(x,y) lie at x = 0. The minimum ymin can be
found by solving the equation

y2min K0 �yminð Þ þ K2 �yminð Þ½ � � 2 ¼ 0: (14)

which yields ymin E �1.11. The corresponding depth of the
surface zmin = z(0,ymin) allows us to find a relationship between
the torque and the coordinates of the minimum, which is free
of any scaling length:

t ¼ 456
zmin

ymin
kBT : (15)

Note that the value of ymin implies that the extrema of the
surface are close to the cylinder. Consequently, variations in
membrane thickness would have to be taken into account to
obtain a more accurate estimate of the torque.

To apply this result on the interpolated midplane surfaces of
the previous section, for which the cylinder is at the surface
(i.e., w̃c = 2 and w̃c = 2.25 with a = 201 and d = 1, see Fig. 8), one
first has to read off the position of the minimum Ymin o 0 and

Zmin for each surface and replace
zmin

ymin
by

Zmin

Ymin
in eqn (15). This

yields t = 37kBT for w̃c = 2 and t E 46kBT for w̃c = 2.25 when the
cylinder is at the surface of the membrane. In the case of
insertion (w̃c = 2.5), the estimate for t yields approximately
62kBT. The torque allowing the cylinder to enter in the
membrane is thus in-between these two numerical values, at
the order of 50kBT. Similar estimations of t are obtained for box
sizes 35 � 35 � 100s3 and 40 � 40 � 100s3 (Table S1, ESI†).

A glance at eqn (9) in Section III.A allows us to compare
these values with the torque that is necessary to deform the
cylinder such that the torsional angle yields 5a = 1001. From
eqn (9) one obtains tcyl = 244kBT with L E 5 nm and w E
3000 pN nm2. The corresponding value of t is thus 122kBT since
the twister contains two opposite torques t and can be under-
stood as an upper bound for the twister that can be applied by
the cylinder with a = 201 and d = 1.

The above calculations should only be taken as a rather
crude estimate of the real values given the simplifications that
have been made. Nevertheless, they allow us to connect the
mesoscopic twister model of ref. 32 with coarse-grained MD
simulations of a protein–membrane system.

IV. Discussion

In the present work, a coarse-grained model was used to
describe the interaction of a folded a helical structure with a
lipid bilayer membrane. In this coarse-grained model, the
protein structure is represented by a cylinder, where the con-
figurations of hydrophobic patches are obtained by system-
atically varying the positions of hydrophobic beads. The coarse-
graining proposed here includes an originality in the way the
protein is modeled: the rigidity of the cylinder is enforced by
a tensegrity framework. A similar framework was previously
used in the literature,33 but we significantly extended it by

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 1

0/
19

/2
02

5 
8:

42
:2

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm01494d


4348 |  Soft Matter, 2025, 21, 4336–4350 This journal is © The Royal Society of Chemistry 2025

introducing a helicity parameter, which is essential to investi-
gate the asymmetric organization of hydrophobic residues
corresponding to non-amphipathic a helices. It should be
stressed that the model chosen here for the definition of
hydrophobic patches does not describe all possible distri-
butions, but the underlying symmetry of the model allows us
to identify some rules in the analysis of the orientation.
An extension of the model to further hydrophobic distributions
has still to be explored.

Another possible extension of the model could include an
adapted scale of hydrophobicity for the amino-acid residues.
Various scales could be exploited in this respect.31,55 A descrip-
tion at atomic resolution of this interaction would, however,
require the development of a related energy function and is
beyond the scope of this paper.

The model of Cooke and Deserno34,35 was used here, since
we intended to focus on large scale effects of asymmetric
hydrophobicity in a helix/membrane interactions. Neverthe-
less, the Martini force model56,57 is one of the most applied
coarse-grained force fields devoted to biological polymers and
membranes. One further step of the use of the tensegrity
approach in coarse-grained modeling should be the introduc-
tion of the Martini 3 model57 to account for the variety of
chemical species contained in biological membranes.

By systematically varying the parameters of the cylinder, we
were able to determine the configuration space of the system.
Three states were identified: (i) a state where the membrane
and the cylinder do not interact, (ii) a state where the cylinder is
in contact with the membrane surface, (iii) a state where the
cylinder is inserted into the membrane with two metastable
orientations: either parallel or tilted with respect to the plane
of the membrane. Depending on the conditions we recorded
unimodal or bimodal distributions of the corresponding tilt
angle.

The observed configuration states are similar to observa-
tions made previously with coarse-grained Martini models.58–61

But the cylinder model proposed here has the advantage of
allowing systematic studies based on the distribution of hydro-
phobic residues in proteins, which opens the way to compara-
tive studies connecting the atomistic structures of proteins and
their behavior in the presence of a membrane.

Moreover, the coarse-grained description allowed identify-
ing a direct correlation between the hydrophobic moment30

and the tilt angle of the cylinder. Since the hydrophobic
moments of protein structures can be calculated quickly, this
would allow fast bioinformatics processing of a large number
of protein structures in order to predict configurations of
transmembrane proteins.

Structures of membrane proteins with atomic resolution
have long been rare, particularly because of the difficulties in
crystallizing membrane samples. However, the experimental
problems have been alleviated, as there are now more than
25 500 membrane protein structures in the Protein Data Bank
(https://www.rcsb.org). However, there is little information at
atomic resolution on how proteins interact with a membrane
during translocation. Studies by solid-state nuclear magnetic

resonance have highlighted different tilt angles on small
proteins.62–65 Furthermore, the analysis of a amphipathic
helices shows configurations where the protein lies on the
membrane.66

Note that the results described here on the membrane
thickness display an interesting correlation with NMR experi-
mental observations.67 The authors used the quadrupolar
splittings of the 2H solid-state NMR to estimate the membrane
thickness in the presence of peptides with various hydropho-
bicity levels and showed that the increase in peptide hydro-
phobicity induces thicker membranes.

The model proposed here, which is limited to the case of a
stable protein structure should allow us to explain some of
these observations and can even be extended to the case of
proteins displaying possible structural variability, by simulat-
ing several cylinders in interaction with the membrane.
Of course, the regions of proteins prone to unfolding should
be detected before building the cylinders. In the perspective of
an application to biological systems, the balance between the
propensity of a protein to unfold when placed in contact with
the membrane and the propensity of the protein to deform the
membrane due to an asymmetry of its hydrophobic residues, is
essential to be estimated.

The application of Helfrich theory68 using the bilayer’s
midplane allowed us to identify local torques acting on the
membrane during the interaction with the cylinder. Cylinders
with a helical hydrophobic strip (i.e., small a) at the surface of
the membrane induce a two-fold symmetry of the midplane
indicating the existence of a torque doublet exactly as predicted
by Fierling et al.32 Further simulation studies with multiple
cylinders could help in understanding how several of these
twisters interact cooperatively. These predictions could allow
the recently performed analysis of atomistic MD simulations
using the twister model to be extended.69
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