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Ultra-slow self-similar coarsening of physical
fibrillar gels formed by semiflexible polymerst

*3 Clarisse Luap*© and Patrick Ilg () *°

Martin Kréger,
Biopolymers tend to form fibrils that self-assemble into open network structures. While permanently
crosslinked flexible polymers are relatively well understood, structure—property relationships of open
networks and pseudo-gels formed by bundles of biopolymers are still controversial. Here we employ a
generic coarse-grained bead-spring chain model incorporating semiflexibility and cohesive nonbonded
interactions, that forms physical instead of chemical crosslinks. For flexible chains, the cohesive forces
lead to the formation of a droplet phase while, at the same concentration, stiffer chains form bundles
that self-assemble into percolated networks. From comprehensive molecular dynamics simulations we
find that the reversible crosslinks allow for permanent relaxation processes. However, the associated
reorganization of the filamentous network is severely hindered, leading to aging of its topology. Based
on morphometric analyses, the ultra-slow coarsening in these systems is proven to be self-similar,
which implies a number of scaling relations between structural quantities as the networks age. The
percolated structures are characterized by different dynamic regimes of slow, anomalous diffusion with
highly non-Gaussian displacements. Relaxation dynamics is found to become extremely slow already on
moderate length scales and further slowing down as coarsening proceeds. Using a minimal model
supported by observations on filament rupture and rearrangement, our study helps to shed light on
various interrelated structural and dynamical aspects of coarsening nonergodic systems relevant for

rsc.li/soft-matter-journal

1 Introduction

Semiflexible macromolecules are ubiquitous in nature.! A
prominent example is cellulose, a semiflexible glucose polymer.
As the main constituent of plant fiber, it is the most abundant
organic compound on earth. DNA and proteins are other
examples of important semiflexible biopolymers. Under typical
conditions, many of these monofilaments form bundles® or
fibrillar structures that assemble into transient networks with
physical, ie. reversible crosslinks.*> These networks show
remarkable properties such as strain stiffening and negative
normal stresses,® which are rather different from networks of
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fibrous networks, pseudo-gels, and physical fibrillar gels.

permanently crosslinked flexible chains that have been inten-
sively studied using traditional network theories and simulation.
For example, structure-property relationships were investigated
for cellulose hydrogels, with mechanical properties found to
depend on fibril length instead of concentration as expected
from traditional network theories.” The network structure
formed by physically crosslinked semiflexible polymers has an
important influence on their mechanical properties.®™°

For a better understanding of these structures, it is helpful to
note that they are prepared experimentally e.g. using a change of
temperature, ionic strength, or pH.""'" Theoretically, the resulting
gelation via bundling and network formation from suspensions of
semiflexible polymers is interpreted as emerging from spinodal
decomposition and kinetic arrest.>'*™** The associated reorgani-
zations of the network can be extremely slow, in some cases
exceeding several days.'® The corresponding phenomena of slow
coarsening dynamics with very long correlation lengths are known
as “anomalous aging” since the time evolution and relaxation
dynamics differs markedly from the more intensively studied
glassy systems.'” Nonergodicity and anomalous aging has been
observed in a broad range of different systems such as amyloid
fibrils,"'® methylcellulose,'® alginate gels*® and colloidal gels.”
Considerable work is ongoing to extend traditional theoretical
approaches to capture such biological soft matter systems.’>°
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Here, we focus on reversible networks of semiflexible chains
without permanent crosslinks for which classical theories can
not readily be applied.’ Although such transient structures are
theoretically fascinating and highly relevant e.g. for food sys-
tems or protein-based filaments, they remain underexplored.’
Several fundamental questions on the structure and dynamics
of these networks stay unclear.® For cellulose derivatives often
used in food systems, for example, fibrillar structures with a
characteristic mean diameter of about 5 to 30 nm are observed
experimentally.""*"** From cryo-TEM imaging and small-angle
neutron scattering (SANS), the fibril mean diameter was found
to be rather independent of molecular weight, temperature and
concentration, but increasing with increasing bending
stiffness.’"*! From detailed molecular simulation, these fibrils
were either explained as stacked ring structures® or length-
wise aggregation of chain molecules.** Different X-ray scatter-
ing experiments and cryo-TEM images seem to be more con-
sistent with the latter scenario, suggesting axially oriented
semi-crystalline chains forming the core of the fibril, inter-
spersed with less dense regions.>*?® Small angle X-ray scattering
experiments (SAXS) experiments were used to study fibrils
formed from short peptides. The change in the characteristic
slope in the scattering functions was consistent with a model of
thick cylinders.”” While scattering experiments on dilute solu-
tions of semiflexible chains are well understood,?®*° corres-
ponding results for networks of semiflexible chains provide
valuable structural information that, however, is sometimes
difficult to interpret. One difficulty is that experimentally pre-
pared networks are often found to be spatially inhomogeneous.
Mesh sizes estimated from permanent networks of rodlike
particles give the right order of magnitude measured for the
more compact regions, whereas much larger values are found for
the more open regions.*®

Networks of semiflexible chains show intriguing dynamics
that is challenging to study not least because of their non-ergodic
nature."® For example, non-diffusive compressed exponential
relaxation was observed in amyloid fibrils from dynamic light
scattering experiments.*' These findings hint at structural hetero-
geneities of the network, but the origin of the relaxation remains
unclear. Additionally, uncertainties persist regarding the different
dynamic regimes and anomalous diffusion in transient networks
of semiflexible chains,*” their underlying microscopic origins, and
their connection to resulting mechanical properties.’

In general, computer simulations can help to address
these questions as they offer detailed insight into structural
as well as dynamical properties. They allow to detect micro-
scopic mechanisms accompanying the coarsening process. The
majority of simulations in this field seem to employ detailed
atomistic or moderately coarse-grained models to investigate
specific systems.>*>*?7%334 Because of the computational com-
plexity of these systems only few computational studies
appeared to date on the self-assembly process of semiflexible
filaments and the dynamics of their networks.** To overcome
these limitations, several coarse-grained models have been
proposed that differ considerably in the level of detail
retained.*® Recently, promising multi-scale simulations have
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appeared that address the mechanisms of self-assembly in
methylcellulose.>® Rather than targeting such a specific chem-
istry, we aim at exploring universal properties of transient
networks of semiflexible chains. As has been noted,>'* (i) the
bundling of semiflexible chains into fibrils, (ii) the character-
istic and rather uniform fibril diameters, and (iii) network
topologies appear to be rather similar for different types of
polymers. Effective attractions arise in many biopolymeric
systems as a result of depletion forces.

With this in mind, we here employ a generic model of
semiflexible polymers in terms of multibead-spring chains with
bending stiffness and short-range attraction, building on the
so-called Kremer-Grest*® and FENE-CB**** models. Models
with qualitative similarities have been used in the past to study
microphase separation in fibrillar gels,*® the phase behavior of
semiflexible attractive chains, showing a liquid-vapor coexis-
tence region for low enough temperatures or strong enough
cohesive energies,40 and the formation of fibrous bundles,*"**
which then assemble to form a temporary network.™ For a two-
dimensional version of the model, network structures were
investigated in detail, distinguishing percolated from disinte-
grated networks.*® Other recent studies used a similar model to
investigate the network structure and their tensile properties,
finding that high strength networks have high densities and that
the cohesive energy is the most important parameter for their
mechanical response.***> While bead-spring models are an
extremely versatile model for various polymeric systems,*® we
note in passing that other coarse-grained models have sporadi-
cally been used to study aspects of semiflexible polymer net-
works, such as an extended fluid particle model for the evolution
and stability of networks,*” and a discrete element method for
the study of gelation, bundles, and pore size distributions.*®

Studying the aging model system requires special care not
only due to the loss of ergodicity’ which introduces a depen-
dence on the preparation conditions, but also due to the addi-
tional effect of the waiting time since system preparation.*’
Several simulation studies on semiflexible polymer networks
artificially arrested aging by introducing sticky beads or perma-
nent crosslinks or quenching the temperature to zero.***>*®
Here, we avoid such drastic interventions and study the struc-
ture, dynamics, and aging of a self-assembling, physically cross-
linked semiflexible polymer system. We pay special attention to
carefully prepare the systems to follow the aging process as far as
possible.”*® To address the lack of ergodicity, we typically
investigate 10 statistically independent samples, and we investi-
gate the influence of waiting time (¢,) and bending stiffness (k)
on static and dynamic properties.

2 Model system

The model studied here is a semiflexible, anharmonic multibead-
spring model that differs from the celebrated KG model®® for
linear polymer chains in melts only with respect to bending
energy and interaction cutoff, and is conveniently implemented
using LAMMPS®" (LAMMPS script available in Section S8, ESI¥).

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm01479k

Open Access Article. Published on 26 February 2025. Downloaded on 10/18/2025 12:16:53 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Soft Matter

2.1 Model equations and parameters

The usually N. = 1000 linear, monodisperse bead-spring chains,
each consisting of N = 30 identical beads, N, = N.N beads in total,
are contained in a periodic simulation box with volume V, at bead
number density p = Np/V and temperature T. All permanently
bonded beads along the linear chains interact via the radially
symmetric finitely extendable nonlinear elastic (FENE) potential,*>

UrENE (b) = —§R02 In [1 — (b/Ro)z] s (1)

with spring coefficient £ = 30 and maximum extension R, = 1.5,
where b denotes a bond length. This potential serves as a rather
poor approximation to the inverse Langevin function at large
extensions,” but is typically employed. All pairs of beads interact
via a truncated, radially symmetric Lennard-Jones (L]) potential,

Uy(r) = 4ep(r™* =1 =12 +17°), r<r, (2)

and Upy(r) = 0 for r > r,, where &, =1 and 7 = rimin = 2%® for all
permanently bonded beads, ¢, = 3 for all nonbonded beads,
while r, for all nonbonded beads remains a model parameter.
In eqn (2), r = |r; — 1;| denotes a spatial distance between a pair
of beads i and j. A pair of nonbonded beads can be regarded as
having formed a temporary (reversible) bond as long as the
distance between the two beads is below r.. The energy penalty
to break such a temporary bond defines a cohesion energy

(2 — I‘cé)zeb

Ecoh = _ULJ(l’min) = 12
c

€)

that ranges between zero and ¢, = 3, depending on the choice
of r.. Eqn (3), employing ¢, = 3, can also be inverted as

1/6
re = [6/(3 = V3Ean)] .

Finally, each triplet of adjacent permanently bonded beads
interacts via the cosine bending potential*®~®

Ubend = K(1 — w;0;14) (4)

where the bending stiffness x is a key model parameter, and
u; = b;/b; (with b; = r;,; — 1;) is a unit bond vector, if beads i and
i + 1 are permanently bonded to each other. The model of
interacting semiflexible bead-spring chains is shown schema-
tically in Fig. 1(a), together with the interaction potentials (1)
and (2) and the cohesive energy (3). The sketch also indicates
permanent (FENE) bonds between neighboring monomers as
well as temporary bonds due to LJ interactions between beads
that are currently within a cut-off radius r..

Polymer chains are assumed to be embedded in a solvent
which is modeled implicitly. The quality of the solvent is
related to the cohesive energy E.on, while dynamic effects are
captured in the free-draining approximation by friction forces
acting on all beads. To this end, a Langevin thermostat is
applied to ensure a constant temperature 7. We choose T = 1
and set kg = 1, so that x/kgT = x in our case, and we write k/kgT
only if it serves to highlight a dependency on temperature.
Otherwise, L] units are used throughout.

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 (a) Sketch of the interaction potentials at work. The E.op, is directly
related to a cutoff distance r., defining temporary, reversible bonds, that
are used — together with the permanent FENE bonds - to define a cluster.
The inset shows the LJ (blue) and FENE (dashed black) potentials, as well as
the sum of FENE and LJ potentials (black). (b) Geometrical quantities
characterizing the network composed of semiflexible chains: the skeleton
(obtained by a thinning algorithm), which we use to extract junctions, the
length and thickness of filamentous strands (edges), the surface required
to define chord lengths and pore radii.

2.2 Preparation of model systems

Systems are generated by placing N, semiflexible chains
with initial bond length b;,;; = 1 and with persistence length
Ly = —binit/In[ZL(x/kgT)], involving the Langevin function
#(x) = coth(x) — x ', but without overlap (minimum bead-
bead distance 0.85)>* into a periodic simulation box whose
volume is determined by either (i) an initial bead number
density pjnic = 0.02 for the NPT ensemble, or (ii) pjn; = 0.05 for
the NVT ensemble simulations. The equations of motion result-
ing from the mentioned potentials are then integrated using
classical thermo- and barostats (NPT only) using an integration
time step At = 0.005. For case (i) the system is equilibrated within
the NPT ensemble until its pressure is fluctuating about zero; at
this time the system has reached a number density p that may
largely deviate from pjni, and is moreover insensitive to pjn;. due
to the relatively low ¢, = 3 that we have chosen. The simulations
within the NPT ensemble suggest to use p = 0.05 for the NVT
ensemble simulation. Here, for case (ii), the short relaxation
stage (duration 10°) is followed by a measurement stage of
duration 10°. Long runs up to ¢, = 2.1 x 10° were performed
for x € {10, 50, 75}. The begin of the measurement stage defines
waiting time ¢, = 0. During these stages, we keep p fixed and
integrate the equations of motion using a Langevin thermostat
with friction coefficient { = 0.5, following previous works.*>>*
Movies E to G and E+ to G+ (ESIT) show show selected systems
during the short relaxation and early measurement stage, and
during the coarsening stage, respectively.

3 Results and discussion

We study in detail structural characteristics as well as dynamic
properties of cohesive semiflexible polymers using the model
described in Section 2. Fig. 2 serves to demonstrate the richness
of structures that our simple model is able to capture at a single
temperature, using chains of identical length. It shows projec-
tions of snapshots of various systems at a bead number density

Soft Matter, 2025, 21, 2803-2825 | 2805
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Fig. 2 Projected snapshots at waiting time t, = 10 versus bending
stiffness k (vertical) and cohesive energy E.on (horizontal) for configura-
tions with N = 1000 chains, N = 30 beads per chain, bead number density
p = 0.05, temperature T = 1, subjected to periodic boundary conditions.
Shown are projected slices, 50% of the whole system. Each chain has its
own gray scale value. This work focuses on the green framed parameter
region with Ecop = 1.4 and x < 100.

of p = 0.05. This density we determined from a series of
NPT simulations for pressure P = 0 for intermediate values
of bending stiffness k. For better comparison we then fixed
p = 0.05 in NVT simulations for all systems and x values
investigated. The systems shown in Fig. 2 were simulated for
a relatively short time, up to time #, = 10* since system

k=0

@
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preparation. Varying the cohesive energy E.,, (horizontally)
and bending stiffness x (vertically) is found to lead to different
structures. For small E.,;, < T, isolated chains are found that
become more straight with increasing bending stiffness.
Increasing E.on leads to cluster and structure formation. For
low x, these clusters tend to be more compact, while larger k
together with cohesive attractions leads to open, network-like
structures.

To carefully study these structures and resulting properties,
from now on we fix a representative value of the cohesive energy
(Econ = 1.4) and focus on the influence of the bending stiffness x
on static and dynamic properties. With the chosen value of
E.on, we make sure to include compact as well as open struc-
tures in our study (green framed regime in Fig. 2).

3.1 [Initial observations

Snapshots of representative system configurations with N, =
1000 chains, polymerization degree N = 30, thus N, = N.N =
30000 beads in total are shown at a late stage of a typical run in
Fig. 3. Different panels in the figure correspond to different
values of bending stiffness x. These figures are thus not only
close-up three-dimensional versions of the corresponding
panels of Fig. 2, but show those systems after considerable
longer times t,,. For rather flexible chains, k < 5, droplets are
formed by several coiled chains. For more rigid chains, x 2 5,
strongly bent configurations are energetically too unfavorable:
droplets mixed with short, near-cylindrical bundles (x = 5) as
well as system-spanning networks of long, fibrillar bundles
(x = 10) are formed. Thus, the snapshots suggest both an
ordering and a percolation transition as the bending stiffness
increases. These observations are in agreement with Monte—
Carlo simulation of very small systems that found a transition
from amorphous aggregates to polymer bundles at x ~ 6.*' For

Fig. 3 Snapshots for a homologous series of systems with different bending stiffness k mentioned in the panels (N. = 1000 chains, polymerization
degree N = 30, bead number density p = 0.05, temperature T = 1, cohesive energy Econ = 1.4) at waiting time t,, = 10° since system preparation. Each
chain has its own color. Larger systems (N. = 50 000) have been studied as well, most time-dependent quantities are reliably obtained from the small

systems already.
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a few (2 out of 10 in each case) samples within the transition regime
we also observed thick filaments percolated in one dimension for
k = 5, and networks for k = 10 percolated in two dimensions
(Fig. S14, ESIt). We will come back to these points later.

As a first proxy for structure evolution, we monitor the mean
pair energy (ep.ir) and mean bending energy per particle (e,) as a
function of t,. The pair energy epa; is defined as the mean L]
energy (2) per bead. As can be seen from Fig. 4, eq;r and e, both
decrease with time as expected for equilibration. As a decreasing
e, reflects local bending stiffening, chains tend to straighten out
in the course of t,. The decrease of ep,;; suggests an increase in
local ordering and decrease in surface area. When plotting these
two quantities on a linear time scale, Fig. 4(a) and (b), one might
be inclined to conclude that equilibration is mainly achieved.
However, closer inspection and using a logarithmic time scale
(Fig. 4(c) and Fig. S7, ESIt) reveals a very slow ongoing relaxation
with a relaxation time that increases significantly with system age.

Recall that aging and ultra-slow coarsening have been observed
in several network-forming soft matter systems, 2 416719:47:49,50,:56,57
The essential absence of complete relaxation in these systems
has been attributed to phase separation and quasi-arrested
spinodal decomposition, explaining the similar phenomenology
observed in rather different systems.'>*”*® In particular, spinodal
decomposition has been identified as the driving force for bund-
ling and network formation in polymeric systems similar to the
one studied here.>'*" In the following, we study and discuss the
aging and coarsening behavior. As an interesting first observation,
Fig. 4(d) shows a linear relation between the pair and bending
energy during relaxation, indicating that coarsening proceeds
along certain rules.

3.2 Structure analysis and static properties

We begin by analyzing the structures that are formed for
different values of k and the corresponding static properties.
In view of the ultra-slow ongoing relaxation, we perform all
structural analysis at different ¢.

3.2.1 Single chain structure factors and persistence
lengths. The static structure factor is a fundamental quantity
routinely determined in both scattering experiments and
simulations, as it encapsulates key structural information.

View Article Online
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Experimentally, it offers a unique method for probing features
across different length scales, particularly in systems that are
too small to be studied directly through microscopy techniques.

We first present results for the isotropic single-chain struc-
ture factor, Ss.(g), as function of wave number g. Experimentally,
Sse can be measured through small-angle neutron scattering
(SANS) on samples where a small fraction of polymer chains
have been selectively labeled. In simulations, the static structure
factor can conveniently be extracted from bead positions. See
Section 5.1 for details and in particular eqn (8) for a definition of
Ssc(q)- Fig. 3(a) shows Ss. obtained for various values of the
bending stiffness x. Data averaged over two different ranges of
waiting times ¢, are quasi indistinguishable. As k increases we
see a transition from a near-random walk behavior (S;. ~ ¢~ %) to
an extended range of g values where S,. ~ ¢~ ' shows the typical
scaling of rod-like objects. It is remarkable that despite chain-
chain interactions, Ss. can still be described very well by the
scattering function of the discrete wormlike chain (WLC) model
(for details see Section 5.1). However, the required values of
persistence lengths differ from the local persistence lengths 7,
that are inferred from the bending energy e, (Section 5.2).

To confirm this observation, we analysed directly two single-
chain properties: the mean-square end-to-end distance (R*) and
the gyration radius R,. For the WLC model, these quantities are
given in terms of the number of beads per chain N and the
global persistence length L, (see Section 5.2 and Fig. S10, ESI).
Values for L, extracted from the ratio (R*)/R; are shown in Fig. 6
(time series in Fig. S7, ESIT) together with those extracted from
the fits of the single chain structure factor. The latter are
systematically smaller but follow the same trend: the effective
global persistence length initially increases approximately lin-
early with x, before crossing over to a much slower increase for
k % 20. The local effective persistence length 7, evaluated from
the bending energy agree with those from R, for k 2 2, but
clear differences are seen for stiffer chains where bending
energies imply larger values of 7, compared to L,’s from the
gyration radius. For our systems, we suspect that the scale-
dependency of the persistence length of chains within the
fibrous networks may be caused by the formation of junctions
connected by strands whose lengths do not exceed L, by far.

o 25 5 7.5 10 "o 25 5 7.5 10
4
i x10 tw

—e—r=2
-\ (d)g_g /_K:{,
o—rx=10
08 0.8 k=15
: ®—~x=20
) k=30
06 07 — @ k=40
’ —@— k=50
0.6 —@— =75
t —@— k=100
0.4 0.5
102 10° 10 108 3.5 -3 25 2
4
X1 [ €pair

Fig. 4 Energies during aging. Panel (a) shows the pair energy per bead, ey, as a function of waiting time t,, since system preparation for various values
of the bending stiffness k > 0 shown in the legend of panel (d). Panel (b) shows the bending energy per bead, e,, versus t,,, while panel (c) shows the
same data on a semilogarithmic scale. Panel (d) shows a parametric plot of e,(t) versus ep.i(t). Time thus increases from right to left in (d). From e, we
extract a local persistence length 7, shown in Fig. 6. While all percolated networks (x > 10) follow a similar trend, the energetics of the unordered
spherical (k < 2) and little cylindrical bundles (k = 5, Movie H, ESIT) phases is markedly different. Plots extending to later times t,, = 2.1 x 10° are available

in Fig. S7 (ESI).

This journal is © The Royal Society of Chemistry 2025
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3.2.2 Structure factor. The full static structure factor

S(q) = Ny~! ZZ‘;I (e} as defined in eqn (7) accounts for all
beads in the system, regardless of bond topology. Fig. 5(b)
presents S(g) for the same range of bending stiffness x as in
Fig. 5(a). At first glance, two different families of curves can be
distinguished in Fig. 5(b): (i) the one for rather flexible chains
(x < 5) forming droplet phases and (ii) the one for stiffer chains
k > 10 forming percolated fibrous networks. These findings
corroborate earlier observations from the snapshots in Fig. 3
which indicate a transition from a droplet- to a network-
forming phase as «k increases from x = 5 to x = 10.

At large scattering vectors (¢ > 7), both systems exhibit the
usual diffuse scattering peaks reminiscent of the bead-bead
intra and inter-chain correlations.

For droplet systems, the S(q) curves show no distinct peaks
or fringes, indicating that the dense globular droplets are quite
irregular in shape and/or polydisperse. However, fringes of
small amplitudes are detectable in individual samples if aver-
aged over the last 100 time units only (data not shown). Due to
the limited size of our systems, the Guinier regime (gR, < 1) is
not reached and no correlation peaks corresponding to a
characteristic droplet-droplet distance are observed. In the
probed (intermediate) g range, the scattering curves follow a
Porod-like behavior S(q) = K,/q", and are therefore dominated
by the scattering arising from the sharp density change at the
droplet interfaces. For spherical droplets of radius R, this
regime appears for g > g. where g. oc 1/R. The proportionality

Sse(q)

(b)
Fig. 5 Structure factors. (a) Ss(q) and (b) S(q) averaged over t,, € [0,10°]
(dashed) and t,, € [5 x 10%,10] (solid). In panel (a) power laws g~* (rod-like)
and g2 (Gaussian) have been added to guide the eye. (b) The Porod g—*-
regimes, signaling well defined interfaces in both the unpercolated (x <
10, spherical and cylindrical clusters) and percolated regimes (k > 10,
filamentous networks) are highlighted.
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Fig. 6 Persistence lengths versus k at two different waiting times t,,. (@)
Global L, extracted from the ratio (R%)/Rj (black squares), using the discrete
WLC expression (10), local 7, obtained from the specific bending energy e,
(red diamonds), and L, estimated upon fitting the S, by the WLC model
(green pentagons). Dot-dashed green line LY-C = (¥ = —b/In[ £ (ic/ksT)]
for the ideal WLC has been added to guide the eye. (b) Same data as shown in
(a), here relative to the the ideal WLC. Global L,'s obtained using the bond
length b and RS, or alternatively <R2> alone are basically identical to those
obtained from the ratio. The single chain structure factor S¢.(q) (Fig. 5) is very
well approximated by the WLC structure factor, using L, values that are
slightly below the ones obtained from the ratio.

constant Kp, setting the level of S(g) in the Porod regime, is
given in our case by K, = 2np/A4Ny, where py is the bead
number density in the dense polymer phase and Ay its total
surface area.>”

For the percolated network structures, the shape of scatter-
ing curves is consistent with that expected for polydisperse
cylindrical objects. A narrower Porod regime is observed (g, oc
1/d with d denoting a cylinder diameter) whose onset slightly
shifts to higher g with increasing stiffness, indicating a slight
decrease in fiber diameters which saturates at large k. The
levels of S(g) in the Porod regime are significantly higher than
those for the droplet systems, in agreement with the higher
interfacial area of the fibrous network structures. In Fig. 5, the
structure factors averaged over two different ranges of waiting
times t,, since system preparation are nearly undistinguishable.
Yet a slight increase in the Porod constant over time is hinted.
Overall, the structure factors data allow to clearly classify our
systems into two types of structures: globular and cylindrical.
However, the limited low-q range and the absence of prominent
features in the curves make it challenging to extract precise
quantitative structural information.

3.2.3 Real space structural analysis. While the time-
averaged structure factors capture essential, experimentally
accessible parameters such as Ry, Ly, pp Arin reciprocal space,
our simulation provides access to the full temporal evolution of
not only these, but of additional structural quantities directly in
real space. A qualitative picture readily emerges based on
animated sequences of the chain trajectories (see Section S7,
Movies A-J, ESIT). They provide a visual impression about the
self-assembly of chains into bundles and the formation and
evolution of the network or droplet structures. To quantitatively
capture key aspects of these observations for further analysis, we
extract the number of clusters, strands, junctions and loops,
critical bonds, the mean strand length and bundle thickness,
chord length and pore size distributions, using methods such as
a skeleton-algorithm (a thinning algorithm, the skeleton follows
the centerline of the filaments), Voronoi decomposition, Euler’s
topological identities and the Cauchy-Crofton formula. Fig. 1(b)

This journal is © The Royal Society of Chemistry 2025
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schematically shows the skeleton as well as these other char-
acteristic elements of the networks. For better readability, we
here focus on the results obtained and only sketch the methods
employed. Full details of all methods used here are given in
Section 5.

First, our cluster analysis (Section 5.4.1) confirms a percola-
tion transition where a single, system-spanning infinite cluster
(C = 1) is formed for semiflexible chains with x > 10 (Fig. 22).
For more flexible chains with x < 5, several droplets of isolated
smaller clusters of coiled chains are seen. Those clusters tend
to coagulate with time for x < 2, while short bundles of aligned
chains tend to be more stable for x = 5. Note that the precise
location of the percolation transition also depends on the value
of the cohesive energy E.,, and moves to larger k as E.on
decreases. While there are no critical (load-bearing) bonds®°
(Section 5.4.1) for the droplet systems, the number of critical
bonds in the percolated networks (x > 10) is quite insensitive
to k. The system at x = 30 attains the largest number (roughly
600) of critical bonds and may thus be envisioned as the most
mechanically stable system under study (this prediction could
be scrutinized e.g. by mechanical tests).

Fig. 7(a)-(f) show the ensemble-averaged strand length L,
and thickness dy(Section 5.4.4), number of edges E, junctions J,
and loops L. (Section 5.4.3), and the mean pore size 7pore
introduced by Gelb and Gubbins®" (Section 5.4.5), respectively,
as a function of the bending stiffness k > 10 for percolated
systems at two selected values of the waiting time, ¢, = 5 x 10*
and ¢, = 10°. All but the pore size have been obtained with the
help of skeletons (Section 5.4.2, Fig. S3, ESIt), whose flexible
multibead strands (of mean contour length Lg follow the
centerlines of the filamentous bundles, until they terminate
at one- (dangling ends) or higher-functional junctions (see
Fig. 1(b) for a sketch). Each skeleton bead is easily character-
ized by its functionality, and from the knowledge of the number
ns of skeleton beads with given functionality f; and the number
C of clusters, one has direct access to the number of edges,
junctions, vertices, and loops without inspecting the network
further. We observe that L; strand diameter dr (~mean thick-
ness of the polymeric strands centered at the skeleton) and pore
radius rpore decrease monotonically with increasing bending
stiffness (at given ¢,) until reaching a plateau for large x. The
number of edges, junctions, and loops exhibit the opposite
trend. The stiff systems therefore exhibit more junctions, thinner
filaments, and a smaller pore radius compared with the flexible
systems at comparable age, but upon aging the stiffer systems
much further, their topological characteristics tend to become
similar to those of the more flexible, younger systems.

For an ideal network free of dangling ends and solely
composed of three-functional junctions the number of junc-
tions equals the number of vertices, the number of edges is 3/2
times the number of junctions, E/J = 3/2, and the number of
loops is L. = C + E/3. As mentioned, our coarsed percolated
networks all exhibit a single infinite cluster, C = 1. From the
quantities displayed in Fig. 7(c), (d) and (f) one can infer the
number of dangling ends, n, = C + E — J — L., which is relatively
small, and a mean functionality of junctions, f; = (2E — ny)/J,
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Fig. 7 Effect of stiffness on network topology and mean pore radius.
Various quantities characterizing network structures are shown for perco-
lated systems with x > 10. Panels (a)—-(f) show the mean filament length L
and diameter dr the number of edges E, loops L., junctions J, and the
mean pore radius roore. respectively, as a function of bending stiffness «. In
panel (g), we plot the mean filament diameter for different k parametrically
versus the mean pore radius. Panel (h) shows the combination L;,réo,e as a
function of k. Full black squares correspond to waiting times of t,, = 10°,
open red squares to t,, = 5 x 10

Tpore

close to three. To be specific, we find at #,, = 10° that the ratio of
dangling ends to three-fold junctions, n,/n;, monotonically
decreases from about 0.07 at ¥ = 10 to 0.04 at k = 100, while
the ratio of four-fold to three-fold junctions, n,/n;, monotoni-
cally and weakly increases with x from about 0.01 to 0.03 over
the same x range and there is a negligible amount of higher-
functional junctions. In more quantitative terms, for the ratio
E/J] we obtain a nearly constant value of ~1.535 over the whole
range of « values, while L./(1 + E/3) moderately increases from
0.93 to 0.97 between k = 10 and k = 100. For this reason, our
networks are near-ideal three-functional at t,, = 10°, and they
approach this stage in a manner that is captured by the time
series of functionalities (Fig. S4, ESIT). Even though systems
with different x age at different rates, the mentioned trends are
unaffected by the choice of t.

Our results concerning dy are in qualitative agreement
with earlier simulations of a similar model system.*® In com-
parison to the static structure factor shown in Fig. 5, the
quantities L dj L. and also rpee show more clear differences
for the two values of t,. Mass conservation arguments can be
used, as shown in Section 5.5.4, to heuristically derive a scaling
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relation between the mean filament diameter drand the mean
pore size,

df ~ rpore. (5)

Fig. 7(g) shows a parametric plot of the mean filament diameter
dyversus the mean pore radius rpore. For all values ¥ > 10 and
different waiting times, we find that our data follow the scaling
relation (5) reasonably well. We note that a corresponding
relation for a two-dimensional transient network of semiflexible
chains was also found to hold rather well.*® In addition, we
observe from Fig. 7(h) that the product of the number of loops
and the pore volume, L.ror’, is approximately constant. Since
L./J reflects the total amount of loops per branch point including
primary and higher-order loops, its value does help to judge
about the modulus or fracture energies, which are presumably
better captured by the cycle rank,®> or the above-mentioned
amount of critical bonds.

The values shown in Fig. 7 provide descriptions of the
network structure in terms of mean quantities, and thus do
not allow us to draw conclusions about possible heterogene-
ities. Therefore, we show in Fig. 8(a) and (b) the weighted
distribution of filament lengths L and diameters dp respec-
tively, for selected values of the bending stiffness x. We find
that not only the mean value of L; remains approximately
constant for xk 2 40 (see Fig. 8(a)), but the whole distribution,
positively skewed, hardly changes in this regime as x increases.
For the filament diameter dron the other hand, the probability
distribution is more Gaussian and moves to lower values as k
increases, approaching a limiting distribution only at higher
values. Both distributions are relatively broad.

Within the same spirit, in Fig. 9, we show the pore size
distribution G-Ppore(r), i.e. the cumulative probability that the
largest sphere, containing a randomly chosen point within the
void space, and not overlapping with any of the beads, has a
radius smaller or equal than r. For more information on this
quantity see Section 5.4.5. For small values of x, the system is
unpercolated and the distributions have to be interpreted with
care. For larger x, the vast majority of pores have a radius
between around 10 and 20. Together with the smooth increase
of G-Pjore(r) we conclude that the networks formed do not show
pronounced heterogeneities. We also observe that the mean pore
radii rpore very slightly get larger with increasing waiting time
(Fig. S7, ESIt), in agreement with Fig. 7(f). For comparison,
Torquato’s® cumulative T-Pjore(r), defined in Section S4 (ESIT),

0.06 0.6
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Fig. 8 Polydispersity of filamentous bundles. Probability distribution of
filament lengths L, and diameters dy, for selected «k, collected within the
time frame t,, € [5 x 10%10°].

2810 | Soft Matter, 2025, 21, 2803-2825

View Article Online

Soft Matter

p= —
~ 72 —_—
1y 42
0.8 / k=0
- k=2
—~ K=5
506 // ya k=10
2 17 ns
o
; 0.4 y/ =30
&} /), & = 40
0.2} 4 5 =50
k=15
& =100
0 .
0 10 20 30 40 50
T

Fig. 9 Pore radii. Cumulative pore size distribution G-Pgara(r) defined in
Section 5.4.5 is shown for different values of k as indicated in the legend.
Dashed and solid lines correspond to averages over t,, € [0,10°] and t,, €
[5 x 10%,10°], respectively.

is shown in Fig. S9 (ESIt). The T-Pjore(r) is known to under-
estimate the pore radius,”* but is much less time-consuming to
extract with high accuracy. While the pore size distributions do
not reveal any qualitative peculiarities, they will help us to
demonstrate self-similarity during ultra-slow coarsening.

Another important, convenient measure of the characteristic
length scales of a network is given by the so-called chord length
distribution (Section 5.4.6).%> Roughly speaking, the chord
length s is the distance between two consecutive network-pore
interfaces along a virtual line through the system.’®?7:%
Fig. 10(a) shows the weighted chord length distribution €| (s)
of the dense polymeric phase for several values of the bending
stiffness x. The corresponding weighted chord length distribu-
tion of the void space %,(s) has been extracted and analyzed as
well (Fig. 23). In the droplet phase for k < 5, %(s) shows a
pronounced peak at small s (s & 2), a weaker and broader peak
at larger s (s &~ 10...20), followed by a relatively long tail
(data not shown). The broad peak can be related to the typical
size of droplets (Fig. 3). In the network-forming phase for x > 10,
the shape of the chord length distribution %, (s) changes to a
unimodal shape. The location and height of the peak are found to
be rather insensitive to the precise value of « in this regime. We
note that the most probable chord length decreases weakly with
increasing « from abouts &~ 7 (x = 10) to s &~ 4.5 (i = 100) and is,
within numerical uncertainties, identical with the mean filament
thickness d (Fig. 7b). This finding perfectly supports the conclu-
sion that our percolated systems contain mainly near-cylindrical
filaments with Ly > d:°® We note that Fig. 10(a) corresponds to a
particular time #, = 10°. The time-dependence and remaining
panels of Fig. 10 will be discussed next.

3.3 Ultra-slow coarsening and self-similarity

As we have seen in Section 3.2, various structural quantities
show a weak dependence on the waiting time ¢, since system
preparation and do not seem to have fully reached steady state
during the simulation time window. In this section we study
this relaxation and the associated aging phenomenon more
closely.

Fig. 11 shows a sequence of snapshots for a typical system
with x = 50 (see Fig. S2 for corresponding snapshots for x = 10,
ESIT). The snapshots already suggest a coarsening of the

This journal is © The Royal Society of Chemistry 2025
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Fig. 10 Chord lengths and self-similarity. (a) Weighted distribution € (s)
of chord lengths are shown at t, = 10° for various values of bending
stiffness x as indicated in the legend. (b) Mean weighted chord length ¢; =
s%1(s)ds/ [€(s)ds as a function of time t,, since system preparation. Panel
(c) shows the weighted chord length distribution &;(s) for x = 50.
Distributions are recorded at various times t,, increasing from blue to
red as indicated by selected t,, in the legend. Panel (d) sho,,s the same data
as (c) but rescaled as ¢,%(s) versus s//,. The corresponding plots for the
distribution %, (s) are shown in Fig. S23 (ESI¥).

network structure with increasing waiting time . To study the
ongoing coarsening more quantitatively, we monitor the poly-
mer surfaces and skeletons, as illustrated in Fig. 12. We note
that our polymer surfaces look rather similar to SEM or AFM
images of biopolymers.”?"°%%7:%8 gig. 13(a), (b) and 10(b) show
the time evolution of the skeleton and surface-based character-
istics, including the mean filament length L; and diameter dy
and mean weighted chord length 7, since system preparation,
respectively. The very slow relaxation seen in Fig. 4 can thus be
attributed to an ultra-slow coarsening process of the network
structure, as suggested by Fig. 11 and 12. Indeed, mass con-
servation arguments detailed in Section 5.5.4 suggest the scal-
ing relation (5) to hold during late stages of coarsening, which
we find to be satisfied to a good degree. Therefore, we conclude
that coarsening mainly consists of filaments very slowly becom-
ing thicker with pores very slowly getting larger.

We can monitor the ultra-slow coarsening also via the
weighted chord length distribution of the dense phase, ;. As
seen in Fig. 10(c) and (d), coarsening in the droplet and
network-forming phase is associated with a slow shift of %,
to larger chord lengths, in agreement with the ultra-slow

Fig. 11 Network coarsening. Selected snapshots (orthographic projec-
tions) with k = 50 (N = 1000 chains) at waiting times (a) t,, = 1940, (b) t,, =
5 x 10% and (c) t,, = 10°. Each chain has its own color.
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Fig. 12 Accessible polymer surfaces and skeletons, morphometric ana-
lysis. Orthographic projections of (a)—(c) polymer surface and corres-
ponding (a-y) skeletons (purple lines) for the three configurations shown
in Fig. 11. In (a)—(c) the polymer surfaces are obtained using Ovito's®®
“construct surface mesh” modifier with probe sphere radius 1.5 and
smoothing level 4. In (z-y) the system beads are rendered as semi-
transparent gray spheres.

increase of the mean weighted chord length /; over time seen
in Fig. 10(b). The curves for x > 10 in Fig. 10(b) are well
reproduced (up to within 2%) by a logarithmic growth law (see
Section 5.5.2). Extrapolating this law to a hypothetical final
state of a single droplet or cylindrical filament would mean that
/1 keeps rising significantly up to times of the order of ¢ = 10"
to 10%°! In other words, the mean 7, if averaged over all times
up to time f.,q4, increases by about 15% if t.,q is increased by
one order of magnitude. Using /;(¢f) as a time-dependent
characteristic length scale of the network, we can rescale
%\ (s;t) at different times ¢ onto a single master curve,
0 ()€1 (s;1) = fi(s/4,(2)) (for details see Section 5.5.3, ESIt).
Fig. 10(d) shows the rescaled curves for different times ¢,.
A very good collapse of all data shown in Fig. 10(c) onto a
single master curve f;(x) is observed. The functional form of the
universal master curve fi(x) for the network-forming phase is
well represented by the analytical expression given in eqn (29).
Similar observations are made based on the weighted chord
length distributions of the void space %, > 0 (Fig. 23). When
scaled with the corresponding mean chord length of the void
space Z,(¢), its master curve fy(x) is captured by the analytical
expression (27). We can use the functional form of f(x) to

k=20 @ k=250
e x=100

e k=10 o
= e k=30

0 2 4 6 8 10 20 2 4 6 8 10

tw x10% tw x10%
Fig. 13 Aging of filamentous bundles. Waiting time dependence of (a)
mean filamentous strand length Lr and (b) diameter dy for selected values
of k as indicated in the legend. Symbols represent simulation results, while
solid lines show logarithmic fits.
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extrapolate % beyond the box size. This procedure allows us to
estimate the moments of the distribution including the mean
weighted and unweighted chord lengths, 7, and [,, free of
finite-size effects.

Furthermore, we find that the scaled filament length L/7,
and thickness d;//; as well as the scaled mean pore size rpore//y
are essentially time-independent when early stages of coarsening
are discarded. Therefore, we conclude that the ultra-slow coar-
sening observed here is self-similar. A corresponding conclusion
has recently been reached for a network-forming colloidal sus-
pension based on the weighted chord length distribution %, of
the void spaces."”

3.4 Coarsening mechanism

In an effort to better understand the ultra-slow coarsening
mechanism, we propose a minimal model of fibril breaking
and rearrangement. See Fig. 14 for a sketch. In this model, a
representative fibril between two network junctions is modeled
as a bundle of parallel chains that can diffuse longitudinally
and independently of each other. The number ¢ of chains in the
bundle is proportional to the fibril cross section. When all
chain ends meet, the bundle breaks into two parts that each
join a different fibril, leading to a corresponding increase in
fibril cross sections. For fibrils with larger cross sections and
correspondingly more chains, the probability that all chain
ends meet is reduced and so is bundle breakage, leading to
an increase in rupture time 7,,, oc N°'. Employing a simple
rate equation dc/dt,, oc c/t,, this model predicts c(t,) ~ a +
bln(t,), ie a logarithmic growth for the mean number of
chains in the cross-section of a fibril, eqn (20), derived in
Section 5.5.1. Therefore, the minimal model motivates the
use of logarithmic growth laws to describe our data on coarsen-
ing. We find that logarithmic growth laws describe well not
only the coarsening of the mean filament length and diameter
as shown in Fig. 13, but also other structural quantities such as
the mean pore size, chord lengths, as well as pair and bending
energies, with relative deviations of only a few percent. Some of
these other quantities are shown together with fits to logarith-
mic growth laws in Fig. S5-S7 (ESIt).

Fig. 14 Minimal model. (a) Filamentous strand composed of three bead-
spring chains within its cross-section. Chain ends are marked in red and
orange. (b) The strand tends to preferably break when chain ends are
aligned, giving rise to two dangling bundles. (c) These bundles join existing
strands and thus help to increase their cross-sections (Movie A, ESI¥).
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Coarsening of network structures has been observed in similar
systems and described as either power-law'> or logarithmic
growth.”® Power law and logarithmic behavior have been asso-
ciated with two different universality classes of growth kinetics of
activated processes, depending on whether the activation barriers
grow (logarithmic) or do not grow (power law) with the domain
size.”® While the above arguments seem to favor logarithmic
growth, we actually find that both families of fit functions provide
equally good descriptions of our data. This indicates that our data
do not allow to distinguish between the two universality classes of
domain growth advocated in ref. 70. Furthermore, our systems do
not exhibit the exponent 0.5 found in the power-law growth of
characteristic pore sizes reported for the gas-liquid demixing of
colloidal suspensions and simple fluids.'* Instead, we observe a
much weaker exponent of around 0.1 when fitting to power-law
behavior. This finding might be taken as a further hint of non-
universality of the ultra-slow coarsening kinetics and is in line
with recent reports on non-universal aspects regarding the role of
elasticity in polymer and colloidal gels.>® Further investigations on
universality classes in ultra-slow coarsening and limits thereof are
left for future research.

3.5 Anomalous diffusion and relaxational dynamics

The enduring ultra-slow coarsening of these networks
poses some challenges for the investigation of their
dynamical properties. First and foremost, the lack of time-
translational invariance since a stationary state has not been
reached implies that we need to carefully distinguish dynami-
cal properties at different waiting times ¢, since preparation of
the system.

As a first dynamic quantity we study the mean-

square displacement (MSD) of bead positions A(z,ty) =

Ny ! Zj/.v:bl [r,(1 + tw) —lj,-(tw)]2 as a function of time t since
starting at a given waiting time ¢, Fig. 15(a) shows the
exemplary case of A(z,0) for k = 50 and all 10 independent
realizations of the system. For the corresponding A(t,10°) up to
t = 10° see Fig. S1 (ESIf). Even though each system contains
Np = 30000 beads, due to the absence of time-averaging,
considerable sample-to-sample fluctuations are seen in
Fig. 15(a), Fig. S1 (ESIt) and for other values of x (not shown).
Closer inspection of trajectories reveals that, except for the
relatively early stage (t,, < 10, filament fluctuations are rather
small with correspondingly small bead displacements. At cer-
tain times, however, large reorganizations of the filament net-
works occur via filament breakage and subsequent re-
attachment to another strand, leading to very large displace-
ments in some parts of the network over a short time period.
Fig. 16 illustrates such a filament breaking event and the
corresponding evolution of the MSD for an individual sample
in the late stage of coarsening. Similar dynamic heterogeneities
occur in a number of different systems, e.g. in glass-forming
liquids®” and aging colloidal gels."”

We will henceforth focus mostly on the ensemble-averaged
MSD (A(¢, t.)). Fig. 15(b) shows (A(t, t,) ) for k = 50 and three
different values of t,. We note that the short-time ballistic

This journal is © The Royal Society of Chemistry 2025
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Fig. 15 Mean square bead displacement. (a) MSD A(t,0) up to t = 10° for x = 50 and individual realizations (each sample has its own color). The ensemble
average is shown by the black solid line. (b) Ensemble-averaged MSD (Alt, t,,)) at three different values for t,, on a double-logarithmic scale (same dataon a
linear scale are shown in the inset). (c) MSD averaged over two different waiting time intervals: (i) t,, € [0,10°] for all x and (ii) t,, € [10°10°] for k € {10,50,75}.
All systems, including the unpercolated, flexible system (k = 2 shown) seem to approach a diffusive regime only in (A). (d) The non-Gaussian parameter a,
(15) is shown on a semi-logarithmic scale for case (i). For case (ii), the peak of the non-Gaussian parameter a, grows and occurs at later times.

regime is not visible on the scale shown in Fig. 15(b). Instead,
on a double-logarithmic scale, different diffusive regimes can
be distinguished in Fig. 15(b), all of them sub-diffusive on the
time scale investigated. Moreover, the dynamics is found to be

100 A

80 -

60 -

MSD

T T T T

0.0 1.5 2.0
t le6

Fig. 16 Filament rupture event. Zoom into a single filament rupture event
responsible for the 2nd significant jump in the MSD (t = O corresponds
to t,, = 10°) of an individual sample (k = 50, realization 1), recorded at about
t =1 x 10° (Movies A-D, ESI). End beads are colored in red and yellow,
as in Fig. 14, all remaining beads are colored in blue.

This journal is © The Royal Society of Chemistry 2025

very slow with beads moving only a fraction of their diameter
up to times ¢t & 10> except for the case ¢, = 0. In the regime ¢ =
5 x 10* up to 5 x 10°, data seem to follow (A(t, t,)) ~ .
In addition, a very significant dynamic slowing down is seen
from Fig. 15(b) as the MSD decreases with increasing &,. Similar
observations of waiting-time dependence and dynamic slowing
down have been made for aging in colloidal gels."” At least on a
qualitative level, the observed slowing down can in our case be
linked to the coarsening network structure investigated above.
Before investigating this relation further, we want to point out
that ignoring the non-stationary nature of the networks and
naively averaging over t,, can lead to wrong conclusions on the
diffusive behavior of the system. As an example, Fig. 15(c)
shows (A(t, t,)) for various values of bending stiffness x,
averaged over rather large time intervals at an early ¢, €
[0, 10%] and later stage t,, € [10°, 10°]. In this case, the apparent
MSD depends strongly on the chosen averaging interval.
Moreover, with such averaging, significantly larger values of
diffusion exponents are obtained that in some cases may even
suggest normal diffusion. Similar artifacts due to inappropriate
temporal averages in nonergodic systems are known and have
been analyzed within continuous time random walk models
with power-law distributed waiting times.”"

We note that the dynamics observed here bears some
similarities to the subdiffusive regime with MSD(¢) ~ *'* found
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in dilute and entangled solutions of semiflexible polymers.”>”?
For those systems, subdiffusive behavior occurs due to prefer-
ential fluctuations perpendicular to the chain contour for inner
monomers at short times, before the MSD crosses over to
normal diffusion at longer times when the MSD becomes
comparable to the polymer size, MSD(t) ~ (R®). For our
systems, however, almost all chains are part of the temporary
network, which leads to a severe hindrance of their mobility. As
a consequence, the maximal values of MSD(¢) achieved over the
duration of the simulations reported in Fig. 15(c) remain an
order of magnitude lower than (R?). Also for the unpercolated
system with x = 2, we observe a subdiffusive behavior MSD(t) ~
%, probably due to chain confinement within droplets as
discussed in Section 3.2. Some of our observations may support
the wormlike bundle model which predicts different dynamic
regimes with the MSD perpendicular to the chain contour
scaling first as ¢* then t“* and again ¢*’%, before ultimately
approaching a plateau, as this model disregards filament
rupture.”?

To further characterize bead mobility, we refer to the non-
Gaussian parameter o, defined in eqn (15). This quantity
(Fig. 15d) characterizes deviations of bead displacements from
a Gaussian distribution. For unpercolated systems (x = 2), o,
remains small and approaches zero relatively quickly. For
percolated systems on the other hand, «, reaches peak values
between 4 and 5 for k > 30 over an extended period of time
around ¢

~
~

10>...10° before the system enters a different
diffusive regime. For larger t,, the peak height of the non-
Gaussian parameter grows and moves to later times. Similar
peaks in the non-Gaussian parameter have been observed in
other systems such as supercooled liquids and glass-forming
flexible polymers. In those systems, the peaks in o, occur near
the end of the plateau region of the MSD and have been
associated with dynamic heterogeneities due to collective
relaxation phenomena such as “cage breaking”.””> Here, how-
ever, the peak values observed in o, are much larger, indicating
much stronger deviations from a Gaussian distribution. In
addition, although Fig. 15(b) indicates very slow, sub-diffusive
dynamics, the MSD is still increasing and does not really
plateau at intermediate times. These results are more similar
to those found in network liquids’® and suggest that there are
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different relaxation mechanisms at work in these percolated
networks compared to glassy dynamics, in agreement with
recent conclusions.”® For intermediate values of the bending
stiffness at the onset of a percolated network (x = 10), an
additional peak in o, is seen from Fig. 15(d). In polymer melts
composed of rather rigid chains, the onset of a second peak was
seen in computer simulation studies of a model system similar
to the one considered here.”” These authors assumed slow
relaxation of nematic domains as the underlying mechanisms
of the second peak at late times. Such explanations probably do
not carry over to the present case where we observe an additional
peak in o, at earlier times. A double peak in o, was also seen in
computer simulations for a particular choice of parameters in a
model for microemulsions, and related to the difference between
local cage-breaking versus bond relaxation events.”®

The self part of the intermediate scattering function, Fy(q, t),
defined in eqn (14) provides more information on the length-
scale dependent relaxational dynamics. See Section 5.3 for
more details on this quantity, and Section S1 (ESIf) for a
visualization of contributions to F(q, t). Fig. 17 shows F(q, t)
for several (color coded) values of the wave number g over a
similar range to those investigated for the static structure factor
Ssc(q) in Fig. 5. For better visibility, only a tiny fraction of the
simulation data are shown as circles in this plot (full datasets
available in Fig. S13, ESIT). On small length scales below the
bead diameter, i.e. ¢ 2 6, relaxation occurs relatively fast and is
not much affected by the bending stiffness k. On the length
scales of the end-to-end distances R of the polymers, corres-
ponding to g.. = 27/R, the relaxation of Fy(ge., t) is generally
faster than the orientational end-to-end vector relaxation (see
Fig. S8, ESIY), indicating the importance of cooperative effects
on these length scales (including the formation locally aligned
chains in droplets and bundles). For all systems investigated,
relaxation is slowing down by orders of magnitude with
decreasing g corresponding to larger length scales. Except for
Kk = 0, each panel in Fig. 17 shows two sets of data corres-
ponding to waiting times ¢, = 0 and ¢, = 10°. Relaxation slows
down with increasing waiting time, consistent with our obser-
vation of dynamic slowing down of the MSD. Such behavior is
typical for aging, especially in glassy systems.”>*® The slowing
with increasing t, is particularly strong for small g values

AR :
0.8\ 08
—
* 06 06
S)
el
® 0.4 0.4
h‘ \
0.2 \ 0.2 \
\o g
0 & - 0
102 10° 102 10* 102 10° 102 10* 108
t t

Fig. 17

0

102

Incoherent scattering. The time decay of the self part of the intermediate scattering function, F¢(q, t), egn (14) is shown on a semi-logarithmic

scale for selected g-values as indicated in the colorbar. Different panels correspond to different values of the bending stiffness x (mentioned in the panel
title). In each panel, open and closed circles correspond to Fs(q, t) data for t,, = 0 and t,, = 10°, respectively. All lines are fits to the power-ML function (6).
The chosen set of g values is not identical for the two t,,'s, but they are uniquely color-coded (full data sets available in Fig. S13, ESI¥).
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(g < 1), where the intermediate scattering function does not
relax to zero on the time scale of the simulations (and would
not do so for g « 1 even if we were to increase the simulation
time window by many orders or magnitude). Therefore, we deal
with an effective aging and non-ergodic system. This non-
ergodic behavior is not only common in colloidal systems with
infinite lifetime of bonds,”® but also reported for real transient
networks of semiflexible polymers."

To discuss the relaxation dynamics more quantitatively, we
fit the Fy(q, t) simulation data using the “power-ML” function

ﬁs(qJ)—{Eﬁ<—<l/rﬁ,>/j>r/ﬁ7 fﬁ,—(ﬂz%(ﬁ))l/ﬁrq, o

where Eg(z) =3 2 ,z"/I'(1+ pn) denotes the Mittag-Leffler
function and I'(x) the Gamma function. For the special case
o = f, eqn (6) reduces to the standard Mittag-Leffler function

Eﬂ<—(t/r;)/}) which is discussed in the literature as the

solution to a linear fractional differential equation.®* By con-
struction, we impose non-negative Ej, i.e. we restrict the fits to
p € [0,1]. With two exponents «, § and an effective relaxation
time 1,4, our simulation data for ¢,, = 0 and all values of x and ¢
investigated and over seven orders of magnitude in ¢ can be
fitted very well by the power-ML function (6), as shown by the
close agreement between the lines and open symbols in Fig. 17.
For the t,, = 10° data (filled symbols) eqn (6) does not capture all
details in the intermediate time and g (g ~ 1) regime.

For relatively early times, 7 < 7/, the power-ML function F,
describes a stretched exponential decay exp[—(t/1,)"], frequently
employed to fit relaxation in gels and glasses.'””® The corres-
ponding values of the stretching exponents 5 are shown for ¢, =0
in Fig. 18(b). A stretching exponent f = 3/4 was theoretically
predicted for solutions of semiflexible polymers.®” Here we
observe a rather large range of f§ € [0.6,1] values that moreover
vary non-monotonically with the wave number q. Note that
similar values of f§ but in a smaller range [0.6, 0.75] are found
if a stretched exponential function is used to fit Fy(g, ¢) for all
times. Those results are not shown since the quality of the
corresponding fits is generally inferior to those by the power-
ML function. For our model system we can rule out compressed
exponential relaxation'” not only because the power-ML (6) does
not allow to capture the f > 1 regime, but also since ¢(d/
dt)[In(—In Fy(q, t))] does not exceed unity for our measured data,
for both t, = 0 and ¢, = 10°. From a second-order cumulant
Fy(q,1) = exp[—(4*/6)(A(r,13)] (1 + O(q*)),  the
short-time, small wave vector limit is related to the mean-
square diffusion studied above. Our numerical data satisfy this
relation (not shown). For times 7 > 1/, the power-ML function

expansion,

(6) smoothly interpolates to a power-law behavior, F; ~ ¢ % with
o # f in general. Such pronounced power-law behavior is seen in
Fig. 17, in particular for small g values. The power-law exponent
o obtained from fits to eqn (6) is shown in Fig. 18(a). While for
q 2 5, Fyq, t) decays relatively rapidly so that the behavior is
dominated by a stretched-exponential relaxation, relaxation
slows down significantly for ¢ < 1 and the power-law regime
becomes more and more dominant. Most strikingly, we find that
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Fig. 18 Power-Mittag—Leffler parameters. (a) Exponent o characterizing
the power-law regime at ¢>> ¢, and (b) exponent § characterizing the

stretched exponential regime at 1 <« rf/ of the power-ML function (6)

versus the wave number g extracted from Fg(q, t) (data symbols in
Fig. 17), with additional values of g and « as indicated in the legend. The
range of k values shown (legend distributed over both panels) covers the
droplet and network phase. Shown are the exponents for t,, = 0. For
additional details see Fig. S11 and S12 (ESI+).

in this regime the o decreases towards zero with decreasing gq.
While the values of o vary significantly with « for ¢, = 0, only
small variations are seen for t, = 10°, where approximately « ~
g®” for ¢ < 1 (Fig. S11b, ESIt). Therefore, the long-time relaxa-
tion becomes slower and slower on larger scales as the exponent
decreases towards zero.

Having clarified short and long-time relaxation regimes, we
now turn to a discussion of the characteristic relaxation times.
Fig. 19(a) shows the relaxation time 7, of the power-ML function
(6) governing the time scale of the stretched exponential
relaxation. In addition, Fig. 19(b) shows an alternative definition
of a relaxation time 7, which characterizes the decay of Fy(g, ) to
a prescribed level. For convenience we here choose Fy(g, ;) = 1/2.
For those cases where the simulation data of Fy(g, ¢) do not decay
below 1/2, we use extrapolations from eqn (6) to determine 7,.
While the numerical values of 7, and 7, are different, both
characteristic relaxation times show qualitative similar behavior
at large g. First, for ¢, = 0 (open symbols in Fig. 19), the relaxation
times show approximately a scaling g~> for ¢ = 10™" and the
relaxation times are increasing with increasing bending stiffness
k. Aged systems with , = 10°, however, show a rather abrupt
increase of 7, 7, by about three orders of magnitude when g

102 107 10° 10

(a) 7 (®) 7

Fig. 19 Effective relaxation times. (a) Characteristic relaxation times g,
egn (6), in the droplet and network phase versus the wave number g
extracted from the incoherent scattering function (symbols in Fig. 17), with
additional values of g and « as indicated in the legend (distributed over
both panels). (b) Same as (a) but for the alternative definition of relaxation
time 7, defined as F4(q. 75) = 1/2. To highlight the dependency of relaxation
times on the waiting time, we here display results using t, = 0 (open
circles) and t,, = 10° (filled circles). Not directly measurable 74 values had
been extrapolated using the Fq(q, t) fits (lines in Fig. 17).
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decreases from g = 3 to g ~ 2. Interestingly, t,, 7, are rather
insensitive to the precise value of x in the network-forming
regime over a relatively large interval of g values. Fig. 19 demon-
strates a very rich relaxation behavior of the system that
moreover changes significantly between initial (¢, = 0) and aged
(tw = 10°) samples. Not only do large structures relax more slowly
in these systems, they do so in a particular manner with a
k-independent onset at a characteristic wave number q.. With
gec = 2...3, this length scale roughly corresponds to the filament
radius dg/2. With relaxation times exceeding 10°...10° for ¢ <
10~" by far, these systems show ultra-slow relaxation alongside
the coarsening behavior established above.

4 Conclusions

We study systems of semiflexible polymers where cohesive
interactions lead to physical, reversible crosslinks. From com-
prehensive molecular simulations of a generic coarse-grained
model, we find polymers to self-assemble into droplets for weak
bending stiffness, i.e. for relatively flexible chains. For more
rigid chains, on the other hand, the interplay between attractive
interactions with periodic boundary conditions results in the
formation of percolated networks of filaments - a typical
behavior observed in many biopolymers.

The self-assembled structures possess well-defined inter-
faces as evidenced from a pronounced g * Porod regime of
the static structure factor at intermediate scattering values q.
From a skeleton analysis, we find that the network is dominated
by three-fold junctions, with four- or higher-order junctions and
dangling ends accounting for a tiny fraction only. We identify the
links between junctions as filaments and observe that their
mean thickness decreases monotonically with increasing persis-
tence length, in agreement with previous simulation studies,*’
but in contrast with results from scattering experiments on PEG-
grafted methylcellulose chains.>* The resolution of this conun-
drum is left for future research. We determine the pore size and
chord length distribution used to define typical mesh sizes. We
find characteristic scaling laws for these systems so that e.g. the
mean pore radius and the mean filament thickness are propor-
tional to one another.

The systems investigated here show different dynamic
regimes of slow, sub-diffusive dynamics with strongly non-
Gaussian displacements over a broad time window. In addition,
dynamic slowing down is observed as the system ages. The
underlying reason for the anomalous diffusion are dynamical
heterogeneities due to rare reorganizations of the filament
networks with large cooperative displacements of a significant
number of beads. The relaxation dynamics is therefore inter-
mittent and dominated by individual events of filament break-
ing and recombining that become more rare as the system
coarsens (Fig. 20). These dynamical heterogeneities are also
reflected by stretched exponential and power-law relaxation of
the incoherent scattering function, with substantial dynamical
slowing down as the system relaxes further. It is important to
remark that the incoherent scattering function in the small
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Fig. 20 Reorganization during coarsening. Amount of significant bead
displacement events in the course of t,, for k = 5, 10, and 50 for three
representative samples. An event we here define to occur, if a bead is
displaced by more than 15 within time interval [t,,, t,, + 750]. The graph is
qualitatively unaffected by this particular choice. Individual spikes appear-
ing for the percolated networks mark the breakage and reorganization of
filaments that become more rare as the system coarsens.

wave number regime does not decay to zero on the time scale of
our simulations. The corresponding lack of ergodicity since
large-scale structure are not fully equilibrated has been pointed
out also in experiments on gels of amyloid fibers.

We observe a logarithmic dependence on waiting time since
system preparation for structural and thermodynamic quanti-
ties. This weak logarithmic dependence is easily overlooked
when monitoring these quantities on linear scales as is usually
done to check for stationarity. Also some quantities like the
static structure factor and gyration radius are less sensitive to
the ultra-slow relaxation (see Fig. 4 and Fig. S7, ESIT). For other,
in particular dynamic, quantities, however, the waiting-time
dependence is more significant and naive averaging can lead to
incorrect conclusions, e.g. regarding the diffusive behavior.

The ultra-slow logarithmic relaxation prevents us from
reaching a (approximate) stationary state even with a massive
increase in computational resources. The enduring relaxation
can be interpreted as an aging process as encountered in many
complex and amorphous materials, where the system explores
lower and lower potential (bond and bending) energy minima.
Structurally, for our system this aging phenomenon involves an
ultra-slow coarsening process of network structures where
filaments very slowly become thicker while pores become
larger. Since both length scales are intimately linked, the
ultra-slow coarsening is self-similar in the course of time as
evidenced by the very good data collapse onto master curves of
the chord length and pore size distributions. It would be
interesting to compare these findings with experimental results
on aging in comparable biopolymer networks. Exploring the
interplay of aging and coarsening with viscoelastic properties of
these networks is left for future research.

5 Materials and methods
5.1 Static structure factors

The static structure factor S(q) is defined by

1

S@ =3 > () = on). )

This journal is © The Royal Society of Chemistry 2025
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where the double sum runs over all Ny, beads in the system and
dpg = ;VZ"I ¢/ are the Fourier modes of the fluctuating den-
sity field. The angular brackets denote ensemble averaging. For
isotropic systems, S depends only on the modulus g = |q| of the
wave vector, and can be used to calculate the pair correlation
function g(r) =1+ (21t2nr)7ljgcq sin(gr)[S(q) — 1]dg. We effi-
ciently evaluate S(g) via numerical Fourier transform on a
2'* x 2" grid to prevent evaluating a double sum or the pair
correlation function at large distances (we find that smaller
grids lead to inaccurate results in the vicinity of the first
minimum of S(g) at about g = m). The smallest wave vector
Gmin = 27/L, that we can meaningfully study corresponds to the
largest length scale of our system which is the linear size L, = V*®
of the cubic simulation box. The largest gmax = 4096¢min iS
determined by the chosen grid.

We also evaluate the isotropic scattering function of an
individual chain, defined by the Fourier-transformed intra-
molecular radial pair correlation function®®

Soid) = % ZN:I (entrm)) = 1 +]2VZN:<S‘“(‘1”/)> 8)

qrij

where the double sum runs over all beads of a given chain and
the ensemble average includes an average over all chains. By its
definition, S¢.(0) =1 + (N> — N)/N = N. Since N « Ny, the double
sum in eqn (8) can be evaluated directly, and there is no need to
calculate the radial pair correlation function. Since unfolded
bead coordinates are used, the box size does not limit the range
of possible g values, and S,.(g) can be evaluated down to g = 0
for any box size L,. The quantity Ss.(g) for continuous wormlike-
chain with and without excluded volume had been studied
theoretically.5*%°

For discrete WLCs in the absence of excluded volume effects,
Ssc can be calculated (i) recursively via the Laplace-transformed
moments of the end-to-end distribution function,®>®” or (ii)
numerically upon generating an ensemble of discrete WLCs, or
(iii) analytically using one of the existing approximations for
the radially symmetric distribution function f(L, Ly; R) for the
end-to-end distance R of a discrete WLC with contour length L
and persistence length L,. We here employed the two latter
approaches: (ii) to generate an ensemble of N, discrete WLC
with given N, b and x/kgT or L, = —b/In[L(x/kgT)] we grow
each chain bond by bond, choose bond vector b; =

zb; +bV1 — 22 (u x b;) /|u x by| with z = —1 + In(1 + c&)kgT/x, &
a random number equally distributed on the interval [0,1], u a

random unit vector, and ¢ = 27 —

1. This algorithm follows
from the known distribution of bond angles for the discrete
WLC. For huge x/kgT > 100, to prevent numerical precision
problems, z = max(—1, 1 + In(£)kpT/x) can be employed instead
of the above exact expression. The bead positions, given by
r; = r;_y + b; are then directly used to evaluate eqn (8). For
approach (iii), we start from the highly accurate analytic expression
for f(L, Ly; R) proposed by Becker et al.,*® subsequently normalized
so that [f (L, Ly; R)d*R = 1, and then evaluate the intramolecular

pair correlation function g,.(r) by summing over all partial contour
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distances, ie., ge(r) = N™' S5, (N = j)f (jb, Lp; ). With g(r) at
hand, we evaluate S (¢) = 1 + 4ng~" [ 7sin(rq)[gw(r) — gw(L)]dr
with L = (N — 1)b. For the large L, > Nb, approach (iii) runs into
numerical problems and we rely on (ii). Both approaches (ii) and
(iii) allow us to consider variable bond lengths b, but we find that
our measured S,(q) is already well captured over the whole g range
including the peaks for ¢ > b, by using a fixed value b = 1. As a
side-result, we have access to gs.(r) without having to measure this
quantity directly.

5.2 Effective persistence lengths

We implemented two approaches to extract effective persistence
lengths /, and L, from chain configurations. In the “local”
approach, we use the mean bending energy per atom e,, usually
reported by LAMMPS (eangle). The corresponding 7}, is then given
by 7/, = —b/In(u;u;,) with (u;u;1) =1 — Ney/[(N — 2)«]. In the
second “global” approach we use the ratio between mean squared
end-to-end distance (R*) and squared radius of gyration R;; of the
N-chains (Fig. S10, ESIT) and estimate an effective persistence
length L, assuming that the individual chains exhibit the statistics
of a discrete WLC (Fig. 21). To this end let us recall the exact
analytic expressions for a discrete WLC with N — 1 bonds and
contour length L = (N — 1)b,>*

(R) 14z 2:(1=2V)

bL 11—z (N-D(—-2)? ©)
6R; 14z 6z N+1
bL ~ |1—-z (N-1)(1-2?2] N
(10)
N 12z[N — z(N 4 1) 4 zNV+1]

(1 :2)4(N N

with z = e ”*». Note that the ratio (R)/R2 does depend on L, only.
For N » 1 and L, » b, the discrete WLC converges to the better
known continuous WLC characterized by ref. 89

R’ L
2<Lp1>4 = Eprebye (L/Lp)7

(11)

0 20 40 60 80 100
L,/b

Fig. 21 WLC model prediction. Ratio (R2>/RS versus L,/b for three differ-
ent N according to egn (9) and (10) (black) and eqn (11) and (12) (light gray)
for comparison. We extract an effective persistence length L, from this
ratio, instead of monitoring the bond—bond correlation function. Alter-
natively, we extract an effective persistence length L, by fitting the
measured Ss(q) to the discrete WLC model, as described in Section 5.1.
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6RS . 3Lp[
2L,L L

1= foee (L/Lp)]. (12)
with the Debye function fpepye(¥) = 2(¢ ™ + x — 1)/x”. In contrast to
the continuous WLC, the discrete WLC correctly captures dumb-
bells, as (R?) = b* and R = b*/4 for N = 2. For x/kgT > 1 0r Ly/b > 1,
Lp/b =~ «/ksT. For an ideal WLC the local /}, (obtained from e,) and
global L, (obtained from (R?), Rg, or their ratio) are identical, and
/p =L, = L™ with LEVLC = —b/In[¥(k/ksT)].

Note that expressions (9) and (10) were written differently,
but equivalently, in the mentioned ref. 54. With the nonzero
components A3 = —(n/2)I1(Ly/b)/sinh(Ly/b) and Az; =zof a3 x 3
matrix A, involving the modified Bessel function I; of the first
kind, the mean squared end-to-end distance was left un-
evaluated in terms of A as (R*)/bL = C, — [2/((N — 1)}
[A-(1 —AY")-(1 — A)"*]5;5, where Co = [(1 + A)-(1 — A) ]33

5.3 Intermediate scattering function F(q, t)

Letting r;(¢) denote the coordinates of the jth bead at time ¢, the
intermediate scattering function (also known as dynamic struc-
ture factor) is defined by

F(qvl) =

Nib<6p<q,z+ 1)3p(a, 1), (13)

with 8p(q,7) = Y " expliq-1;(r)] the instantaneous density
fluctuation at wave vector q. For ¢ = 0, eqn (13) reduces to the
static structure factor F(q, 0) = S(q) introduced in eqn (7).

We evaluate the radially symmetric self-part of F(q, £),”° Fi(q, {) =
(expliq-(t;(t + tw) — 1i(tw))]), for a selected number of g values. The
average is taken over trajectories of 10 statistically independent
starting configurations, and all g-vectors with length g = |q|. Such
integrals over the unit sphere of orientations of q vectors amounts

to evaluating
sin(qAr;)
Fy(q,t) = ( ———= 14
.0 = (), (14
with the bead displacements Ar;(f) = |r;(t + t) — 1;(t)|, and where
the average is taken moreover over allj € {1, .. ., Ny} beads. Eqn (14)
refers to the orientation-averaged self-part of the intermediate
scattering function.

For small ¢, eqn (14) can be expanded to give®®

= (APOV O 4 (ArP (1) (0))72+ . ],
only on the displacements and the non-Gaussian parameter
defined by

FY(% Z) =
which depends

3(Ar (1))
Sary (19)

(1) =
Note that the expansion of Fyg, t) assumes not only
isotropy but also statistical independence of increments,
(Ar; (OAr, (1) = (Ar>(0) (Ar,*()) = (Arf(£))*/9. We evaluate
(Arf(t)) and (Ar'(t)) and calculate o, directly from eqn (15).
For normal diffusion, displacements are Gaussian distributed
leading to «, = 0, while o, # 0 indicates non-Gaussian
displacements.
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For percolated networks the Fy(q, t), evaluated for t, = 0,
exhibits power-law behavior at small ¢ < ¢., and stretched
exponential behavior at g 2 ¢., where 2n/q. is comparable with
the filament diameter dn A class of functions providing the
required asymptotic behaviors are the three-parametric Mittag—
Leffler functions f(¢)=E,, ‘//;|: (1/7) ] °1 Another class,
involving the simpler one-parametric Mittag-Leffler function,

a/p

are the power-ML functions f(¢) E/;[ (¢/7) } with g-
dependent 8 € (0,1), @ > 0, rq > 0, which we are using in this
work, as they better capture the data. Both versions are char-
acterized by f(¢) = exp[—(t/ry)"] at 1 < 7, and f (1) = (1/)) "

t> 1), while the ratios 7,/7, and /rq are both umquely
determined by o and f. For the power-ML one has 7} /7, =
[/ra

existing relationship between 7, and 7/

p)]"/? and t, /1, as stated in eqn ( ) already. Due to the

it is generally not
possible to fit both terminal (early/late) regimes of a measured
Fy(q, t) perfectly, and the fitted exponents o and f may not
coincide exactly with the exponents one would obtain when
fitting the asymptotic regimes separately (Section S5, ESIT).
This fact must be taken into account when interpreting the

exponents.

5.4 Network analysis algorithms

5.4.1 Clusters and critical bonds. The number of clusters C
and their critical bonds (Fig. 22) are extracted from the network
composed of permanent and reversible bonds, using available
software.®® The number of critical bonds is the minimum
number of bonds that need to be deleted in order to observe
depercolation of the system.

5.4.2 Skeleton. The length and thickness distribution of
filaments, position and functionality of junctions of a given
configuration we calculate based on an offlattice-skeleton
that we produce using the thinning algorithm described by
Gimperlein and Schmiedeberg.’> Other tools such as Skele-
ton3D.m"? require a binary grid and necessitate replicating the
original system to mitigate boundary effects; moreover they
operate on a resolution that exceeds the bead size and the grid

IS
S

@
S

! —@—r=0 —@—r=15 —@—r=50
—@—r=2 —@—r=20 —@—~r=T5
—o—r=5 k=30 —@— £ =100
—@— k=10 —@—r=40

clusters
Y
8

>

s bbb

0 0
2000 5000 10000 50000 100000 0 2 4 6 8 10

(a) tw (b) tw x10*

Fig. 22 Clusters and critical bonds. (a) Amount of clusters versus waiting
time based on graph constructed from the reversible and permanent
bonds. (b) Amount of critical bonds. The visible blue line at the figure
bottom is for k = 5, while there are no critical bonds for k < 2. The finite
number of critical bonds for k = 5 stems from the few 1D percolated
configurations (Fig. S14, ESIT).
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makes it difficult to accurately identify junctions. Our skeleton
does not suffer from all these disadvantages and is moreover
superior in computational efficiency.

The thinning algorithm operates on the bead positions and
their permanent and temporary bond information and pro-
duces a reduced configuration, the skeleton, upon deleting
beads from the original configuration that are identified to
not being part of it. The remaining skeleton is free from
unattached beads, and made of linear strands connecting
junctions. In our implementation, directly connected junctions
in the reduced configuration are merged to form a single,
higher-functional junction, to prevent the artificial occurrence
of filaments with a single bond. The linear strands follow the
centerline of the thick filaments and the minimum number of
beads that form a loop is the single parameter of the algorithm.
While this parameter was chosen as low as 3 in the original
work on colloidal gels, and iteratively larger in subsequent
works,”* we use a value of 25. We find that results for the
systems under study are basically unaffected by the choice as
long as the parameter exceeds 20. Since this skeleton algorithm
does not alter the coordinates, and because beads deep inside
filaments reside on crystal-like lattices, the linear strands
making the skeleton eventually exhibit zig-zag regions. To be
able to estimate strand lengths Ly at high precision, as well as
their amount E, and the total filament length Ly = ELj we
smooth the contour of linear skeleton strands by walking,
starting from each junction, along all chains emanating from
it up to the next junction (or the chain end), and place each
skeleton bead halfway between preceding and next skeleton
bead. The adjusted bead positions are then constituting the
skeleton, representing the centerlines of the bundles and their
junctions (Fig. 12 and Fig. S3, ESIt).

5.4.3 Edges, loops, and functionalities. All skeleton beads
can be classified according to their functionality f > 0. Beads
belonging to linear skeleton chains are characterized by f = 2,
end points by f= 1, while f > 2 correspond to network junc-
tions (or vertices). Since every ffunctional junction gives
rise to f half filament strands (edges), the total number
E of edges connecting J = Zfoo:; ny junctions is given by

E= Z_}fn/‘/Z, where n; denotes the number of skeleton beads

with fneighbors and the summation 3" runs over all vertices f
with f # 2. For a general network consisting of C disconnected
clusters, the total number of independent cycles “loops” L.
(also known as circuit rank, cyclomatic number, or nullity of a

graph) is determined by the number of edges and vertices
95,96
as™”

L=E+C=) ny,
7

(16)

or equivalently, in terms of the number of junctions and
dangling strands, L. = E + C — n; — J. The mean functionality
of skeleton beads is f = Y72 fn; /37| ny. The mean junction
functionality /, = Y72, finy /J can alternatively be written as f; =
(2E — my)/J.
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5.4.4 Filament diameters and volumes. Diameters dy of the
filamentous bundles are not available from the skeleton alone.
For each bead residing on a skeleton chain, we calculate dr by
determining the radii in two opposite half-spaces around the
bead, where each radius is the minimum distance between
the bead center and the void space. The latter is defined as the
region that is further away from any bead of the original
configuration than r, = 0.75. This value is large enough to
ensure that there is no void space inside the filaments.

For the calculation of the total polymeric volume V; and
corresponding bead number density pr= Np/Vj; we use a basic
Monte Carlo scheme, where we shoot randomly into the
simulation box volume V. The Vyis then the fraction of shots
that hit any of the bead volumes (unchanged radius r.), multi-
plied by V. Generally, results for Vyand dy are sensitive to the
choice of r., but at fixed radius we can still evaluate the effect of
x and time on the V{t) and dt) trajectories.

A rigorous bead number density prdeep inside the filamentous
bundles we identify with the mean inverse Voronoi volume of
skeleton beads, while the Voronoi construction is performed
using all beads. The corresponding polymeric volume, assuming
that there is no density gradient inside bundles, is then Vy= Ny/py

5.4.5 Pore size distribution. The physically meaningful®”
geometric pore radius probability density G-Ppore(r) (introduced by
Gelb and Gubbins®") reported here is a special case of the general-
ized pore radius distribution GPSD-P(r; r,,|r) with probe particle
radius r, = 0 and shell thickness r. = 0. We here obtain G-Ppo(r)
using the GPSD-3D algorithm with bead (material sphere) radii

0.5.°* By definition, the cumulative distribution G-P¢m(r) =

JoG-Ppore(1')dr’ approaches unity for r — 0. This G-Ppore(r)dr is
the probability that the largest sphere, containing a randomly
chosen point within the void space and not overlapping with the
material spheres, has a radius between r and r + dr. The corres-
ponding cumulative pore size distribution is shown in Fig. 9. The
mean pore radius is evaluated as rpore = jgo G-Ppore (r)rdr.

A simpler and only marginally related quantity T-Ppore(r) is
known as Scheidegger or Torquato-PSD.®>°® We interpret
T-Ppore(r) as the probability of the largest sphere with radius r
that can be fitted at a random position within the system
without overlapping any material sphere. For comparison, we
show in Fig. S9 (ESIf) the cumulative pore size distribution
based on T-Ppgre. By construction, both cumulative pore size
distributions are increasing functions. However, clear differ-
ences between Fig. 9 and Fig. S9 (ESIt) can be seen, emphasiz-
ing the different definitions of both quantities.

5.4.6 Chord lengths and polymer surface areas. A chord is
defined as the segment between two consecutive intersections
of the surface of the fibrous network with a virtual line drawn
through the system.’®®® We determine chord lengths,®®
unweighted (C,) and weighted (%) chord length distributions
for both the void (x = 0) and dense (x = 1) phases. Periodic
boundaries are taken into account. To define the surface, we
consider points in the void space to have a distance exceeding
2r. = 1.5 from any of the beads. The value 1.5 is large enough to
ensure that we do not greatly overestimate the surface area (due
to increased roughness at smaller values).
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Since the probability to choose a point on a chord of length s
is proportional to s, the weighted and unweighted distributions
for the x-phase are interrelated by %.(s) x s%(s), with
[#%.(s)ds = 1. The mean unweighted and weighted chord lengths
are then denoted by /, = [sC(s)ds and £, = [s%(s)ds, respec-
tively. The unweighted C,(s) had been employed in many theore-
tical works,”” where one considers all possible chords, while the
weighted % is usually extracted by randomly choosing many
points inside the x-phase, and determining their chord lengths."?
Analytic expressions exist for some simple geometries like spheres
and cylinders.® For an ideal cylinder of diameter dyand length Ly
one has I, = dld(Ls+ df2) and /; ~ 1.27 x [;.

We extract the chord length distributions with high resolu-
tion based on the Cauchy-Crofton formula.’®® To this end we
generate an ensemble of X lines equally distributed in a large
sphere of radius r, =+v/3L,/2 and surface area 4, = 4nr,”
enclosing the cubic simulation box. Each of the lines connects
two random points residing on the surface of the large sphere.
This procedure ensures a homogeneous density of an ensemble
of X lines within the simulation box volume. For each line, we
calculate the number of its intersections with the surface of our
filamentous network (including periodic images). Denoting the
total number of intersections by Xj the resulting accessible
polymer surface area is Ar = XA;/2X. The factor 2 accounts for
the number of intersections of each line with the surface of the
large sphere. As an immediate, but most important by-result
one obtains the unweighted distribution of chord lengths,
C.(s), and the weighted distribution %,(s) herefrom.

If one were interested in Ar only, it is sufficient to employ a
Monte Carlo scheme where one shoots randomly into the
surfaces of the N, beads defining the void space, and counts
the fraction of shots that do not reside inside any of the
remaining spheres. This fraction, multiplied by the total sur-
face area of N}, individual spheres equals Az We checked that
the so-obtained Af coincides with the A; from the Cauchy-
Crofton approach.

5.5 Self-similar coarsening

5.5.1 Minimal model. Our minimal model is briefly
described in Section 3.4 and schematically depicted in
Fig. 14. Consider a one-dimensional, periodic lattice model
with N nodes and N — 1 bonds so that there is exactly one
pair of unbonded, adjacent nodes between nodes at positions
X — 1/2 and x + 1/2, say. Such a state characterized by N and x
represents parts of two linear chains whose terminal beads
meet at x. The unbonded pair is considered to perform a
random walk on the periodic lattice. A filament with ¢ chains
within its cross-section is then represented by a stack of ¢ such
one-dimensional lattices, and a set {x}. Each of the chains, i.e.,
each of the members of the set is considered to perform an
independent random walk. The toy model assumes that a
filament breaks as soon as all x values coincide. The members
of the destroyed filament then join other filaments, resulting in
an increase of the cross-section (diameter dj) of existing fila-
ments. According to this model, the mean rupture time is
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Trap(€) ¢ N°7Y, since the probability, that all ¢ unpaired bonds
are located, for the first time, at the same position after s > 1

random steps is [1 — p° '] "p° ! with p = 1/N. This implies

>, s—1
Zs[l _pcfl] pcfl
Trup(€) o =N L (17)
NIRRT S
22) [1 _pt l] ]7‘ 1

In a first approximation, let us assume that the total length
of all filaments, Ly, and the mean filament length, Ly are
unaffected by c. The equation of change for ¢ then reads

de  Ec(tw)
dty  Trp(c(ty))’

(18)

with a factor of proportionality =, which is inversely propor-
tional to the number of filaments. The ordinary differential
equation (ODE) is solved implicitly, with the help of
Je"IN¢dc = Ei(cln N), by

_Ei(cIn N) — Ei[c(0) In N]

fwle) EN

(19)
where Ei is the exponential integral function.'*® For arguments
in the relevant range x € [10, 100] one has Ei(x) ~ exp(—2.584 +
0.978x), and Ei~'(y) ~ 2.642 + 1.022In(y), so that the explicit
expression for c(t,) can be written as

nl 13.25ENty,
L = 578e0)

In(NOI78) ’

c(tw) = ¢(0) + (20)
which, for not too small times ¢, is of the form a, + b, In(ty)
that we used to fit the data (Section 5.5.2). Inserting eqn (20)
into the expression for 7., suggests that 7, increases quasi-
linearly with ¢,.

This minimal model can be extended to filaments with a
length Ly = mN that is a multiple of N, ie., to filaments of
diameter dr x 4/c that contain mc chains, and mc unpaired
bonds. A motivation for this extension is that we know that L¢is
roughly proportional to dj m o \/c. The probability that ¢
unpaired bonds are located, for the first time, at the same
position after s > 1 steps is [1 — p 1] Vp=l[1 — pc 11 =
[1 — p“ '™ 'p" ! with p = 1/N, implying Trup(c, L) = [1 — (1 —
N°YMNTY — 1, keeping in mind that Ly oc \/cN. For L=N (m=1)
this reduces to the earlier expression. For large N > 1, tp(c, L) &
m'N°" is thus by a factor m o< \/c smaller than t,,(c). Putting
this together

de _ EOP(t) (21)
At~ T (c(tv))
with another factor of proportionality =. This ODE can again be
solved for t,(c). The inverse c(t,,) grows a little faster than eqn (20),
but still logarithmically.

While the minimal model gives rise to logarithmic growth of
the number of chains in the cross-section of filaments, it
completely ignores length or thickness distributions of fila-
ments, and any variation of the total length of filaments with c.
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It can thus be improved further to the expense that the
corresponding ODE can be solved only numerically.

5.5.2 Logarithmic fits. Motivated by the toy model suggest-
ing a logarithmic slow down (20), we use the following fit
functions for most of our measured time-dependent quantities
due to coarsening,

fts) = a. + b, In(t)

where f(t,,) is the measured time series, whose two coefficients
are well captured using the following dependencies involving
four parameters 4o, and By,

104 10B
aK:AO<1+—1)7 hK:BO<1+ 1)7
K K

so that the corrections proportional to 4; and B, are, for k > 10,
of particular relevance only if their magnitude is not small
compared with unity. Each fit function is fully determined by
the four parameters and serves to estimate a quantity for all
times ¢, and arbitrary x based on the gathered data. Time
averages over a time period [t,, t, + 7] are then given, for
arbitrary waiting times t,, by

(tw = 10%), (22)

(23)

1J~Iw+ff(t)dt D (IW + ’C) ln(tw + T) —ly ln(ZW)
T . K K T :

ty

(24)

In this manuscript we necessarily presented results for selected
tw and t. Since all averages depend on the choice of interval for
a system that has not reached equilibrium, eqn (24) can be used
to estimate them with the four parameters at hand (Section S8,
ESIt). Note that the above form (22) implies f(ts) = b, In(tw/7,)
with 1 = exp(—a,/b,). For large x > 1, one has

Ao

T = |1 = 105(41 — Bk~ + O(k72) [e /B, (25)
0

We also tested if our data can be better captured by power-laws,
using the modified foow(tw) = a,t%, where a, and b, are again
given by eqn (23) but with different values for A, ; and B ;. As a
matter of fact, a power-law dependency cannot be ruled out
completely. We moreover tested if we can find simple fit
functions that capture the various averages much better than
the unbounded eqn (22), since most of the measured quantities
have an upper or lower bound. We find that the three-
parametric rational function f(ty) = ¢1(1 + ,x)/(1 + ¢3x) with
x = In(,) or x = In’(x) serves this purpose, and then allows to
estimate a stationary r‘lii*noo f(ty) = c1c2/c3 as well as the time

where f(t,) has reached a certain fraction of its final value.
However, such extrapolations to very long times carry a large
amount of uncertainty.

5.5.3 Self-similar %, (s) and %, (s). We find that all time-
dependent, weighted chord length distributions %, multiplied
by the characteristic length scale /,(¢), fall onto a master curve,
if plotted versus s//,(t). This finding is in the same spirit as
observations made for other model gels.'* The multiplication
with /,(t) is necessary to keep the normalization intact.
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Fig. 23 Distribution and self-similarity of weighted chord lengths. Same
as Fig. 10(c)-(f) for the distribution %, (s) operating on the void space. The
extrapolated lines at s > L, (dashed) were obtained assuming the form (27)
obtained upon studying larger systems with N. = 50 000 chains.

For our small systems, %,(s) as opposed to %;(s), does not
drop to zero when s reaches the box size L, ~ 84.3. As for %, (s)
however, the rescaled, measured part of %,(s) falls onto a
master curve. We use this finding to estimate the full ,(s)
for all percolated systems by studying a number of large
systems with N, = 50 000 chains (Fig. 19) at unchanged number
density for selected x up to relatively small times &, = 5 x 10™.
For these systems, the box size L, ~ 310.7 is sufficiently large to
observe the full €,(s) curve. We find that %,(s) is (within 2%
relative deviation) described by the master curve

o(s/4 voxe )"
o) S i <P )
or equivalently,
17 __ 1 D08 —s/t v
bols) = sI'(v) ( 0" ) 7 ©7)

which has the proper normalization, [¢,(s)ds =1, and time-
dependent first moment ¢y = [%,(s)ds by construction. This
%o(s) has its maximum at s5"™ = (v, — 1)//v,. For the exponent
we find v, &~ 2.3 £ 0.1 for k = 50 (large system with N, = 50 000
chains) and v, = 2.4 £+ 0.15 independent on « for all small
systems. For v, = 2.3, sg°% & 0.637.

For the smaller systems with N. = 1000 chains, we have
measured the un-normalized % (s) up to sg™ < s < L,, so that
we have already determined s5™*. We then fit the available data
to the form (27) to extract v, and herefrom obtain /, =
VoSo (v — 1).

For %,(s) we find the following analytic expression to
capture the master curve,

ax\ 171
fi(s/e 2vy cos(m/2vy) (x /XX
a1(s) =TI WA es)
! xn{l + (o /xinax) ]
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or more explicitly,

_ 2vy cos(m/2v1) (S/Srlnax)1+u,

%1(s) - ; (29)
STC [1 + (S/S’ln"”‘)z 1]
where x7"®* and s7"® are determined by
. 4y cos(m/vy)
K max — g B max — .
’1 i cos(m/2vy) (30)

As before, s7"™ and the prefactors stem from the normalization and
¢ = [5%1(s)ds. The maximum of % (s) is achieved at s = 57", and
the maximum amplitude is % (sP"*) = v cos(n/2vy) /nsT™ so
that we can use the measured s7"™ and % (s7™*) to determine
both 14 and /. For the exponent we find 14, ~ 2.9 + 0.1 for x = 50
(large system with N, = 50 000 chains) and the same range of value
for all x (smaller systems with N. = 1000 chains). For vy = 2.9,
ST x 0.6 /5.

Just note the identity Cy(s) = L Ex(s)/s = Lfx(s/lx)/slx,
implying that C,(s) does not fall onto a master curve except if
/,/l, is a constant at all times. Using the analytic expressions €'
allows to (i) write [, as an integral, which we can be evaluated
analytically as well (Fig. 24), and (ii) to estimate the scattering
intensity, under certain assumptions like convexity,"®"'?
which do not strictly apply for our system.

5.5.4 Scaling relations during coarsening. In late stages of
coarsening where all chains participate in the network, structures
where thinner filaments support many smaller pores evolve towards
networks with larger pores and thicker filaments. Following argu-
ments put forward by Picu and Sengab® we here provide simple
scaling arguments to relate filament diameters and pore sizes.

From the skeleton analysis we know the total length of
filaments Lo as well as the mean filament diameter dp
Assuming cylindrical filaments where chains are densely packed
with cross sectional area fraction ¢ (with ¢ = n/4 for the 100-
plane of fcc packing), filaments contain on average ¢ = 4¢(d/o)*
different chains within each cross-section, with ¢ an effective
bead diameter. Therefore, the total number of chains can be
estimated by N, & cLia/L; where Ly = (N — 1)b the contour
length of a single chain. The simulations confirm that this ratio
is indeed constant, independent of x. For simplicity of the

25

z =1 (polymer)
—mm z =0 (void)

2K, ———.cyli
e S cylinder
~ T

8 [
X
s TR
1
2 25 3 3.5
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Fig. 24 Mean chord lengths. Ratio between mean weighted and mean
unweighted chord lengths versus exponent v, with x € {0, 1}, predicted by
the analytical expressions (27) and (29). The measured ratios range in the
regimes marked by the red rectangles. In every case the ratio is larger than
the ratio one obtains for cylinders whose height exceeds their radius
(dashed). For a sphere Cy(s) oc s and thus /1/l; = 9/8 = 1.125.
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argument, let us approximate the network structure as a cubic
grid with mesh size equal to the mean pore radius r,ore. In this
case, the total filament length is given by Lyt & 3V/r§0re, rather
close to Ligal X 2V/r]230re found in the simulations. Inserting into
the above relation we find that filament diameter and mean pore
size are proportional to each other,

(31)

where the prefactor is estimated as m; ~ [pha*/12¢]"* with p =
Np/V the bead number density introduced above. This agrees
with eqn (5). With p =0.05, b =0 =1, ¢ = 0.5 we find m; =~ 0.09.
Compared with Fig. 7(g), this value is about a factor of 2 too
low. But given the crudeness of the arguments the agreement
seems satisfactory. The above arguments do not only apply to
late stages of coarsening where both, df and 7y, change as
function of the waiting time t,. Eqn (31) also applies to well-
relaxed network structures for different model parameters such
as the bending stiffness «.

In a similar spirit, we can estimate the pair energy per
particle from interactions within filaments as

df: M1Tporey

P CLtotaIEEcoh
air ~ T a7 L
P Nyvb

(32)

where z denotes the average coordination number within a
filament. For the bending energy per bond, e,, we assume
filaments are approximately straight and bent only at the
junctions with an average angle corresponding to (cos0p).
Estimating the number of junctions from the number of
filaments E = Lyoai/Ls we find

¢Liotal

mk(l — <COS 9b>)7

e eyl + (33)
where e, ; = [N/(N — 2)]bx//}, accounts for the bending energy of
an individual chain in terms of the effective persistence length
/, introduced in Section 5.2. Thus, we find that the mean
bending energy varies linearly with the pair energy,

€y X ea,l + mzepair (34)
with prefactor m, given by
1 - 0 b
oy = (cosOy) bic (35)

z Lf Ecoh ’

Assuming the average coordination number Z and average
bending angle between filaments (cos 6},) to be approximately
constant for late stages of coarsening, eqn (35) suggests that the
ratio of pair and bend energy is dictated by the dimensionless
parameter (L/b)(Econ/k). Note that a similar parameter was
found to govern two-dimensional network structures formed
by attractive semiflexible chains.** The approximate linear
relation (34) between pair and bend energy is in agreement
with our observations in Fig. 4(d).
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