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Scalability of a graph neural network in accurate
prediction of frictional contact networks in
suspensions†

Armin Aminimajd, Joao Maia and Abhinendra Singh *

Dense suspensions often exhibit shear thickening, characterized by a dramatic increase in viscosity under

large external forcing. This behavior has recently been linked to the formation of a system-spanning

frictional contact network (FCN), which contributes to increased resistance during deformation. However,

identifying these frictional contacts poses experimental challenges and is computationally expensive. This

study introduces a graph neural network (GNN) model designed to accurately predict FCNs by two

dimensional simulations of dense shear thickening suspensions. The results demonstrate the robustness

and scalability of the GNN model across various stress levels (s), packing fractions (f), system sizes,

particle size ratios (D), and amounts of smaller particles. The model is further able to predict both the

occurrence and structure of a FCN. The presented model is accurate and interpolates and extrapolates to

conditions far from its control parameters. This machine learning approach provides an accurate, lower

cost, and faster predictions of suspension properties compared to conventional methods, while it is

trained using only small systems. Ultimately, the findings in this study pave the way for predicting frictional

contact networks in real-life large-scale polydisperse suspensions, for which theoretical models are largely

limited owing to computational challenges.

1 Introduction

Dense particulate suspensions are ubiquitous in natural, human
health, and industrial settings, with examples ranging from mud to
blood to paint and cement.1–4 Under external deformation, they
exhibit diverse non-Newtonian complex rheological behaviors, such
as yielding, normal stress differences, shear-thinning, shear-
thickening, and jamming.5–7 Shear-thickening (ST) is a non-linear
phenomenon where viscosity Z increases continuously (CST) or
discontinuously (DST) with increasing shear rate _g at a given volume
fraction f.8 A vast body of research has linked non-Newtonian
rheology in dense suspensions to constraints on the relative motion
that stabilizes the force and contact network under applied
deformation.5,9–18 As such, many recent studies have used network
science techniques to characterize and analyze the properties of
these networks in suspensions14,15,19–24 as well as in colloidal
gels25–29 and correlate them with the resultant rheology. Historically,
the mesoscale network features have been linked to the emergence
of rigidity,30 sound propagation,31 and non-locality32 for both
frictionless and frictional particle packings in dry granular

materials. Therefore, accurate and easy identification of contact
networks in amorphous materials, specifically in flowing dense
suspensions, is highly beneficial for understanding and developing
a statistical physics framework for rheological responses.

However, identifying frictional contact networks (FCNs) in
most particulate suspensions remains challenging owing to the
limitations of the experimental methods and the complex
nature of particulate systems. State-of-the-art experimental
efforts are limited by the protocol to freeze the sheared micro-
structure, along with the cost and toxicity of the chemicals used
to generate a model suspension system.12,29,33 These frictional
contacts are readily accessible in discrete particle simulations;
however, traditional methods remain computationally expen-
sive, making large system sizes computationally intractable,
despite recent advances in computational power. The two
fundamental questions that remain unanswered are: (i) how
can frictional contacts under applied stress be predicted, i.e., is
it possible to predict which particles will be in contact? (ii) Can
the structure of the frictional contact network for various solid
concentrations, system sizes, particle size dispersities, and
applied stresses be predicted?

Recently, a more promising avenue has been the use of
machine-learning (ML) techniques.34–42 In soft matter systems,
ML has been used to predict wall penetration by particles in
coarse-grained simulations using the random forest method,43
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prediction of drag forces,44 particle stress development using
the physics-informed neural network,45 and detection of hid-
den correlation in particle size distribution and mechanical
behavior.46 Among the diverse ML techniques, graph neural
networks (GNNs) have exhibited superior performance compared
to traditional methods, mainly owing to their more expressive and
adeptness in handling unstructured data, making them an ideal
candidate for predicting the frictional contact network. Tradi-
tional methods such as graph-theoretical approaches or force/
distance criteria rely on predefined rules to identify particle
contacts and are unable to capture the underlying nonlinear
and multi-scale interactions. By contrast, the GNN learns these
relationships directly from the data, capturing hidden features
and complex patterns without manual thresholds or rules. This
adaptability makes GNNs highly effective for modeling complex
systems with interactions that are difficult to parametrize. Most
studies on particulate suspensions have focused only on the dilute
limit,37,38 not of interest here. In the dense limit, recently Mandal
et al.34 employed a GNN in dry granular matter, demonstrating
the network prediction in both frictionless and frictional materi-
als from the undeformed structure. However, the simulations
were performed for relatively high volume fractions close to or
above jamming, which is not feasible for rigid particles, and when
tasked with an extrapolation setting, the accuracy drops sharply.

This study addresses the previously mentioned challenges in
predicting the structure of FCNs in dense suspensions only
with the knowledge of the relative distance between particles by
employing a robust GNN approach to a well-established simu-
lation approach for dense suspensions.9,10,47–51 By comparing
the predictions from the ML technique with the simulation
results, it is demonstrated that the GNN model can accurately
predict the frictional contacts under applied stress. In addition,
the aforementioned capabilities hold for many values of
applied stress s, system size N, and particle sizes, even when
the machine has not seen these conditions. Finally, this work
can help make meaningful predictions about suspension prop-
erties for computationally and experimentally challenging
cases (large system sizes, bidisperse packings, etc.) while being
trained on less challenging conditions within reasonable com-
putational cost and time.

2 Methodology
Simulating dense suspensions

Although the real-world dense suspensions are three-dimensional,
related prior works have shown the flow behavior for 2D and 3D to
be similar if the volume fraction f is appropriately scaled.20,22

Thus, two-dimensional simulations (a monolayer of spheres) are
performed for clarity, simplicity, computational efficiency, and as a
first demonstration of the application of the GNN to predict the
FCN. The simulation scheme (LF-DEM) integrates two modeling
approaches: lubrication flow (LF) and the discrete element DEM
method from dry granular materials.5,9,10,52 The particle motion is
considered to be inertialess, that is, particles obey the overdamped
equation of motion

0 = FH(X,U) + FC(X), (1)

where X and U refer to the particle position and velocities,
respectively. Here, FH, FC denote hydrodynamic and contact
forces, respectively. The hydrodynamic force includes one body
Stokes drag and two body lubrication forces. The lubrication
force is regularized allowing the particles to make contact as the
overlap (d(i,j) = ai + aj � |ri � rj|) becomes positive.10,53 Here, ai

and aj refer to particle radii, and ri and rj represent the position
vectors of the center of particles i and j, respectively. The contact
forces include both normal and tangential frictional forces, i.e.,
FC = FN

C + FT
C. The contact force is modeled using traditional

Cundall & Strack54 and following the algorithm described by
Luding.55 We employ linear springs in normal kn and tangential
kt directions to model contacts between particles, which are
tuned such that the maximum scaled particle overlap does not
exceed 3% and the rigid particle approximation is satisfied.56

In our simulations, we do not employ the dashpot; instead, the
hydrodynamic resistance provides energy dissipation.47 The
tangential component of the contact force satisfies Coulomb’s
friction law |Ft

C r m|Fn
C| with m = 0.5 being the static friction

coefficient. The critical load model (CLM) is used to introduce
rate dependence, where the normal force FN

C Z F0 is needed to
activate interparticle friction, giving a characteristic stress scale
s0 = F0/a2. This implies that a solely negative gap (or positive
overlap d) between particles is not representative of the fric-
tional contact between them. A series of stress-controlled
simple shear flows are simulated for N = 400 to 5000 non-
Brownian bidisperse particles with Lees–Edwards periodic
boundary condition in a unit cell with particle size ratio D =
RL/RS A [1.4, 6] and different volumetric mixing ratios a = VS/
(VL + VS) A [0.1, 0.9]. Here, RS (RL) and VS (VL) are the radii and
volume of small (and large) particles, respectively. This work
focuses on the frictional contact network, which is the domi-
nant contribution to viscosity at high packing fractions and is
the primary driver for DST and SJ.9,10,52,57 Fig. 1 represents a
typical contact network resulting from the simulations. The
colors represent different types of interactions with green, blue,
and red lines representing lubrication, frictionless, and fric-
tional forces, respectively.

Fig. 1 Contact network inferring all forces. Snapshot of the contact
network for f = 0.76 and s/s0 = 1. Green, blue, and black lines depict
lubrication, frictionless, and frictional interactions, respectively.
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Machine learning methodology

In this work, the concept is adapted from Li et al., which made
very deep training of graphs based on the graph convolutional
neural network (GCN) possible by incorporating residual and
dense connections, along with the use of dilated convolutions
to remedy the vanishing gradient problem.58,59 Their technique
called deep graph convolutional neural network (DeepGCN) is
used, and then the models are optimized by training them at
different hyperparameters. Compared to the traditional GCN,
this deep learning method provides more reliable and deeper
training and an interpretable representation of large graphs
and node property prediction tasks in dense particulate
systems.58 This node classification approach identifies parti-
cles in frictional contacts that participate in FCNs.

Fig. 2 illustrates the process and architecture of the DeepGCN.
Initially, configurations are generated through our simulation
scheme, which contains details regarding all the particles
involved. These data include information that relates to all the
particles irrespective of their participation in the FCN. To train the
model, first, the dynamic simulation dataset consisting of all
particles is transformed into graphs by treating particles as nodes
(hv and hu are node features for a specific particle and neighbor-
hood particles, respectively) and drawing edges (evu, edge attri-
butes) between them to represent their interactions (both
frictionless and frictional). The node features include the particle

radius, and the edges representing interactions called edge attri-
butes contain information about the distance between particles
(rij), x and y components of vector rij, and the Sine and Cosine of
the angle rij makes with the x-axis (flow direction). The DeepGCN
model consists of Nl layers that incorporate the residual connec-
tions. A node’s feature vector is updated in each residual layer
through a message-passing process, aggregating information
from its neighbors, including nodes and connected edges within
the graph. A nonlinear activation function, ReLU, followed by a
linear classification function (for node or particle classification), is
applied to the output to predict the probability of each particle
being a part of the FCN. The detailed equation for DeepGCN is:

hlv ¼ hðl�1Þv þ
X

u2NðvÞ
f hðl�1Þu ; hðl�1Þv ; euv

� �
: (2)

Here, h(l)
v is the updated node feature or the hidden state for

node v at layer l, N(v) denotes the neighborhood of node v, that
is, the set of nodes connected to v, f is a function that takes as
input the features of neighboring nodes, i.e., h(l�1)

v and h(l�1)
u

and their edge features euv, concatenating the features and
applying a non-linear aggregation function, and h(l�1)

v is the
original node feature that is added to the output of the GCN.
More details regarding the mechanism and architecture of
DeepGCN are provided in the ESI.† 60

Fig. 2 Schematic detailing simulation snapshot and the graph neural network (GNN) for predicting frictional contact networks (FCNs). Initially, necessary
snapshots for ML consisting of information of all particles (whether the particles participate in the FCN or not) are driven through LF-DEM simulation
technique which then is transformed into a graph comprising its constituent particles and the frictional contact network. These particles and the chain
network, analogous to nodes and edges in the graph, undergo processing through residual convolutional layers. The message-passing process is done in
these layers, employing an aggregation function to update information across nodes and edges. Subsequently, a non-linear activation function (ReLU) is
applied to enhance the model’s prediction capabilities, particularly in capturing complex relationships. A linear function is applied to assign each node to
a specific class for classification. To mitigate overfitting, regularization techniques such as dropout are employed at the final stage of the model.
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Fig. 3 illustrates the loss function and accuracy as a function
of the epochs during model training. During training, the
model’s parameters are adjusted iteratively to align the pre-
dicted outputs more closely with the actual targets through the
loss function (details about binary cross entropy (BCE) are
available at https://pytorch.org/docs/master/generated/torch.nn.
BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLosshere). We
employed the Adam optimizer with a learning rate of 0.005 to
minimize the loss function on the training set. The accuracy is the
ratio of correctly classified nodes (particles) to the total number of
nodes in the evaluation set. Subsequently, we assess the network’s
performance on a separate and independent test sets. Our train-
ing dataset comprised 320 configurations (80% of our overall
dataset), whereas a set of 80 configurations (20% of the dataset)
was reserved for testing performance of the model. We stop the
training process when the loss value does not improve after 15
epochs by saving the last iteration parameters at which the loss is
minimum. Subsequently, we employed 400 previously unseen
configurations for validation purposes well beyond the initially
seen training conditions. These predictions derived the reported
average prediction accuracy of the FCN. In addition to the average
accuracy, we measured average precision measure, recall, F1
score, AUC, and specificity, which are presented and discussed
in Table S1 in the ESI.† 60

3 Results
Evolution of the frictional contact network under shear stress

Before turning to the results on the accuracy of the model,
Fig. 4 shows the evolution of the contact network obtained from
the simulations at packing fractions of f = 0.76 and 0.80 with
increasing stress s/s0 from left to right. Line segments connect
the centers of two contacting particles and are color-coded
according to the type of force they experience; we show friction-
less contacts (blue line) and frictional (black line). At the lowest

stress considered here s/s0 = 0.1, only frictionless contacts
(blue bonds) are observed. At higher stresses s/s0 = 5,10, both
frictionless (blue) and frictional (black) contacts are observed.
Eventually, at the highest stress s/s0 = 100, the suspension is
fully frictional (only black lines are present). This visual obser-
vation is consistent with the literature10 and our results on the
coordination number (Fig. S1, ESI†). Note that for a given,
constant packing fraction f, frictional coordination number Zm

in a fully frictional state is larger than the frictionless contacts
at a low stress, non-thickened state. This suggests that with an
increase in stress, as particle contacts become frictional, the
suspension rearranges into a distinct microstructure. Hence, it
is non-trivial to predict the FCN even knowing particle overlap
without the critical load force F0.

The following describes two striking features of the
DeepGCN scheme for predicting frictional contacts: robustness
and scalability.

Robustness of the DeepGCN model

First, the DeepGCN method is shown to be highly robust in
predicting the frictional contacts in a dynamical system, where
the network continuously forms and breaks due to the bulk
shearing motion (Fig. 5). N = 400 particles are used at packing
fractions f = 0.76,0.78,0.8 with D = 1.4 and a = 0.5. The full
rheological flowcurves (Zr(f,s/s0)) and the frictional coordina-
tion number (Zm(f,s/s0)) are presented in Fig. S1 (ESI†).60 In
short, the suspension undergoes CST for f = 0.76,0.78 and DST
into a nearly jammed state for f = 0.8. The presented two-
dimensional rheological flowcurves are also compared with the
literature results in the ESI.† We show qualitative agreement
with previous three-dimensional simulations (Fig. S4, ESI†) and
experimental data on the silica colloids (Fig. S5, ESI†), once the
packing fraction is properly scaled with respect to fm

J .
The model is trained at s/s0 = 10 for each f, and predictions

are made for other applied stresses. Remarkably, despite the

Fig. 3 An example of prediction accuracy and loss function (binary cross
entropy) for training the model. The model is trained at f = 0.80 and
s/s0 = 10 with 320 graphs and a set of 80 graphs for testing using the early
stop technique that prevents overfitting.

Fig. 4 Development of frictional contacts with increasing shear stress.
Snapshots of the contact network for both frictionless (normal force below
the critical threshold F0) shown as blue lines and frictional contacts
(normal force above the critical threshold F0) as black lines. Snapshots
corresponding to simulations with s/s0 = 0.1, 5, 10, and 50 (from left to
right) are presented for f = 0.76 (top) and f = 0.8 (bottom).
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sensitivity of the FCN to both the stress and packing fractions,
the model is capable of accurate predictions (490%) for all
values of (s/s0, f) (Fig. 5a). In Fig. 5e, f and i, j, the predictions
with numerical simulation results at s/s0 = 100 are visualized
where the models are trained at s/s0 = 10 (Fig. 5c, d and g, h) for
the corresponding f = 0.76 and 0.8, respectively. For simplicity,
only the particles that have at least one frictional contact
(Fig. 5c, e, g and i) together with their FCN (Fig. 5d, f, h and j)
are shown, and the configurations do not depict all particles
(N = 400). The predictions depict ground truth for direct simula-
tions, where the misclassified particles by the model are high-
lighted in red. Besides that, larger (smaller) particles are
represented in darker (lighter) colors. As can be seen, only a
few particles evade the predictions of the model. Especially for
f = 0.8, the training stress (s/s0 = 10) is in an unjammed flowing
state, while the prediction stress (s/s0 = 100) is nearly in the
shear-jammed state, yet an accuracy of 95% is achieved, high-
lighting the strength of the model. This accuracy at f = 0.80 is
expected since the model has ‘‘seen’’ the complex structure;
hence, it can accurately predict the complex features. Fig. 5b

shows Zm for the values of s/s0 of interest here (results for
all stress values in ref. 60 (Fig. S1, ESI†)). With increasing stress,
the FCN becomes increasingly interconnected, spanning both
compressive and tensile directions (Fig. 3). The decrease in
prediction accuracy at higher stresses suggests the difficulty of
predicting the FCN, highlighting the increase in complexity at
higher stresses. The results of these rigorous checks demon-
strate that the model maintains a highly accurate performance,
with extrapolated predictions for unseen conditions, without
prior knowledge of interparticle forces, and with only informa-
tion on relative distance solely at a fixed stress value.

A natural question arises regarding the choice of s/s0 = 10 to
train the model on. Fig. 6 illustrates the test accuracy results
when the model is trained at different values of s/s0 for a fixed
f = 0.76. Although the predictions of the model trained at
s/s0 = 5 are unsatisfactory, the predictions improve signifi-
cantly when the model is trained at s/s0 = 10 and 50. These
results align with the fact that the number of frictional contacts
increases with increasing stress. Hence, at higher stresses, it is
easier for the model to predict whether a given particle is in

Fig. 5 Robustness in the prediction of the FCN for a prototypical shear thickening suspension. The GNN models are trained separately on the simulation
data set at a fixed stress s/s0 = 10 and at different packing fractions f for N = 400 and bidispersity (D,a = 1.4,0.5). (a) Prediction accuracy for the FCN for
different values of f,s/s0, with the GNN conditioned at s/s0 = 10 for each f. (b) Frictional coordination number hZmi as a function of stress for various
values of f. For the sake of simplicity, here, only the visualization consisting of particles participating in the FCN are provided where (c) and (d) visualise
the training condition with f = 0.76, showing (c) sheared packing at s/s0 = 10 with particles participating in the FCN along with (d) the black lines
showing the frictional network. (e) and (f) Predicted configuration at s/s0 = 100 with (e) particles participating in the FCN along with the misclassified
particles by the model shown in lattice-patterned blue and (f) the predicted FCN. Misidentified particles are shown in lattice-patterned blue. (g) and (h)
Same as (c) and (d) but for f = 0.8 and s/s0 = 10. (i) and (j) The corresponding network based on (g) and (h).
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frictional contact. It is important to note that this is an extrapola-
tion task, which is inherently more challenging for the model,
particularly given that the rheological properties of suspensions
vary with s/s0 (Fig. S1b, ESI†). To explore the physical rationale
behind this observation, Fig. S3 (ESI†) illustrates the evolution of
the contact network and the corresponding structure factor with
increasing stress. As shown already in Fig. 3 and Fig. S1a (ESI†),
the number (or fraction) of frictional contacts begins to saturate
(frictionless contacts diminish) in the limit of s/s0 Z 50, which
implies that the physics is fully dominated by frictional contacts
in that regime. Although the evolution trend appears similar, a
larger number of contacts (denser FCN) are observed for a higher
packing fraction f = 0.8.

Experimental and simulation studies have shown that bidis-
persity significantly affects the rheology and microstructure of
dense particulate systems and colloidal gels.61–66 The depen-
dence of viscosity (Zr(a)) and frictional coordination number
(Zm(a)) on a are presented in Fig. S2 (ESI†).60 Hence, it is
tempting to ask whether the presented GNN model can predict
the FCN for different values of a for a constant D. Fig. 7a
demonstrates the robustness of the GNN model in predicting
the FCN at various values of a for a fixed size ratio D = 1.4 with
an accuracy exceeding 98%. Fig. 7b shows an example of the
training set consisting of particles in frictional contact, and
Fig. 7c shows the corresponding FCN. This visualization shows
only particles with at least one frictional contact. Fig. 7d and e
show examples for visualization of the model predictions (only
particles in contact and the misidentified particles depicted in
lattice-patterned blue) for a = 0.1 and 0.9 (on previously unseen
configurations) with remarkable accuracies along with their
FCN (Fig. 7e and g). Visualizations for all particles, the pre-
dicted structure factor of the exact frictional contacts, and the
absolute error of the prediction and direct simulation results
are analyzed and shown in Fig. S4 (ESI†). This consistent
accuracy is achieved (Fig. 7a) for all values of a even though

the contact network has a distinct structure (dominated by
small or large particles for the two values of a). The accuracy is
robust to the choice of the training value of a (0.1, 0.5, or 0.9).
This implies that the presented GNN model can predict the
FCN for a distinct system despite having information from only
a limited number of particles, mostly of one type.

Scalability of the DeepGCN model

Next, the scalability of the ML model is demonstrated to make
predictions for larger system sizes and complexities, such as
different particle size ratios, despite the distinct rheology and
microstructure. The relative viscosity Zr and frictional coordi-
nation number Zm as a function of D for suspensions with
different particle numbers are shown in Fig. S3 (ESI†).60 This
ability of the model is tested by training it on a rather small
system size (N = 400) at s/s0 = 50 and f = 0.76 (Fig. 7b and c)
and then testing the predictions with not only a larger N but
also a larger size ratio D. Fig. 8 demonstrates the scalability,
showing no substantial decrease in accuracy even at 10 times
the system size across very different particle size ratios (from
1.4 to 6). Fig. 8b to e depict examples of the predictions of
particles participating in the FCN for different systems, with
{N,D} = {400,4}, {N,D} = {800,6}, {N,D} = {2000,6}, and {N,D} =
{5000,5}, respectively, and (f)–(i) display the corresponding
frictional chain network for (b)–(e). Here, darker particles
represent particles with larger radii, and misclassified particles
are highlighted in lattice-patterned blue to show the difference
between predictions and ground truth. Interestingly, larger
particles are less prone to errors as they can make more
contacts than smaller particles, given a larger surface area.
The results show that the model can capture the relationship
between particles and adapt it to large-scale systems, given only
local neighborhood information.

Before we close, it is important to discuss the role of
dimensionality and possible extension to experimental sys-
tems. For the sake of simplicity and demonstration of applica-
tion of the GNN method to frictional contact networks (FCNs)
in dense suspensions, we simulated a two-dimensional mono-
layer of spheres. Our results in predicting the unseen FCNs by
the GNN are promising and point towards extending the
formalism to three-dimensional systems, given that the only
information needed are particle positions, radii of particles and
interparticle gaps. Nonetheless, a previous study reported by
Gameiro et al.20 had demonstrated that the correlation between
frictional network topological features and the bulk rheology is
very similar in two- and three-dimensional systems. We also
show that the two-dimensional results presented here can
qualitatively reproduce the literature results based on three-
dimensional simulations and experiments (ESI†). This similar-
ity is primarily because, in the shear thickening suspensions,
the structural and kinematic features appear in the velocity and
velocity gradient directions with minimal variation across the
vorticity direction. Thus, the structural interrogations concern-
ing the velocity and gradient directions are sufficient to
describe the main structural/rheological features of the system.
This assumption might not hold in some cases in real-world

Fig. 6 Comparison of prediction accuracy of the GNN when trained at
different stresses. Prediction accuracy as a function of s/s0 while the
models have been trained separately at f = 0.76 and different fixed s/s0 =
5, 10, and 50.
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flow, as an example, when orthogonal flows are superposed in
the vorticity direction.67

4 Concluding remarks

This study demonstrated the application of DeepGNN in pre-
dicting the frictional contact network (FCN) structure in dense
suspensions by utilizing fixed configurations under simple
shear. The obtained DeepGNN model exhibits remarkable
generalization capabilities, accurately predicting FCNs across
a wide range of unseen configurations, even under conditions
significantly different from the original training environment.

This highlights its scalability and robustness in predicting the
FCN across varying system sizes N, bidispersity (D and a), and
applied stress s. This DeepGNN model offers valuable insights
into the particle information and frictional contact structure of
the simulated suspensions, without the need for explicit knowl-
edge of interparticle interactions.

The presented GNN model is particularly appealing because
of the computational expense of tracking system dynamics with
many-body interactions and boundary conditions. Its scalabil-
ity and versatility suggest its potential for predicting various
physical and rheological properties in more complex real-world
flows of experimental relevance. Although the frictional force
chain concept originated in a two-dimensional granular

Fig. 7 Robustness in FCN predictions for various volumetric mixing ratios a. All the configurations are generated for f = 0.76, D = 1.4, and sheared at
fixed stress of s/s0 = 50. The GNN model is trained separately with the configurations consisting of 400 particles at different a = 0.1, 0.5, and 0.9 and can
also robustly predict the FCN at other values of a. (a) Test accuracy results, (b) and (c) the configuration on which the training is conditioned with (b)
showing sheared packing with particles participating in the FCN where the dark (and light) blue depicts larger (and smaller) particles, and (c) frictional
network. (d) and (e) The predictions for a = 0.1: (d) showing the configuration with particles in contact and the misclassified particles in lattice-patterned
blue, (e) black lines showing the corresponding FCN. (f) and (g) Same as (d) and (e) but for the configuration with a = 0.9. Note that (b), (d), and (f) only
show particles with at least one frictional contact.

Fig. 8 Scalability in predicting the FCN across different system sizes and varying particle size ratios D. All configurations sheared at a constant scaled
stress s/s0 = 50, and packing fraction f = 0.76 and volumetric mixing ratio a = 0.5. The model is trained on configurations with N = 400 for D = 1.4 (Fig. 7b
and c). (b)–(e) The prediction of particles participating in the FCN along with misclassified particles highlighted in lattice-patterned blue at different
systems, with (b) {N,D} = {400,4}, (c) {N,D} = {800,6}, (d) {N,D} = {2000,6}, and (e) {N,D} = {5000,5}. (f)–(i) The corresponding frictional contact network for
(b)–(e).
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system,68 recent experimental efforts have extended to not
only three-dimensional granular systems but also to dense
suspensions12,33 as well.

Although the current study focused only on lubrication and
frictional interactions, in principle, the model can be extended
to incorporate van der Waals, depletion, and electrostatic
forces, as well as more complete hydrodynamic interactions.
Such models have potential applications in diverse particulate
systems such as colloidal gels, polymer composites, foams, and
granular materials where network physics is critical towards
understanding the bulk response.25–29 This capability will
enable the exploration of large-scale, real-life systems in natural
and industrial contexts with reduced computational costs and
resources.
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