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Crystallization in load-controlled shearing flows
of monosized spheres

Esma Kurban, Dalila Vescovi * and Diego Berzi

Identical, inelastic spheres crystallize when sheared between two parallel, bumpy planes under a

constant load larger than a minimum value. We investigate the effect of the inter-particle friction

coefficient of the sheared particles on the flow dynamics and the crystallization process with discrete

element simulations. If the imposed load is about the minimum value to observe crystallization in

frictionless spheres, adding small friction to the granular assembly results in a shear band adjacent to

one of the planes and one crystallized region, where a plug flow is observed. The ordered particles are

arranged in both face-centered cubic and hexagonal-closed packed phases. The particles in the shear

band are in between the crystalline state and the fluid state, but the latter is never reached, which

results in a large shear resistance. As the particle friction increases, the shear band disappears, and the

ordering in the core region is destroyed. A significant portion of the particles are in a fluid state with a

zero shear rate, leading to a substantial and unexpected reduction in the shear resistance with respect

to the frictionless case. If the imposed load is increased well above the minimum from the onset of

crystallization, we observe the formation of one shear band in the core, where the particles are again

between the crystalline state and the fluid state, surrounded by two crystallized regions near the

boundaries, in which most of the particles are in the face-centered cubic phase and translate as a rigid

body with the boundaries themselves. In this case, the macroscopic shear resistance is independent of

the particle friction.

1. Introduction

Understanding granular flows is crucial for a large number of
industrial and geophysical applications. Granular materials
exhibit complex behaviour,1 and they even undergo a phase
transition when subjected to external energy, with their struc-
ture changing from a disordered state to an ordered state.2

Many studies have investigated the effect of the driving force on
the crystallization properties of granular matter, like vibration,
shearing or their combination. However, their results are con-
troversial: in experiments on continuous shear, the particles
were observed to always exhibit crystallization,3,4 whereas there
was no detectable ordering when vibration was applied.5,6

Experiments on the combined effect of vibration and shearing,
on the other hand, have shown opposite results, with vibration
inducing and shearing destroying crystallization.7 Ciamarra
et al.8 have observed that both vibration and shear prevent
the crystallization of the system provided they are strong
enough. Other works on vibration have emphasized the impor-
tance of frequency and amplitudes in the crystallization process
and the associated structures.9–16

The presence of crystalline structures can significantly affect
the rheology,2,17 but existing continuum approaches for dense
particle flows do not take into account topological ordering.18,19

For this reason, investigating the ordering at the particle level is
crucial. Panaitescu et al.20 studied the nucleation process of
shear-induced crystallization in granular sphere packings and
revealed the shape and size of the microcrystals. The size and
structure of the nuclei were studied in detail by laser tomo-
graphy experiments.21 Duff and Lacks proposed a mechanism
based on a fold catastrophe of the free-energy landscape for
shear-induced crystallization of jammed states.22 Focusing on
the influence of strain and shear rate on the crystallization,
Mokshin and Barrat23 reported two opposite effects of shearing:
aiding the formation of small crystallites and suppressing the
creation of large clusters. Mesoscopic evolution and properties
of the crystal structures in dense granular flow under contin-
uous shear have been explored through experiments and simu-
lations by Bai et al.18

The geometry of the boundaries significantly affects the
crystallization process. Silbert et al.24 systematically investigated
the effect of the boundary roughness on the order–disorder
transition in inclined granular flows by discrete element simulations
with periodic boundary conditions. The ordered states showed
layers of particles, arranged in a hexagonal close-packing,Politecnico di Milano, 20133 Milano, Italy. E-mail: dalila.vescovi@polimi.it
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parallel to the flow direction and sliding over each other. This
results in a lower shear resistance compared to the disordered
states. Kumaran and Maheswari25 and Kumaran and
Bharathiyar26 confirmed the observation and found that there
is a minimum base roughness above which the order–disorder
transition takes place. The characteristics of an inclined flow
over a base made bumpy with a layer of glued spheres arranged
in a triangular lattice, which shows intermittency between the
ordered and disordered states, were studied by Yang et al.27

Discrete element (DEM) numerical simulations of pressure-
controlled flows of identical, frictionless spheres, sheared
between bumpy planes made of regularly arranged frictionless
particles, in the absence of gravity,28 have shown that there
exists a minimum load above which the spheres crystallize.
Here, we want to extend this work and investigate the role
played by the inter-particle friction coefficient and the applied
load on the crystallization process and the resulting micro-
structures.

The paper is organized as follows: in Section 2 we describe
the discrete numerical simulations, the associated parameters
and the quantities that we have employed to characterize the
micro-structures of the flow. In Section 3, we show and com-
ment on the results of the simulations. Final remarks and plans
for future works are provided in Section 4.

2. Simulation method

We have performed DEM simulations of granular shear flows
with the molecular dynamics platform LAMMPS.† 29 In the
simulations, N identical soft spheres of diameter d and mass
density rp are initially placed at random in a rectangular box of
length Lx = 20d, width Ly E 10d, and height Lz E 20d and then
sheared between two parallel planes moving relative to each
other with a constant velocity 2V, in the absence of gravity. The
x, y and z directions are the flow, gradient and vorticity
directions, respectively. The planes are constructed by glueing
one layer of particles having the same diameter as the flowing
particles in a hexagonal closed-packed arrangement. Each
plane consists of Nw spheres. Both planes experience a constant
compressing load Fz along the z-axis, and can freely move
vertically as rigid bodies. We apply periodic boundary condi-
tions along the x and y directions. A snapshot of the shear cell
with the associated frame of reference is shown in Fig. 1.

We employ the Hookean contact force model. In this model,
the two contacting particles i and j (at positions [ri, rj], with
diameters [di, dj], masses [mi, mj], translational velocities [vi, vj],
and angular velocities [oi, oj]) experience a relative normal
compression with overlap d = di + dj � rij, where rij = ri � rj and
rij = |rij|. The force on particle i due to its interaction with
particle j, Fij, is the sum of normal and tangential contribu-
tions: Fij = Fn

ij + Ft
ij, given as:

Fn
ij = Kndnij � gnvn, (1)

Ft
ij = �KtDst � gtvt, (2)

where nij = rij/rij; vn and vt are the normal and the tangential
relative velocities between the particles i and j, respectively; Kn

and Kt are the elastic constants, whereas gn and gt are the visco-
elastic damping constants, respectively. The values of gn, gt and
Kt are determined as follows:

gn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mijKnðlog enÞ2
p2 þ ðlog enÞ2

s
; (3)

gt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

7

4mijKtðlog etÞ2
p2 þ ðlog etÞ2

s
; (4)

and

Kt ¼
2

7
Kn

p2 þ ðlog etÞ2
p2 þ ðlog enÞ2

; (5)

where en is the normal coefficient of restitution, i.e., the
negative of the ratio of the normal relative velocities after and
before the collision; et is the tangential coefficient of restitu-
tion, i.e., the negative of the ratio of the tangential relative
velocities after and before the collision; and mij = mimj/(mi + mj) is
the effective mass.

The collision time can be found as

tc ¼
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kn

mij
� 1

4

gn
2

mij
2

s : (6)

The quantity Dst in eqn (2) denotes the elastic tangential
displacement accumulated during the entire duration of the
contact between spheres. The magnitude of tangential displa-
cement Dst is truncated in order to satisfy a local Coulomb yield
criterion: |Ft

ij| o mij|Fn
ij|, where mij ¼

ffiffiffiffiffiffiffiffimimj
p , and mi and mj are the

friction coefficient of particles i and j, respectively.
The total force and torque on particle i are obtained as

Ftot
i ¼

X
iaj

Fn
ij þ

X
iaj

Ft
ij ; (7)

stoti ¼ �
1

2

X
iaj

rij � Ft
ij ; (8)

Fig. 1 A snapshot of the DEM simulation: the flowing particles (coloured
in yellow) are sheared by moving the two planes in the opposite direction
along the x-axis at a constant relative velocity of 2V.

† https://www.lammps.org
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where the summation is carried out over all j particles in contact
with particle i. The translational and rotational motion of particle
i are then determined by Newton’s second law of motion:

mi
dvi

dt
¼ Ftot

i ; (9)

Ii
dxi

dt
¼ ttoti ; (10)

where Ii is the moment of inertia of the particle i. The position and
velocity of the particle i are updated by a numerical integration at
every time step. The contact laws for interactions between a flowing
particle and a boundary particle are the same as those between two
flowing particles. Note that since the boundary particles are sub-
jected to an external force in addition to the contact forces, we use
the LAMMPS ‘‘fix aveforce’’ command to determine their motion.
The total force on the plane is measured by summing forces over
the boundary particles and the imposed load Fz:

Fw ¼
XNw

i¼1
Ftot
i þ Fz; (11)

which then is averaged over the Nw boundary particles so that each
of them experiences the same force (Fw/Nw), resulting in a rigid body
motion of the plane over time.

All the quantities are made dimensionless using d, rp and V,
so that distances, times, velocities, forces, elastic and viscoe-
lastic constants are measured in units of d, d/V, V, rpd2V2,
rpdV2, and rpd2V, respectively. All the particles have the same
mass, m = p/6. The boundary particles are frictionless, i.e., their
friction coefficient is mw = 0. We have employed N = 3150
flowing particles and Nw = 240 boundary particles per plane,
with en = et = 0.4 and Kn = 2 � 105. The integration time step dt
for the numerical integration is fixed and equal to tc/50, that is
dt B 7.5 � 10�5. The saving time step of the simulations is set
to 100 integration time steps, so that measurements are
recorded at time intervals of 0.0075.

We have chosen seven values of the friction coefficient of the
moving particles, mp, in the range between 0 and 0.5 for two different
applied loads, Fz = 2.4 and Fz = 24 000. The lower value of the load is
about the minimum value required to observe crystallization in
imposed-pressure shearing flows of frictionless spheres when en =
0.4.28 The simulations require running about 109 time-steps to reach
a steady state for Fz = 2.4 and about half of them for Fz = 24 000.

We have measured the temporal evolution of the average
solid volume fraction, �n, defined as the fraction of the total
volume occupied by the flowing particles, i.e. �n = Np/(6Vt),
where p/6 is the volume of a flowing sphere and Vt = LxLyH is
the volume comprised between the two moving planes. Here, H
is the flow height, that is the gap between the edges of the top
and bottom boundary particles. We have also measured the
temporal evolution of the velocity of the center of mass of the

moving particles in the x-direction, �vx ¼
PN
i¼1

vi;x=N, and the

average kinetic energy per particle, KE ¼ p=12ð Þ
PN
i¼1

vik k2
�
N,

where vi,x is the x-component of the velocity, vi, of particle i

and 88 denotes the Euclidean norm of a vector. We have
employed these quantities to assess whether the simulation
has reached a steady state (average kinetic energy per particle
independent of time), whether the steady state is symmetric
(the velocity of the center of mass of the particles is zero)
and to estimate whether crystallization has likely occurred
(average solid volume fraction larger than the random close
packing, 0.64).

Once the steady state is attained, we have measured the local
profiles along the z-direction of the solid volume fraction, n, the
x-component of the flow velocity, vx, and the granular tempera-
ture, T, i.e., one third of the mean square of the particle velocity
fluctuations around the mean. To do that, we have used the
post-processing tool ‘‘fstatistics’’ provided with the open-source
DEM code MercuryDPM‡.30,31 For all the simulations, we have
divided the domain comprised between the two planes in
24 equal-sized bins parallel to the x–y plane, and we have then
coarse-grained within each bin to obtain local profiles of the
continuum variables. Finally we have performed time aver-
aging, over at least 106 saving time steps.

To quantify the crystalline structures in the flow, we could
employ bond-orientational order parameters, which were intro-
duced by associating with every bond joining a particle and its
neighbours a set of spherical harmonics:32

qlmðiÞ ¼
1

jNbðiÞj
X

j2NbðiÞ
Ym

l ðyij ;fijÞ; (12)

where Ym
l is spherical harmonics and yij and fij denote the

polar and azimuthal angles which define the orientation of the
bond vector pointing from particle i to its neighbour particle j;
and Nb(i) contains the set of nearest neighbour indices for
particle i. However, the order parameter qlm is not rotationally
invariant. Eslami et al.33 have proposed the following expres-
sion for a rotationally invariant and local order parameter:

~qlðiÞ ¼
1

jNbðiÞj
X

j2NbðiÞ

Xl
m¼�l

q̂lmðiÞq̂�lmð jÞ; (13)

where q̂�lmð jÞ is the complex conjugate of q̂lmð jÞ and q̂lmðiÞ is
defined as follows:

q̂lmðiÞ ¼
qlmðiÞPl

m¼�l
jqlmðiÞj2

� �1=2
: (14)

Then, the local order parameter can be averaged over the
first coordination shell neighbours of particle i33 to permit a
more accurate determination of the local crystalline structure:

�~qlðiÞ ¼
1

1þ jNbðiÞj
~qlðiÞ þ

X
j2NbðiÞ

~qlð jÞ

2
4

3
5: (15)

The time-average of the local order parameter in the steady

state, indicated as €�~qlðiÞ, permits to further narrow its

‡ https://www.mercurydpm.org
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distribution. Eslami et al.33 have shown that the combination of
�~q4 and �~q6 is sufficient to discriminate between a fluid (dis-
ordered) and a solid (crystalline) phase. It can also distinguish
within the crystalline phase between body-centered cubic (bcc),
face-centered cubic (fcc) and hexagonal close-packed (hcp)
crystal structures. For calculating the local order parameters,
we choose a cutoff distance of 1.4d to determine Nb(i) 33 and
exclude the boundary particles from the neighbour sets.

Finally, we have measured the macroscopic friction coeffi-
cient m in the steady state as the time-averaged value of the ratio
of the tangential force to the normal force exerted on the
moving planes. This quantity is representative of the shear
resistance of the granular flow and has significant practical
implications.

3. Results

We first show and comment on how the inter-particle friction
coefficient affects the crystallization process and the shear
resistance under continuous shearing and a constant normal
load Fz = 2.4. Then, we report how these results change upon
increasing the load by four orders of magnitude.

As mentioned, the load Fz = 2.4 is about the minimum load
to observe crystallization in the case of frictionless particles.28

Signs of instability are indeed displayed in Fig. 2. The friction-
less flowing particles undergo several phase transitions. The
system seems steady for a short period (constant KE in Fig. 2a)
with an average volume fraction of about 0.58 (Fig. 2b). Then,
the particles rearrange and exceed the random close packing
limit, 0.6434 (Fig. 2b). During this first rearrangement, the
average kinetic energy per particle slowly increases because
the flow becomes asymmetric, with the center of mass of the
flowing particles moving towards the bottom plane, as
revealed by the fact that its x-velocity becomes progressively
more negative (Fig. 2c). At t E 120 000, the frictionless system
further re-organizes: the average kinetic energy per particle
and the x-velocity of the center of mass reverse their trend,
while the average solid volume fraction increases well
beyond the random close packing. For a short time interval
of almost Dt B 10 000 around t B 140 000, each of the three
quantities holds a constant value: KE B 120, �n B 0.67 and
�nx B 0, indicating the existence of a steady, symmetric,
crystallized state. This steady state is, however, unstable,
and is followed by a further time evolution of the quantities
of interest.

As the particles become frictional, the crystallization process
quickens and a steady state is rapidly attained (Fig. 2a), with the
particles moving as a rigid body with either one of the bumpy
planes (Fig. 2c), depending on the initial conditions. Only the
slightly frictional case (mp = 0.01) still shows some sign of
instability, with the existence of two possible steady states,
one of which is short-lived (60 000 o t o 70 000) at an average
solid volume fraction of about 0.64 (Fig. 2b), and one which
appears more stable (t 4 75 000) at an average solid volume
fraction well beyond the random close packing. At larger values

of the inter-particle friction, the steady state seems unique,
with temporal fluctuations in the average solid volume fraction
that diminish as mp increases (Fig. 2b).

Fig. 2 Time evolution of (a) the average kinetic energy per particle, (b) the
average volume fraction, (c) the velocity of the center of the mass of the
flowing particles in the x-direction, for Fz = 2.4 and different particle
friction coefficients.
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Fig. 3 shows the profiles of solid volume fraction, flow
velocity in the flow direction and granular temperature during
the steady state, for Fz = 2.4, when the particles are slightly

frictional (mp = 0.01) and highly frictional (mp = 0.3). The flow
height at steady state is H B 12 for both values of mp. In the case
of slightly frictional particles, we observe a crystallized region in
which the solid volume fraction almost reaches the maximum
packing for identical spheres, i.e. n = 0.74 for face-centred cubic
(fcc) and hexagonal-closed packed (hcp) structures, in the core
region. Shearing is strongly localized in one shear band near the
upper plane (z/H 4 0.8), whereas the particles in the crystallized
region move with an almost uniform velocity (Fig. 3b). The
granular temperature is larger in the shear band (Fig. 3c). Similar
results were obtained in dense granular shear flows by Alam and
Luding35 and Mokshin and Barrat.23 In the shear band, the solid
volume fraction is as low as 0.2 (Fig. 3a). We measure unexpectedly
low values of the solid volume fraction near the bottom boundary,
where the particles are crystallized, but we deem it an artifact of
coarse-graining near a boundary.

In the case of highly frictional particles, the shear band
disappears, and all particles move as a rigid body at the velocity
of the lower bumpy plane (Fig. 3b), while experiencing full slip
with the upper plane. The granular temperature is at least one
order of magnitude less than in the slightly frictional case
(friction suppresses the particle agitation) and the solid volume

Fig. 3 Local time-averaged profiles of (a) solid volume fraction, (b)
velocity in the flow direction and (c) granular temperature, for Fz = 2.4
with mp = 0.01 (solid lines) and mp = 0.3 (dashed lines).

Fig. 4 (a) Time-averaged local order parameters for flowing particles of
mp = 0.01 when Fz = 2.4, coloured by their position in the z-direction. The
sketched regions for bcc, hcp, fcc, and fluid phases are taken from Eslami
et al.33 (b) A snapshot of the particle positions projected on the x�z plane
(particle size is scaled by 50% to facilitate the view).
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fraction exceeds the random close packing only near the bumpy
planes, at z/H B 0.2 and 0.8.

A more detailed picture of the micro-structures is revealed

by the time-averaged local order parameters. The pairs €�~q4;
€�~q6

� �
for each flowing particle in the system are displayed in Fig. 4a
for the slightly frictional case, coloured according to their
position in the x�z plane of the domain (Fig. 4b). The crystal-
lized particles are observed to be both in the fcc and hcp
phases, but the fcc structures dominate. We notice that the
flowing particles near the bottom boundary also align them-
selves with the boundary particles in a way that yields fcc
layering; however, this alignment is not stable over time. The
particles in the top shear band region are in between the
crystalline state and the fluid state (Fig. 4a).

As the particles become more frictional, the ordering in the
core region of the system is destroyed, and most of the particles
there belong to the fluid phase (Fig. 5a and b). This disordered
region percolates intermittently to the boundaries, although
most of the particles adjacent to the bumpy planes remain in
the fcc or hcp phase. The crystallized flowing particles align
with the boundary particles and form hcp layering, which is
stable over time.

Increasing the vertical load by four orders of magnitude
results in quicker self-organization of the flowing particles into
a crystalline state, as revealed by the average solid volume

Fig. 5 (a) Time-averaged local order parameters for flowing particles of
mp = 0.3 when Fz = 2.4, coloured by their position in the z-direction. The
sketched regions for bcc, hcp, fcc, and fluid phases are taken from Eslami
et al.33 (b) A snapshot of the particle positions projected on the x�z plane
(particle size is scaled by 50% to facilitate the view).

Fig. 6 Time evolution of (a) the average kinetic energy per particle, (b) the
average volume fraction, (c) the velocity of the center of the mass of the
flowing particles in the x-direction, for Fz = 24 000 and different particle
friction coefficients.
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fraction rapidly increasing to about 0.7, with only a mild
dependence on the inter-particle friction coefficient (Fig. 6b).
Compared to the small load case, larger fluctuations in the

average kinetic energy per particle are observed (Fig. 6a). In
most cases, the steady-state configuration is not symmetric
with respect to the z-direction, as revealed by the non-vanishing
x-velocity of the center of mass of the particles (Fig. 6c).

In the case of high load, there is a shear band characterized
by low solid volume fraction and high granular temperature
localized inside the flow domain (Fig. 7). In the steady state,
regardless of the friction coefficient of the flowing particles, the
shear band has a thickness of about 2 to 3 diameters. The
location of the shear band (i.e., high-temperature region) can
be either in the middle of the domain or lean towards one of
the bumpy planes (Fig. 7c). The shear band is squeezed
between two blocks of crystallized particles moving as rigid
bodies with bumpy planes (Fig. 7b).

The majority of the crystallized particles under high load
occupy the fcc phase, whereas a few are observed in the hcp
phase, irrespective of the particle friction coefficient (Fig. 8a
and 9a for mp = 0.01 and 0.3, respectively). The crystallized
flowing particles are also perfectly aligned with the boundaries
as seen in Fig. 8c and 9c. Even inside the shear bands, the
particles are far from the fluid state. The dominance of fcc
structures in our results agrees with previous works on the
crystallization of colloidal suspensions36 and granular spheres

Fig. 7 Local time-averaged profiles of (a) solid volume fraction, (b) velocity in
the flow direction and (c) granular temperature, for Fz = 24 000 with mp = 0.01
(solid lines) and mp = 0.3 (dashed lines).

Fig. 8 (a) Time-averaged local order parameters for flowing particles of
mp = 0.01 when Fz = 24 000, coloured by their position in the z-direction.
The sketched regions for bcc, hcp, fcc, and fluid phases are taken from
Eslami et al.33 (b) A snapshot of the particle positions projected on the x�z
plane (particle size is scaled by 50% to facilitate the view).
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subjected to shearing or vibration,14,20,37 where it has been
suggested that the fcc structure has more stable mechanical
properties than the hcp structure. Bai et al.18 have instead
observed that the hcp structure was more favoured than the fcc
in their shearing flows, probably because of the curvature of the
boundary in their system.

Finally, we plot in Fig. 10 the macroscopic friction, m,
measured in the steady state as a function of the particle
friction coefficient, mp, in the case of both small and high
normal loads. The fact that the crystalline structures are
independent of mp under high loads and always perfectly
align with the bumpy boundaries results in a macroscopic
geometrical friction that is also independent of the particle
friction and roughly equal to 0.2. When the load is slightly
above the minimum to observe crystallization in the case of
frictionless particles, we have shown that particle friction
controls the transition of a significant portion of the particles
into a disordered, fluid state. Unlike solids, the shear resistance
of fluids vanishes at zero shear rate. Hence, the unexpected
consequence that the macroscopic friction for highly frictional
particles is half of that for frictionless particles (Fig. 10) is likely
due to the increased portion of the particles occupying the
fluid state.

4. Conclusions

We have performed discrete element simulations of identical,
inelastic spheres sheared, in the absence of gravity, between
two parallel, bumpy planes, under a constant load high enough
to induce crystallization. The bumpiness of the planes was due
to a monolayer of identical, frictionless spheres glued together
and arranged in a regular, hexagonal lattice. We have probed
the effect of the friction coefficient of the flowing particles on
the self-assembly process and the resulting microstructures, for
two different loads.

For the smaller load, which is slightly above the minimum to
induce crystallization, and frictionless particles, the ordering
progresses slowly, and the system does not reach a stable steady
state. Switching from frictionless to frictional particles causes
quicker self-organization, probably due to the enhanced energy
dissipation. For slightly frictional particles, we have observed
one shear band adjacent to one of the boundaries and one
crystallized region on the other side where all particles move as
a plug. The face-centered cubic and hexagonal-closed packed
phases coexist in the ordered region, with the fcc dominating,
and align with the lattice of the bumpy boundary. Increasing
the friction coefficient destroys the ordering in the core region,
where many particles experience a phase transition to a fluid
phase. The striking result is that the overall shear resistance
diminishes by a factor of two as the flowing particles become
more frictional.

The particle friction coefficient seems not to affect the flow
dynamics and the microstructures as the vertical load increases
by four orders of magnitude. The steady state for different
particle friction exhibits similar behaviour, with one shear
band of thickness 2 to 3 particle diameters in the core region,
surrounded by two blocks of particles in the fcc phase moving
as rigid bodies with the boundaries. The particles in the
ordered regions always form fcc layering with the bumpy
boundaries. The overall shear resistance is similar to the case

Fig. 9 (a) Time-averaged local order parameters for flowing particles of
mp = 0.3 when Fz = 24 000, coloured by their position in the z-direction.
The sketched regions for bcc, hcp, fcc, and fluid phases are taken from
Eslami et al.33 (b) A snapshot of the particle positions projected on the x�z
plane (particle size is scaled by 50% to facilitate the view).

Fig. 10 Macroscopic friction as a function of the inter-particle friction
coefficient in the steady state for Fz = 2.4 (circles-solid line) and Fz =
24 000 (squares-dashed line).
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of frictionless particles at smaller load, and roughly indepen-
dent of the friction coefficient.

It is worthwhile mentioning that the solid volume fraction in
our systems is large enough that even in the presence of an
interstitial viscous fluid, the inter-particle contact forces would
be dominant.38 We therefore expect the present findings to also
apply to dense, non-Brownian suspensions.

Our study indicates that the shear resistance of crystallized
spheres depends on two competing mechanisms at work: (i) the
disordering effect of inter-particle friction, and (ii) the ordering
induced by the applied load. If the applied load is just high
enough so that order is slightly favoured, then the friction
controls the transition of a portion of the particles into a
fluid phase, with a significant reduction of the overall shear
resistance. This result highlights the potentiality of using
granular materials as effective lubricants in view of industrial
applications.
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