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Training allostery-inspired mechanical response in
disordered elastic networks

Savannah D. Gowen *

Disordered elastic networks are a model material system in which it is possible to achieve tunable and

trainable functions. This work investigates the modification of local mechanical properties in disordered

networks inspired by allosteric interactions in proteins: applying strain locally to a set of source nodes

triggers a strain response at a distant set of target nodes. This is demonstrated first by using directed

aging to modify the existing mechanical coupling between pairs of distant source and target nodes, and

later as a means for inducing coupling between formerly isolated source-target pairs. The experimental

results are compared with those predicted by simulations.

1. Introduction

The creation of novel artificial materials can often benefit from
mimicking the robust abilities of materials found in living
matter.1 Rapid developments in materials science are increas-
ingly pushing such capabilities through the development of
biomimetic materials,2 including materials that can heal,3

learn,4,5 and store memory.6 Included in this genre of materials
are those that can be trained to perform unique functions that
were not specifically designed into them at the outset:7 One
base material can be trained for a variety of different tasks.
This allows for significant flexibility in the material function.
Extensive research is needed to determine the limits of adap-
table function through training in non-living matter.

One biological example of unusual function comes from a
phenomenon in protein dynamics called allostery: the binding
of a molecule at one site in a protein triggers the ability of a
distant site to bind to another molecule.8 This action-at-a-
distance is one important way that proteins control their
activity. Recent work has demonstrated the possibility of creat-
ing non-biological materials that mimic allosteric behavior.9–12

Rocks et al. modeled elastic materials as disordered spring
networks, which are composed of central-force spring bonds
connected at nodes in a disordered array.9 Through the process
of pruning selected bonds, they showed that distant sites on the
network can be mechanically coupled to move either in-phase
or out-of-phase with one another. Once designed, they showed
that these tuned networks could be fabricated in the laboratory
with physical materials. A similar function can be achieved in
networks of tunable beam elements where local network

properties are modified by actively updating beam stiffness.13

However, these approaches require knowledge of the network’s
global properties to tune such function; this becomes prohibi-
tive in the design or fabrication of arbitrarily large networks.

Allosteric function can be achieved without extensive com-
putation by implementing tuning based on local training
rules.12,14,15 For example, networks of coupled adaptive units
can be designed to update their rest lengths by contrasting
their current state with that of a desired output configuration.12

Similarly, for a continuous material network, Pashine described
a bond pruning procedure that relies on observation of local
stress-induced birefringence in a quasi-two-dimensional photo-
elastic network.15 However, designing individual adaptive units
that obey well-defined learning rules requires some engineer-
ing prowess and procedures like bond pruning remain time-
consuming in practice and are limited to materials that are
optically responsive to force.

Another approach, inspired by bond pruning, but which
does not require the actual removal of any bonds or any direct
computation of the material’s elastic properties, is referred to
as directed aging.16 This method is a form of training that takes
advantage of a material’s innate ability to adapt to an applied
stress load in time. This adaptation could be through the
progressive weakening of bonds or the initiation of instabilities
such as buckling to lower the energy of the directed state. Once
aging is complete, the material should ideally respond accord-
ing to how it was strained in the training process.

The success of directed aging was demonstrated in the
creation of materials with negative Poisson’s ratios. Most
naturally occurring materials have a positive Poisson’s ratio,
n 4 0, so that an applied strain in the material along one axis
creates a strain of the opposite sign along its perpendicular
axes. It is rare to find materials with n o 0, referred to as
auxetic materials.17 It was demonstrated both in simulations
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and experiments that by aging a disordered elastic network
under a compressive strain, one can selectively lower the net-
work’s bulk modulus with respect to its shear modulus.16,18

Because the Poisson’s ratio is a monotonic function of the ratio
of the bulk to shear moduli, this can eventually lead to a material
with a negative Poisson’s ratio.

Although directed aging has been demonstrated as an
effective means for modifying global material properties like
the Poisson’s ratio, it is not clear that directed aging can lead
to localized function in physical materials in the laboratory.
A bulk response requires aging contributions from bonds
throughout the network, while in the case of mechanical
allostery, the source and target responses are confined to local
regions of the material. Although simulations have suggested
that directed aging can be implemented to modify a network’s
local mechanical properties,18 until now this has not been
attempted in real materials.

In this work, I use directed aging as a means of modifying
the local mechanical coupling between separated sites in two-
dimensional disordered networks. In the first example, I show
that this type of training can be used to reduce the mechanical
coupling between separated pairs of nodes that were initially
coupled. In a second example, I use training to induce a desired
coupling between node pairs that were originally mechanically
uncoupled. I compare these experimental outcomes to those
previously observed in simulations.

2. Experimental protocol

Disordered elastic networks are fabricated by laser cutting
network designs derived from simulated two-dimensional
jammed particle packings into a solid sheet of EVA (ethylene-
vinyl acetate) foam. A set of two source and two target nodes are
arbitrarily selected and labeled as shown in Fig. 1. Initially,
strain is applied to the source nodes as defined by es � Ds/s,
where s is the initial distance between the two source nodes and
Ds � sf � s, the difference between final and initial node
distances. The strain on the target nodes is measured in
response as et � Dt/t where t is the initial distance between
the two target nodes and Dt � tf � t, is the difference between
the final and initial target node distances. The relative degree of
coupling between distant node sites can be determined by
measuring the ratio of the target to source strain:

Z � et/es (1)

Here Z E 0 indicates uncoupled nodes, while |Z| 4 0 indicates
coupled node pairs with a mechanical response that is either
in-phase (Z 4 0) or out-of-phase (Z o 0).

Networks are trained via directed aging by applying a strain to
the source and target node pairs for a fixed amount of time either
statically or through (in-phase) cyclic driving (see Methods section
for details). Cyclic driving is a means of training the source and
target over a continuous range of strain values. After a fixed aging
time, tage, has elapsed, the constrained nodes are released, and the
target strain is measured as a function of the varied source strain.

3. Results

Experimentally modifying the local mechanics of these networks
is challenging because there is no simple means of quantifying
how stress is distributed in the material when strain is locally
applied. Changes in geometry through node displacements,
bond bending, and buckling are indicative of concentrated stress
but are difficult to quantify.

The first experiments reported here take pairs of nodes that
are already mechanically coupled and use directed aging to
decouple their interactions. Networks are derived from jammed
particle packings and there is a chance that some pairs of
source and target nodes are coupled once created. I take
advantage of this feature by selecting node pairs with existing
interactions for training from five distinct network geometries.
The second set of experiments uses aging techniques to estab-
lish mechanical coupling in pairs of nodes that were initially
non-interacting.

3.1. Suppressing node coupling via directed aging

Starting with source and target pairs that are mechanically
coupled before any attempt to change the properties of the
network (Fig. 2a), I apply a training protocol to decouple their
motions. Once the coupled source and target nodes are deter-
mined, initial measurements of the strain ratio, Z0, are made by
applying strains of approximately 0.25, 0.50, and 0.75 � 0.10 to
the source nodes and measuring the target strain response.
One such measurement is shown in Fig. 2b.

To suppress the source-target interactions, I apply a large
strain at the source while preventing the target nodes from
reacting. This is accomplished by placing a physical barrier at
the target to arrest strain at those nodes, as seen in Fig. 2c. The
strain at the source can be applied either statically (that is, by

Fig. 1 Disordered elastic foam network labeled with source and target
node pairs.
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constraining the source nodes to a constant applied strain) or
cyclically (by oscillating the strain at the source to a fixed
maximum amplitude to continuously vary the aging strain).
These constraints are applied for a fixed aging time, tage, then
released, and the response Z is measured. An example of this is
shown in Fig. 2d.

Fig. 3 shows the evolution of coupled source and target
strains as a function of tage, for a single network. Source and
target strains appear linearly coupled. The strain ratio, Z, given
by the slope of the line, decreases as a function of tage until
saturation at or before 24 hours. The inset shows |Z|, the strain

ratio, as a function of tage at the largest source strain. These
experiments were repeated for five distinct network geometries
which featured different connectivity and void fraction, and for
multiple coupled source-target pairs. After aging, 75% of the
networks showed a reduction in strain ratio by a factor of at
least 0.5, and all networks decreased by a factor of at least 0.25.
Less successful source-target pairs often had source and/or
target nodes located on the boundary.

The specific aging protocol has a relatively small effect on
the training outcome: Source-target pairs show decreased cou-
pling for a range of input strains independent of whether aging
was applied via a fixed strain or continuously through cyclic
driving. Fig. 4 compares the same network aged either statically

Fig. 2 Training protocol for suppressed node coupling via directed aging. (a) The source in the initially unstrained network is identified by one node
painted blue and another below the screw seen at the end of the actuator shaft. The target nodes are denoted by two red dots. The scale bar represents
2 cm. (b) The initial strain-ratio, Z0, of the coupled source-target pair is measured. The source is strained by approximately 0.75. The target contracts in
response. (c) To age the network, the source nodes are held compressed while the target is prevented from contracting (and is mildly stretched) by the
insertion of a foam barrier resulting in a negative aging strain ratio, Zage. The network remains statically in this configuration for a fixed time, tage. (d) The
aged network is measured here at tage = 24 h. Aging has led to visibly less contraction of the target when the same strain is applied to the source.

Fig. 3 Suppression of source-target strain coupling. The target strain, et, is
measured as a function of the source strain, es, for varied aging times, tage,
(represented by different colors and markers) for the network imaged in
Fig. 2. The strain ratio scaled by its initial value Z=Z0

�
�
�

�
�
� is computed for the

largest source strains and is shown in the inset as a function of tage. The
strain ratio decreases as a function of time with a signal suppression that
saturates at or before 24 hours of static aging. The gray region represents
the average and standard deviation over samples with varied geometries
and/or source-target pairs.

Fig. 4 Static versus cyclic training. The aged strain ratio, Z, measured at
the largest source strain is scaled by the initial strain ratio, Z0, for source
and target nodes aged using three different protocols. One copy is aged
statically while the other two alternate between static and cyclic activation
as described in the text. All networks are aged for the same net aging time,
tage. The number of training cycles appears to have a negligible effect on
the training outcomes, however, networks held static for a longer duration
show marginally better results.
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or via cyclic driving. The aged strain ratio, Z, scaled by the
initial strain ratio, Z0, is plotted as a function of aging time, tage,
for a network aged statically for the entire duration, one aged
cyclically for 1/3 of that time and then held statically for the
remainder, and another aged cyclically for 2/3 of that time and
statically for the rest.

Despite the number of cycles differing by a factor of two or
more, there is very little difference in the aging behavior of the
three networks. Rather, networks aged statically for a longer
fraction of the time appear to yield slightly better results.

Suppressing local mechanical coupling through aging
is demonstrated here for both in-phase and out-of-phase inter-
actions between the source and target. Although most experi-
ments include a target that is prevented from compressing
when source strain is applied, it is also possible to prevent
target nodes from expanding by applying constraints. Directed
aging thus appears to provide a robust method for modifying
local stress distributions in the material.

3.2. Induced node coupling via directed aging

Inducing coupling between distant nodes introduces a more
formidable challenge than modifying existing ones. When strain
is applied locally to a source chosen at random, surrounding
nodes will be displaced leading to bond bending and buckling in
the region surrounding the source. Previous work shows that
there is a length scale, x, associated with the decay of local stress
that depends on the network coordination.19 For directed aging
to work effectively, stress applied to the source and target must
affect a set of common bonds,15,18 and this is not possible if the
distance between the source and target is too large, and/or if x is
too small. Because x cannot easily be measured in the experi-
ment, targets are chosen by straining the source and locating
target nodes that are close by, but which remain unaffected
when the source is strained. This procedure is used to select
source and target nodes from six distinct geometries. Fig. 5a
shows one such example. Strain applied at the source has little
effect on the target initially (Fig. 5b). The network is trained by
applying a large negative (compressive) strain to both the source
and target and allowing the network to age either statically

(Fig. 5c) or by cyclic driving. The rest of the network remains
unperturbed for the duration of the training. The network is
then remeasured after aging (Fig. 5d).

Fig. 6a shows the evolution of source and target strain as a
function of training time, tage, for one example. Initially, the
target strain, et, remains constant as the source is strained such
that the original data can be functionally described by et = 0,
as one would expect for uncoupled nodes. As the aging time,
tage, increases, we see that the source and target become
increasingly coupled with et growing as a function of es. This is
further demonstrated by observing the strain ratio, Z as a function
of tage at the largest source strains in Fig. 6b. Fig. 6c shows the
maximum output strain ratio, |Zmax| for four copies of the same
network aged at different imposed target strains. All four networks
demonstrate successful coupling, however, the network with the
largest output strain ratio was aged under the largest strain. This
further motivates training at maximal strain values.

This protocol is repeated for six different network geome-
tries and a variety of source-target pairs. The strain ratio for
each uncoupled network is initially 0 � 0.05. Successful cou-
pling is defined when the strain ratio increases to |Z| Z 0.1 for
any of the applied source strains. Successful coupling was
achieved for 73% of experiments. The average and standard
deviation for these networks is shown by the dotted gray and
surrounding gray lines in Fig. 6b respectively. It should be
noted that unlike in the previous set of experiments, here strain
interactions in the network can behave non-linearly such that it
is possible to measure coupling at one value of the source strain
but not necessarily at another. I generally observe that the
largest coupling is present at the greatest applied source strain
value, but not exclusively so.

Some source-target pairs fail to couple the input and output
response. Reasons for failure may include attempting to couple
nodes that are sufficiently far from each other as compared to
the decay length of local stresses, x. Failure is also more likely
when the target is located too close to a constrained source
node. In this case, some nearby bonds may be prevented from
transmitting stress and thus impede node coupling. This may
also come from the fact that stress around a point source in

Fig. 5 Training protocol for inducing node coupling via directed aging. (a) An uncoupled source and target pair are chosen. The scale bar represents
2 cm. (b) The initial strain-ratio measurement is taken. When the source is strained by approximately 0.75, the distance between target nodes (red dots) is
relatively unchanged. The initial strain ratio, Z0, is approximately 0. (c) Directed aging is shown by applying compression statically to the source and target
nodes for a set duration, tage. (d) The aged network is measured at tage = 7 days. The aged target now contracts in response to an applied source strain,
yielding a positive strain ratio.
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these systems can be highly anisotropic.19 Among other failure
modes were those in which the target nodes were trained under
large tensions to induce node expansion. These bonds appear
to have undergone such significant plastic deformation that
they became highly uncoupled from the rest of the network.
Inducing target node expansion might still be accomplished
with lower aging strains but further exploration is necessary.

Networks trained both statically or cyclically could success-
fully couple source and target nodes. However, static aging
consistently yielded a stronger coupling for the same aging time.

3.3. Over-training

The training for allosteric response is not always monotonic in
time. For over a quarter of experiments, if aged for too long, the
coupling response can deteriorate. Thus, in some networks, |Z|
was maximum at an intermediate time, as shown by a few
examples in Fig. 7. This response seems more common for
networks containing bonds with high aspect ratios. During
aging, material struts under large stress loads buckle; sustain-
ing this buckling for long periods can result in material fatigue

which then drastically weakens the elastic response of the
bond, rendering the training less effective. This effect is not
unique to our system.20 This decrease or plateau in the strain
ratio is observed more frequently in networks aged for long
durations, and should be observed in all networks if aged for
long enough. This phenomenon is evidence that one can over-
train a material, at which point, aging adopts the negative
connotations that one may have naturally associated with
the term.

4. Discussion

These experiments both validate the computational findings of
Hexner et al.18 and introduce a few notable differences. The
simulations model elastic materials as disordered, central-force
spring networks. The networks are aged by performing an
energy minimization algorithm in which the rest length of each
bond evolves with the stress applied to that bond when sub-
jected to an applied strain. In their study, strain is applied
cyclically while the networks age as a means of training the
output signal for a range of input strains, rather than a single
one. In these experiments, for both coupling and decoupling
nodes, I find that static training is equally or more effective
than cyclic driving. The majority of networks aged statically at a
single large value of Zage display the trained response at smaller
strains as well. These results may imply that cyclic driving could
be unnecessary to locally train networks over a range of source
strain values.

The coupled interactions achieved in these experiments
were significantly smaller in magnitude than those from simu-
lations. In simulations, a large percentage of source-target pairs

Fig. 6 Induced node coupling as a function of aging time, tage. (a) The
target strain, et, increases as a function of source strain, es, with progressive
aging time (indicated by different colors and markers) for the network
imaged in Fig. 5. (b) The strain ratio, |Z|, is measured at the largest source
strain values and increases from a value of 0 (uncoupled nodes) to roughly
0.5 (coupled nodes) with tage The average and standard deviation over
other network geometries in shown in gray. (c) The maximum strain ratio,
|Zmax|, is measured as a function of the target aging strain, eage, for four
copies of the network shown in Fig. 5 aged at different strains. The largest
induced strain ratio corresponds with the largest aging strain.

Fig. 7 Over-trained networks. The strain ratio, |Z|, is shown as a function
of aging time, tage, at high source strains for three different experiments
(indicated by different markers). The curves shown with square and circular
points are two copies of the same source-target pair, while the crosses
represent another source-target pair. Z reaches a maximum value, or
maximum coupling, at some intermediate time and then falls non-
monotonically.
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could be trained to strain ratios of Z E 1.18 In experiment, the
highest observed output strain ratio was |Z| = 0.64. However,
our results cannot be directly compared because the aging
strains used in these experiments were larger than those
considered in simulations, with a typical aging strain around
es E 0.75 versus 0.5 in simulations.

Additionally, Hexner et al. suggests that the inclusion of
‘‘repeaters’’, randomly chosen nodes throughout the network
that are strained in addition to the source and target, could
ameliorate the failure rate in training long-range targets.18

In some cases, duplicating failed experiments with the inclu-
sion of repeaters does lead to an induced coupling, but not
consistently so. The dependence of coupling on the source to
target distance, and the efficacy of repeaters in increasing the
range of source-target interactions remain to be further inves-
tigated in these experimental systems.

Disparities between experimental and simulation results are
likely due to the more complex adaptive behaviors of physical
networks that are not accounted for in the computational
models. Pashine et al. used directed aging to tune the Poisson’s
ratio for the same type of disordered EVA foam networks16 and
showed that the ability to train relies both on changes to bond
stiffness and more significantly changes to the network geo-
metry. For example, bond bending, the change in the angle at
which bonds meet at a node, and bond buckling are also
observed to be a critical adaptive mechanism in these experi-
ments. Another feature of real materials that is not present in
idealized spring models is the inclusion of pre-stress in bonds.
Although the initial network is in static equilibrium, stresses
may still exist in force balance with one another. It has been
shown that the inclusion of even a small amount of pre-stress
in spring models can have significant implications on the
training outcomes.21,22

Previous characterization of the EVA foam used here suggests
that training occurs via both plastic and viscoelastic adaptations
of the material; these properties depend on the aging time and
could be further tuned with the incorporation of temperature.16

In these experiments, measurements are taken directly after
aging, and thus on a time scale much shorter than the viscoe-
lastic relaxation time of the material which is on the order of
days or weeks.16 Although EVA foam undergoes plastic deforma-
tion, in general, plasticity is not required for training as long as
the desired output can be achieved on time scales that are much
shorter than the relaxation time, much like in biological systems.

This work demonstrates experimentally that local material
properties can be trained via directed aging. Mechanical cou-
pling was reduced by at least 1/4 of the initial strain ratio for
source-target pairs in 100% of the decoupling experiments.
In the second set of experiments, although source-target nodes
could not always be coupled to |Z| Z 0.1, the success rate was
comparable to values previously reported. In experiments in
which the same type of allosteric mechanical interactions were
induced with bond pruning, Pashine reports success rates
between approximately 70–90% for the same strain ratio
values.15 The inability to couple nodes through pruning was
attributed to bond-bending and non-linearity in the stress–

strain response of the material. These non-linear effects are
likely significant to these experimental results as well. However,
in simulations of directed aging there is a 10% failure rate even
without these added complexities included in the computa-
tional model.18 In this work, approximately 75% of source-
target pairs are coupled by at least 10% after aging. The ability
to train a relatively large fraction of source-target node pairs
without the added insight of computation in experiment evi-
dences the robust ability of disordered materials to adapt, and
the promise of directed aging as a material design technique.

5. Methods

In these experiments, we use disordered network structures
derived from 2D computer-simulated jammed particle packings.
Each node corresponds to the center of a circular particle while
bonds indicate particle contacts where circles overlap. This struc-
ture is then laser cut using a Universal Laser Systems Ultra X6000
into a solid sheet of ethylene-vinyl acetate (EVA) closed cell foam,
with a density of 2 lbs per ft3 and 0.5 in thickness from McMaster-
Carr. Source and target node pairs are labeled with red and blue
paint to facilitate strain measurements. To apply source and
target strain, one source node is fixed while the strain is applied
to the other using a linear actuator with feedback (Actuonix
Motion Devices Inc.). Strain is applied at a roughly constant speed
while the actuator is driven with a square wave signal. Network
boundaries are constrained on a perforated platform with screws
to inhibit global translation or rotation of the material while a
strain is being applied. These constraints would presumably be
unnecessary for an infinite system but are essential for reducing
finite size effects while applying strain locally.

Source and target responses are captured for various source
strains using a Nikon D7000 DSLR camera. Training via direc-
ted aging is applied cyclically by synchronizing actuators to
apply strain at both the source and target nodes repeatedly, or
statically by constraining the source and target nodes as desired
for a fixed amount of time. Cyclic actuation is driven at a
frequency of 450 mHz using a motor driver powered by an
Arduino. For all measurements, the source nodes are forced
back to their approximate initial positions.

6. Conclusions

The experiments reported here demonstrate that local mechan-
ical coupling between distant pairs of nodes can be modified or
induced via directed aging in disordered elastic network mate-
rials. The ability to tune a material’s mechanical properties
locally without large-scale computations or design presents a
promising new direction for materials development that takes
inspiration from modes of response in biological systems.

In disordered foam networks, by forcing the material into
geometric configurations in which the source and target are
actively strained and allowing them to age, the system evolves
to a state in which these configurations become energetically
favorable through the weakening of bonds under stress and via
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changes in the effective bond lengths. This presumed material
adaptation is dependent on the nature of the constituent
material. For example, materials that are strain hardening
may induce other novel training outcomes.

More work remains to characterize the material-based lim-
itations of aging in network structures; For example, training
under tension is less effective in foams due to a significant loss
of elasticity. Preliminary experiments in which similar training
was applied to 3D-printed elastomer networks led to fracture
before training outcomes were achieved. Such cases of failed
training might inspire further exploration for more effective
aging protocols. For example, varying ambient temperature
conditions could allow a more rapid aging response and longer
memory of the training.
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