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Fluid mechanics of sarcomeres as porous media

John Severn, *a Thomas Vacus ab and Eric Lauga a

Muscle contraction, both in skeletal and cardiac tissue, is driven by sarcomeres, the microscopic units

inside muscle cells where thick myosin and thin actin filaments slide past each other. During contraction

and relaxation, the sarcomere’s volume changes, causing sarcoplasm (intra-sarcomeric fluid) to flow out

during contraction and back in as the sarcomere relaxes. We present a quantitative model of this

sarcoplasmic flow, treating the sarcomere as an anisotropic porous medium with regions defined by the

presence and absence of thick and thin filaments. Using semi-analytic methods, we solve for axial and

lateral fluid flow within the filament lattice, calculating the permeabilities of this porous structure. We

then apply these permeabilities within a Darcy model to determine the flow field generated during

contraction. The predictions of our continuum model show excellent agreement with finite element

simulations, reducing computational time by several orders of magnitude while maintaining accuracy in

modelling the biophysical flow dynamics.

1 Introduction

Many biological processes, ranging from locomotion of micro-
organisms to large-scale muscle movement, rely on molecular
motors, nano-scale machines that generate motion.1 One such
molecular motor is the actin-myosin motor, which converts
energy stored in ATP molecules into movement when myosin
filaments repeatedly bind (also known as cross-bridging) and
unbind to parallel actin filaments. This process is observed as a
characteristic ‘‘walking’’ motion of the myosin along the actin,
and the two filaments slide relative to one another.2,3 One
notable example of biological components that utilise the actin-
myosin motor are sarcomeres, the fundamental contractile
units of so-called striated muscle (both skeletal and cardiac),
composed of periodic hexagonal arrays of axially-aligned, inter-
digitating (thin) actin and (thick) myosin filaments.4,5 Sarco-
meres are approximately cylindrical, with a typical diameter of
one micron and a typical length of a few microns.6–9 Many
micro-scale sarcomeres arranged end-to-end form a myofibril,
and it is the collective periodic contraction and relaxation of
many myofibrils that produce large-scale muscle movement
(see illustrations in Fig. 1A and B). In this paper, we address the
fluid mechanics of sarcomere contraction; we first present in
the Introduction a broad overview of the biophysics of sarco-
mere contraction before detailing the motivation for our
modelling study.

There is great variation in the precise structure of sarco-
meres across different species, and even a single organism can
contain a range of different sarcomeres.9,12–15 However, all
sarcomeres of striated muscles have the same characteristic
banding pattern (see electron micrograph in Fig. 1C): an
interdigitating array of thick and thin filaments attached to Z
disks (Fig. 1D). The Z disks are thick and dense structures of
interconnecting proteins that separate adjacent sarcomeres.16–18

Each Z disk anchors an array of thin filaments, composed
primarily of actin.19,20 Each sarcomere also contains an array
of thick filaments, composed mostly of myosin.21–25 The mid-
points of the thick filaments are anchored to the M disk, which
is a thick, multilayered, dense structure of proteins that sepa-
rates the two halves of the sarcomere26–29 (this M disk is absent
from some sarcomeres, mostly in invertebrates12,14,15); as we
will show below, the presence of M disks in fact has little
impact on the fluid flow. We also note that thick filaments
continue unbroken through the M disk (if present), with ‘half-
filaments’ on either side of the M disk; in what follows, we use
the term thick half-filament to avoid confusion. Meanwhile, the
thin filaments from one sarcomere do not continue unbroken
through the Z disk, into the next sarcomere, and so the Z disk
has entire thin filaments on either side. An example of the
periodic hexagonal arrangement of filaments is illustrated in
Fig. 2A, which shows a cross-section of the overlap region of the
sarcomere. Upon activation of the muscle, calcium ions are
released into the sarcomere from the sarcoplasmic reticulum,
an intricate tubular structure that surrounds myofibrils,30

triggering myosin-actin cross-bridging31–33 and causing the
thin filaments (and the Z disks to which they are attached)
to be pulled inwards with some speed V, on the order of
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1 mm s�1.34–36 This shortens the sarcomere, seen as contraction
of the muscle.24,37–41

Despite the many protein filaments (i.e. myofilaments)
within the sarcomere, the majority of the space between the
M disk and Z disk is filled with the liquid cytoplasm of muscle
cells, termed sarcoplasm in this context.44 Studies of sarco-
meres from various species have shown that inter-filament
spacing and sarcomere radius can change slightly over the
course of a contraction. However, radial strain proves insuffi-
cient to maintain a constant volume.36 Consequently, assuming
incompressibility, this implies a flow of sarcoplasm out of the
sarcomere during contraction, and back in during relaxation. It
has recently been demonstrated45 that this fluid flow could
augment the transport of substrates such as calcium ions and
ATP necessary for sarcomere function; see also our preliminary
results in Appendix F.

The many myofilaments of the sarcomere can be modelled
as long, slender cylinders, and provide complicated but peri-
odic obstructions to fluid flow. The explicit flow past these
filaments can be calculated numerically, such as by the
finite element method.46 However, this not only involves
designing an appropriate explicit model, but also requires
specialised computational modelling or software, and signifi-
cant computational power and time to produce accurate

Fig. 1 Physical and mathematical modelling of sarcomere. (A) A muscle
fibre containing many myofibrils.10 (B) A single myofibril, containing many
aligned sarcomeres. Each Z disk defines the boundary from one sarcomere
to the next.10 (C) Electron micrograph of a single sarcomere, showing the
defining banding patterns of striated muscle;11 regions of different inten-
sities correspond to distinct regions in the sarcomere, which are labelled
as in D. (D) Simplified structure of a single sarcomere, with thin actin
filaments (blue), thick myosin filaments (red), and Z and M disks; the three
regions are defined by the presence of the thick and/or thin filaments:
regions 1 (thick only), 2 (overlap) and 3 (thin only). (E) Darcy model
representation of the sarcomere as an anisotropic porous medium (with
the three regions highlighted in different colours), showing radius R and
overall sarcomere length 2L. (F) Blow-up of top-right quarter of the Darcy
model representation, with non-dimensionalisations giving radius and
half-length of 1, and boundary conditions as indicated.

Fig. 2 (A) Sarcomere cross-section in the overlap region (i.e. region 2 in
Fig. 1D), here illustrated for a sarcomere of hypothetical radius 200 nm,
with a 301 sector of symmetry indicated. (B) 301 sector of cross-section, as
indicated in (A). (C)–(E) Hexagonal arrangement of filaments in the overlap
region. Packing ratios (number of thin filaments per thick half-filament) of
2 (C), 3 (D) and 5 (E) are shown, with 2 being typical for vertebrates and 3
and 5 often being found in invertebrates.9,42,43 Fundamental triangles,
each being 1/12 of a hexagon, are shown at the bottom. (F)–(H) Funda-
mental triangles, highlighted in (C)–(E), used to compute the permeabil-
ities and the traction parameter b.
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results. Furthermore, the process must be repeated whenever
considering a different type of sarcomere, or the same sarco-
mere at a different stage of contraction.

In this paper, we propose an alternative modelling approach
and derive a theoretical model of fluid flow in and out of the
simplified sarcomere of Fig. 1D that circumvents the need to
consider the myofilaments individually and the concomitant
small-scale fluid flow. The model instead considers the aver-
aged large-scale fluid behaviour over many filaments, treating
the sarcomere as an anisotropic porous medium, as sum-
marised in Fig. 1E. The results of this model lead to excellent
agreement with full numerical computations that resolve all the
sarcomere length scales, but with vastly reduced computational
cost, time and complexity.

This paper is split into two main sections, one devoted to the
physical and mathematical modelling (Section 2), and a second
one discussing the results for flows inside sarcomeres and
comparing our model with full numerical simulations
(Section 3). In Section 2, we justify some of our physical
assumptions, and then set up the geometry of the model and
non-dimensionalise the problem. We next derive and solve the
Darcy equations for the pressure and fluid flow in an aniso-
tropic porous medium in each of the three regions of the
sarcomere, subject to the relevant boundary and interface
conditions. These solutions involve numerical physical para-
meters (namely, the permeabilities and the traction parameter),
whose values we determine by calculating the small-scale fluid
flow through the periodic cells of the filament lattice, via semi-
analytic methods. We next compute in Section 3 the large-scale
fluid flow of the Darcy model, and compare with results of full
numerical computations, finding excellent agreement in sev-
eral orders of magnitude less time. We then compare results of
the Darcy model between different sarcomeres, identifying
common flow properties, as well as differences. We conclude
with a discussion (including potential improvements) of the
modelling approach, as well as potential applications, in
Section 4.

2 Modelling flow within a sarcomere
2.1 Physical assumptions and simplifications

Our model is derived using two simplifying physical assump-
tions. We first model the sarcoplasm as a Newtonian fluid.
Previous observations indicate that the cytoplasm of muscle
fibres is approximately Newtonian for all but the fastest and
highest frequency contractions.36,47–49 However, since the non-
Newtonian behaviour of cytoplasm is primarily due to the
cytoskeleton,50,51 which is absent from the interior of the
sarcomere, the behaviour of sarcoplasm likely remains New-
tonian even at such extremes. Nano-scale objects in the sarco-
plasm, such as enzymes,52 are likely insufficient, both in
abundance53 and individual size, to cause non-Newtonian
behaviour.54–56

Secondly, in the model we take the sarcomere radius (and
the inter-filament spacing) to be constant. While it is well

established that sarcomere radius (and consequently filament
spacing) is not constant throughout contraction, radial strains
(i.e. fractional changes in cross-sectional area) are generally
smaller than axial strains (i.e. fractional changes in sarcomere
length).36 The quadratic dependence of cross-sectional area on
radius, and the fact that sarcomere radius is typically smaller
than length (see Table 16,57,58), indicate that absolute changes
in radius are much smaller than absolute changes in length.
Furthermore, the radial strain profile over the course of a
contraction varies between species, and the Poisson ratio (i.e.
the ratio of radial expansion to axial compression) can vary
between positive and negative values,36 making precise
and general modelling difficult. In terms of fluid flow (see
Section 2.3), radial dilation of a matrix of fibres cannot drive
any net fluid flux due to overall volume conservation, and we
found that the changes to the permeability values (and espe-
cially their ratios) and the traction parameter are negligible, at
most a few percent, for biologically observed radial strains.36

Therefore, it is appropriate to assume that the sarcomere
radius, and inter-filament spacing, remain constant. In other
words, we model the filaments as being rigid, not expecting this
simplification to have any significant effect on fluid flow.

2.2 Setup and non-dimensionalisation

Following these assumptions, we aim to solve for the flow
inside the model sarcomere illustrated in Fig. 1E. Our analysis,
unless stated otherwise, will assume a dimensionless sarco-
mere described by cylindrical polar coordinates (r,z,y), denot-
ing the radial, axial and azimuthal coordinates respectively,
where axial (z) lengths are scaled with the sarcomere half-
length L, radial (r) lengths with the sarcomere radius R and
axial velocities with the contraction speed V. As a result, the
dimensionless sarcomere half-length, radius and contraction
speed are all equal to 1. The standard incompressibility equa-
tion r�u = 0 implies a scaling for lateral velocities of RV/L.
Further, pressure is scaled with the viscous scaling mV/L,
where m is the dynamic viscosity of the fluid. We may finally
exploit z - �z symmetry to solve the problem on a half-
sarcomere. In this dimensionless problem, region 1 (thick
filaments only) is located in 0 o z o L1, region 2 (overlap
region) is located in L1 o z o L2, and region 3 (thin filaments
only) is located in L2 o z o 1.

Table 1 Physical parameters (length scales) used across all sarcomere
models, as found in ref. 4, 8, 9, 19, 46, 59 and 60; the thick filament spacing
is given by the D10 spacing (horizontal spacing between two adjacent
columns of thick filaments in Fig. 2) multiplied by 2

� ffiffiffi
3
p

. All values are given
to 1 or 2 significant figures

Parameter Symbol Value (nm) Ref.

Thick filament radius Rthick 7 4, 46 and 59
Thin filament radius Rthin 5 19 and 46
D10 spacing D10 45 9, 46 and 60
Thick filament spacing 2D10

� ffiffiffi
3
p

52

Thick half-filament length Lthick 800 9 and 46
Thin filament length Lthin 1000 9 and 46
Sarcomere radius R 500 8
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We will show in our analysis that the porous medium
exhibits lateral isotropy (all flow in a cross-section has the
same permeability, regardless of direction) which, coupled with
the cylindrical geometry of the sarcomere, leads to azimuthal
symmetry, and thus we consider the problem in the (r,z) polar
plane. The resulting dimensionless setup is shown in Fig. 1F
(which also shows boundary conditions, that we discuss below).
Note that the three regions of the sarcomere (separated by
interfaces at z = L1 and z = L2) are considered separately: we
solve for the pressure and fluid flow in each region individually,
and apply interface conditions to relate them.

2.3 Darcy flow modelling

2.3.1 Introduction to Darcy flow. Within sarcomeres, there
is a clear separation of length scales between, on one side, the
thick and thin filaments (typical width 10 nm) and the spacing
between the various filaments (typical size 10’s of nm) and, on
the other, the sarcomere itself (typical width and length of
1 mm). Motivated by this observation, we model in our paper the
sarcomere as a porous medium, i.e. a medium that is not
simply free fluid, but rather consists of fluid (occupying a
volume fraction F, termed the porosity) that must navigate
fixed physical obstructions (here, the myofilaments, occupying
a volume fraction 1 � F). The fluid/obstruction mixture is
considered a continuum, which is valid assuming that the
length scale of flow is much larger than the pore scale (the
characteristic size and separation of the obstructions), as
justified above. The resultant flow problem is known as Darcy
flow, a statistical average of fluid flow over many pore
scales.61,62

In our sarcomere model, we deviate from traditional Darcy
flow in two ways. First, Darcy flow typically considers isotropic
porous media, but here, the alignment of the myofilaments
along the long axis of the sarcomere makes the medium
anisotropic, with axial flow typically easier than lateral flow.
Second, most porous media consist of pores that exhibit
randomness, with their averaged properties determined statis-
tically. Here, instead, the porous medium consists of regular
periodic cells, and we perform averages over individual cells
rather than many pore scales. Darcy flow is concerned not with
the fluid velocity, but rather the fluid flux (often called the
Darcy flux or Darcy velocity), which is the rate of fluid flux per
unit area through the porous medium. Pressure also exists as a
spatial average. To avoid confusion, we thus reserve throughout
the terms u and p for conventional, interstitial (fluid) velocity
and pressure, respectively, which undergo sharp changes
within a periodic cell, and U and P for the Darcy flux and Darcy
pressure, which eliminate these sharp changes via spatial
averaging, with U = F hui and P = hpi.

2.3.2 Darcy fluxes in the anisotropic porous medium. In
order to identify the large-scale flow behaviour in the sarco-
mere, we first consider the small-scale flow between the fila-
ments and properly derive the Darcy model. To do so, we focus
on the individual periodic hexagonal cells that comprise the
larger periodic lattice, as shown in Fig. 2C–E. By neglecting
variation in the flow between adjacent periodic cells, we exploit

various symmetries to calculate semi-analytic expressions for
the fluid flow within a single periodic cell, and obtain explicit
linear relationships between fluid flux and pressure gradient.
Details of the derivations, including necessary assumptions, are
given in Appendix A (axial permeabilities), B (traction para-
meter b), C (lateral permeabilities), but essentially we need only
assume that the length scales (both axial and lateral) over
which rP varies are much larger than the size of each indivi-
dual hexagonal cell of myofilaments.

By solving for the axial fluid flow in a hexagonal cell, we
calculate an overall axial fluid flux per unit area of

Uz ¼ �kk
@P

@z
; (1)

for some constant axial permeability k8 that is a function only
of the geometry of the hexagonal lattice and which of the three
regions we are in (thin filaments vs. thick filaments vs. overlap
region); the various axial permeabilities are calculated in
Appendix A.

We now turn our attention to the lateral fluid flow, that is,
fluid flow within a cross-section of the cylindrical sarcomere,
perpendicular to the z axis. In general, the resultant flux can be
expressed in terms of a 2 � 2 lateral permeability matrix k>,
where > indicates the plane perpendicular to the z axis:

U> = �k>r>P, (2)

where r>P denotes the 2-dimensional gradient of P in the (r,y)
plane, perpendicular to the z axis. Once again, we calculate k>

by deriving the explicit lateral fluid flow within a hexagonal cell.
Note, however, that the hexagonal cells, in Fig. 2C–E, exhibit a
six-fold rotational symmetry. In particular, this means that a
lateral pressure gradient r>P (of fixed magnitude) in the
direction normal to any given side of the hexagons will yield
the same magnitude of lateral fluid flux per unit area, i.e. Darcy
flux, and this flux will be directed in the same direction as the
applied pressure gradient. Importantly, two such (independent)
directions form a basis of the plane. We further note that the
linearity of the Stokes equations allows us to reconstruct any
flow (including the corresponding pressure field) as a linear
combination of said basis. We consequently deduce that the
lateral Darcy flux is equal in magnitude, and parallel to r>P,
regardless of the direction of the applied pressure gradient. We
therefore calculate a lateral flux per unit area U> = �k>r>P for
some constant scalar lateral permeability k> (here also only a
function of local lattice geometry and which of the three
regions of interest is being considered), which we calculate in
Appendix C.

We conclude that the Darcy model of the sarcomere has
cross-sectional isotropy, at which point the cylindrical geometry
of the entire porous sarcomere implies an overall Darcy fluid
flow that is independent of the azimuthal angle y and has no
component in the y direction, but is instead purely axial and
radial. We therefore obtain the Darcy equations for flow in a

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
/2

0/
20

26
 1

0:
25

:0
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm01327a


This journal is © The Royal Society of Chemistry 2025 Soft Matter, 2025, 21, 2849–2867 |  2853

sarcomere as a porous medium as

Uð jÞz ¼ �k
ð jÞ
k
@Pð jÞ

@z
; Uð jÞr ¼ �k

ð jÞ
?
@Pð jÞ

@r
; (3)

where we have used superscript j to refer to the three regions of
the sarcomere, and no Einstein summation is implied.

The result in eqn (3) is the fluid flux that arises solely from
pressure changes, but it does not account for the fluid flow
induced directly by the thin filaments moving relative to the
thick ones during contraction or relaxation. This movement
has no effect on any of the lateral fluid fluxes Ur, nor on the
axial flow in region 1, Uz

(1). In the thin region, the absence of
stationary thick filaments means that the moving thin fila-
ments pull the entirety of the fluid along with them, and hence
Uz

(3) is decreased by a value equal to the porosity F(3). In the
overlap region, the stationary thick filaments partially resist the
flow induced by the moving thin filaments, and Uz

(2) decreases
by a value bF(2), where the traction parameter b is a dimension-
less constant between 0 and 1 that is determined entirely by the
geometry of the cell, and calculated similarly to the axial
permeabilities, in Appendix B. Together with eqn (3), this gives
us modified, final Darcy equations

Uð jÞz ¼ �gð jÞFð jÞ � k
ð jÞ
k
@Pð jÞ

@z
; Uð jÞr ¼ �k

ð jÞ
?
@Pð jÞ

@r
; (4)

where g(1) = 0, g(2) = b, g(3) = 1 capture the effects of the moving
thin filaments in each region.

2.3.3 Pressure equation. Since the fluid flow is incompres-
sible, it follows that the same is true for the fluid flux and thus
r�U = 0. Substituting the two Darcy equations from eqn (4) into
the incompressibility condition leads to the governing equation
for the Darcy pressure field P as

1

r

@

@r
r
@Pð jÞ

@r

� �
þ
k
ð jÞ
k

k
ð jÞ
?

@2Pð jÞ

@z2
¼ 0: (5)

This is accompanied by relevant boundary conditions, as
discussed below. Note that although the interstitial pressure p
is harmonic, as required by Stokes flow, the Darcy pressure P is
not exactly harmonic; however, by a suitable rescaling of z, we
would recover Laplace’s equation and so, with appropriate
boundary conditions, we deduce that P has a unique solution.

2.3.4 Boundary conditions for the full sarcomere model.
We first identify appropriate boundary conditions for the full
sarcomere model of Fig. 1D, so that we can approximate them
in the Darcy model, and later perform full numerical computa-
tions. We may exploit axial symmetry to consider only the right
half-sarcomere z Z 0. The surfaces of the individual filaments
are subject to no-slip conditions, i.e. the fluid velocity u is equal
to the velocity of the filament. The Z disk and M disk (if
present) are protein structures that are much more densely
packed than the three filament regions, so it is legitimate to
approximate a no-slip condition on the disks as well. Alterna-
tively, when the M disk is absent, we should apply a symmetry
condition at z = 0: normal velocity is zero, uz = 0, and normal
gradient of tangential velocity is also zero, qur/qz = quy/qz = 0.

We model the sarcomere as being immersed in free fluid, so in
our simulations we also apply a zero-stress far-field condition
away from the sarcomere.

2.3.5 Boundary and interface conditions for the Darcy
model. We now determine the appropriate boundary condi-
tions, based on the above, for the Darcy model of the sarco-
mere. Being a rescaled Laplace equation, eqn (5) requires a
single boundary condition at each boundary. We set P = 0 at
r = 1 to simulate the stress-free far-field condition. In particular,
this can be understood by noting that the dense internal
structure of the sarcomere is expected to generate much larger
pressure gradients inside the sarcomere compared to outside,
differing by a factor of (R/l)2, where R (O (1 mm)) is the
sarcomere radius and l (O (10 nm)) is the pore scale, according
to scalings of the Stokes equations. This assumption is con-
firmed by the full numerical simulations discussed above. We
apply no-penetration, qP/qz = 0, at the disks. This may produce
a non-zero tangential slip velocity, in contrast to the full
boundary conditions; however, we will see that the overall
effect of this turns out to be very small on the scale of the full
sarcomere. Meanwhile, if the M disk is absent, the two sym-
metry conditions are uz = 0 and qur/qz = 0, both of which can be
achieved by setting qP/qz = 0. In other words, the Darcy flow is
the same regardless of whether the M disk is present or not.
Finally, there is an additional regularity condition qP/qr = 0 at
r = 0 that arises from exploiting azimuthal symmetry in the
cylindrical geometry.

Writing these explicitly, we therefore need to solve eqn (5)
subject to

@Pð1Þ

@r
¼ @P

ð2Þ

@r
¼ @P

ð3Þ

@r
¼ 0 at r ¼ 0; (6)

P(1) = P(2) = P(3) = 0 at r = 1, (7)

@Pð1Þ

@z
¼ 0 at z ¼ 0; (8)

@Pð3Þ

@z
¼ 0 at z ¼ 1: (9)

There remains the task of identifying the interface condi-
tions between adjacent regions of the sarcomere. Assuming
that the Darcy equations hold everywhere, we identify the
change in pressure across an interface by performing a force
balance. We integrate the axial flux equation in a small region
about the interface at z = Lk, giving

½P�Lkþe
Lk�e ¼ �

ðLkþe

Lk�e

Uz þ gF
kk

dz: (10)

Taking e - 0, we see that the change in pressure across the
interface is zero; continuity of pressure is a standard condition
for interfaces in porous media.62,63 Meanwhile, volume con-
servation gives continuity of axial flux at the interface between
regions 2 and 3 (z = L2). In contrast, the interface between
regions 1 and 2 (z = L1) is more subtle. As the sarcomere
contracts, the interface between regions 1 and 2 moves
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leftwards. This moving boundary produces an effective flux
source, and the resulting increase in axial fluid velocity when
moving from region 1 to region 2 is precisely (1 � F(3)), which is
the volume fraction occupied by the thin filaments. The inter-
face conditions are therefore

�kkð2Þ
@Pð2Þ

@z
þ kk

ð1Þ@P
ð1Þ

@z
¼ bFð2Þ þ 1� Fð3Þ

� �
at z ¼ L1;

(11)

�kkð3Þ
@Pð3Þ

@z
þ kk

ð2Þ@P
ð2Þ

@z
¼ Fð3Þ � bFð2Þ at z ¼ L2; (12)

P(1) � P(2) = 0 at z = L1, (13)

P(2) � P(3) = 0 at z = L2. (14)

2.3.6 Solution for pressure. The solution to eqn (5) in
region j (with j = 1, 2, 3) that satisfies the boundary conditions
in eqn (6) and (7) is obtained classically as the series

Pð jÞðr; zÞ ¼
X1
n¼1

Að jÞn eG
ð jÞ
n z þ Bð jÞn e�G

ð jÞ
n z

h i
J0 lnrð Þ; (15)

where J0 is the zero order Bessel function of the first kind, ln is

the nth zero of J0, and G
ð jÞ
n ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
ð jÞ
?

.
k
ð jÞ
k

r
. This solution

satisfies the boundary conditions eqn (6) and (7) analytically;
the two remaining boundary conditions eqn (8) and (9), as well
as the four interface conditions eqn (11)–(14), must be satisfied
by appropriate choice of coefficients A( j)

n and B( j)
n . Since there

are three regions, this amounts to 6 coefficients to be deter-
mined for each value of n. By using the orthogonality condition
between Bessel functions, we may apply the boundary and
interface conditions eqn (8)–(14) to obtain an appropriate
6 � 6 matrix equation for the six coefficients above, for each
value of n independently (see Appendix D). Once we calculate
the permeabilities and the traction parameter b, we easily solve
these matrix equations numerically, and hence obtain all the
coefficients. Of course, in order to compute the solution,
eqn (15), we must truncate the series to some finite number
of terms N,

Pð jÞðr; zÞ �
XN
n¼1

Að jÞn eG
ð jÞ
n z þ Bð jÞn e�G

ð jÞ
n z

h i
J0 lnrð Þ; (16)

where, to reiterate, the permeabilities are incorporated via

G
ð jÞ
n ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
ð jÞ
?

.
k
ð jÞ
k

r
, with ln being the nth zero of the Bessel

function J0. In all results below, we set N = 50 (see Appendix D
for justification).

2.4 Biophysical parameter values in biological sarcomeres

In order to validate the Darcy model, we must compare it with
precise numerical computations. To this end, we identify here
suitable values of the various biophysical parameters. We note
that there is a wide range of biological parameters, observed in

a variety of sarcomeres; below we will test the Darcy model in a
minimal suite of configurations, for which we expect the worst
agreement, and will next discuss the extension to more ideal
configurations.

2.4.1 Fixed value parameters: filament radii and spacing. A
review of the existing literature, examining both intact sarco-
meres and isolated actin and myosin filaments, reveals that
certain biophysical parameters are approximately constant
across all sarcomeres.4,9,19,46,59,60 The radii of both thick and
thin filaments, as well as the D10 filament spacing, D10, which is
defined as the horizontal distance between two adjacent col-
umns of thick filaments in Fig. 2, will be assumed to be
constant. Consequently, the distance between any two adjacent

thick filaments, given by 2D10

� ffiffiffi
3
p

, is also constant. These

values are listed in Table 1.
Geometrically, the thick and thin filament radii are dictated

by the fixed size of the individual myosin and actin monomers,
respectively, whilst the filament spacing is dictated by the
distance over which myosin molecules can reach during the
cross-bridge cycle; we can therefore also consider these para-
meters to be constant. Structural variation between sarcomeres,
such as different packing ratios, can affect these values to an
extent; we selected values, consistent with the larger body of
literature, to match those used in previous numerical work.46

In what follows, we will also set the dimensional muscle
contraction speed V to 1000 nm s�1, which is the observed
order of magnitude for sarcomere contraction.34–36 Obviously,
due to the linearity of the (viscous) physical system, all flow will
instantaneously scale linearly with the chosen value of V.

2.4.2 Extreme value parameters: filament lengths and sar-
comere length; sarcomere radius. The remaining parameters
could be selected from a wide range of biologically observed
values. Filament lengths have been reported to vary through a
factor of at least around 5, though there is a systematic linear
relationship between thick and thin filament lengths.9 Sarcomere
radius can also vary significantly.8 The Darcy model is expected to
be most valid when there are large relative length scales of
variation, and in order to validate it we will focus on the worst-
case scenario, i.e. situations of shortest observed length scales. We
thus set sarcomere radius and filament lengths (and consequently
overall sarcomere length) to take their smallest observed values;
these have been added to Table 1.

2.4.3 Variable parameters: contractions; M disk; packing
ratio. With all biophysical parameters set, we vary in our
investigation the level of contraction, a � 1 � L1/L2, between
states of extreme contraction (a large) and extreme relaxation (a
small), thereby considering the full range of possible values for
the lengths of the three regions. We expect states of extreme
contraction or relaxation, both of which lead to the presence of
short regions, to produce the least accurate agreement with the
full numerical computations. In reality, sarcomeres do not
typically contract over the full range, although contractions of
hundreds of nanometres are observed even in small
sarcomeres.34,35 We also consider the presence or absence of
the M disk, and cases of differing packing ratios.
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2.4.4 Permeabilities and traction parameter b. Thanks to
the aforementioned constant filament radii and spacing, the
traction parameter b and the six (dimensional) Darcy perme-
abilities are constant for each packing ratio. While b is a truly
dimensionless parameter, the dimensional permeabilities each
have dimensions of length squared, and must be appropriately
non-dimensionalised to be used in eqn (16). Specifically, each
dimensional k( j)

8 (being a property of axial flow) should be
divided by L2, and each dimensional k( j)

> (being a property of
lateral flow) by R2, for dimensional sarcomere length L and
radius R. Therefore, despite each dimensional permeability
being independent of L and R, their non-dimensional counter-
parts in eqn (16) are not. As such, in order to present the
permeabilities in a succinct, dimensionless form, that does not
depend on L or R, we introduce new non-dimensionalisations
specifically for the triangular cells of Fig. 2F–H within which
the permeabilities are calculated. All lengths are scaled with the

triangle height, D10

� ffiffiffi
3
p

, so that the triangles now have a
dimensionless height of 1. The resultant dimensionless perme-
abilities have been computed in Appendix A and C, with b being
calculated in Appendix B, and these are listed in Table 2 for
packing ratios of 2 (left column), 3 (middle) and 5 (right). To
restore the permeabilities to their dimensional values, they
must be multiplied by D10

2/3. In order to use the permeabilities
in eqn (16), each k( j)

8 must then be divided by L2 and each k( j)
>

must be divided by R2. Therefore overall, to use the permeabil-
ities in Table 2 within eqn (16), each k( j)

8 must be multiplied by
D10

2/3L2, and each k( j)
> must be multiplied by D10

2/3R2. In
contrast, b is a truly dimensionless quantity that requires no
such treatment.

3 Fluid flux in sarcomeres

In this section, we apply our modelling approach to compute
the fluid flux in and out of contracting sarcomeres. Specifically,
we compute the predictions of our Darcy model and compare
them with results of full numerical computations obtained
using the finite element method (FEM) within COMSOL
Multiphysics,64 wherein the entire geometry of the sarcomere

is fully specified and the flow past the array of filaments is
explicitly calculated (see Appendix E for details).

It should be emphasised that the two approaches (Darcy vs.
FEM) are fundamentally different, with the latter considering
conventional fluid properties, and the former considering only
the bulk fluid properties; as such, we will need to average the
FEM data in order to compare with the Darcy model. Note that
the comparisons will be made using dimensional variables, to
help with application to biological systems. As we will see, the
Darcy model is able to accurately reproduce the bulk fluid flow
of the precise FEM computations in an averaged sense, serving
as a highly accurate, and far more time-efficient and less
resource-intensive, method of calculating the flow within the
sarcomere.

3.1 Illustrative example

3.1.1 Fluid flow. We start our comparisons between the
two models by focusing on the particular case of a sarcomere
with a packing ratio of 5 in the absence of an M disk (typical of
invertebrates9,12,14,15), at 50% contraction, i.e. a = 1 � L1/L2 =
0.5. To carry out a detailed comparison between the Darcy and
FEM approaches, we azimuthally average the FEM data and plot
the flux magnitude as a heat map, with arrows indicating
direction of flux. The results are shown in Fig. 3 with Darcy
predictions in Fig. 3A, and FEM numerics in Fig. 3B.

We observe excellent agreement between the two models, in
terms of the magnitude, direction and spatial distribution of
the flow. The striations in the FEM model, most visible in the
overlap region, correspond to the presence and absence of
filaments; these filaments cause fluctuation in the axial fluid
flux (but not the radial fluid flux) which are effectively averaged
out by the Darcy model.

3.1.2 Radial flux. Since the heat maps in Fig. 3A and B
alone do not offer a proper quantitative comparison between
the two models, we next compute the rescaled radial flux
against z at a number of fixed values of r and compare with
the average of the computational results in Fig. 3C. The Darcy
model accurately captures the radial fluxes across nearly all
values of r.

Some small quantitative differences can be observed. For
very small r, the model deteriorates somewhat; this represents
only a few percent of the entire sarcomere volume and is not of
practical concern. Some discrepancies are also seen for very
large r, as the periodic pattern begins to terminate. Specifically,
whilst the Darcy model considers a porous medium in a perfect
cylindrical geometry, the FEM model explicitly considers a
hexagonal lattice that must be fitted inside said cylinder. As
such, the lattice must be terminated as it approaches the outer
radial boundary. As a result, within the FEM model, there are
small regions near the outer radial boundary but still within the
cylinder for which the hexagonal lattice of filaments is absent.

Considering variation of z, the most noticeable discrepan-
cies between the porous media approach and the full simula-
tions appear near the interfaces between the regions of the
sarcomere, where the assumptions necessary for Darcy flow
break down, and near the no-slip condition at z = L, which

Table 2 Computed dimensionless axial and lateral permeabilities in the
three regions, as well as the traction parameter b, for packing ratios of 2, 3
and 5, using a triangle with height 1, see Fig. 2 and Appendix A, B, C. To use
these values in eqn (16), each stated value of k( j)

8 must be multiplied by
D10

2/3L2, and each k( j)
> must be multiplied by D10

2/3R2, where L and R are
the dimensional sarcomere length and radius, respectively (see main text
and Appendix A, C). All geometrical parameters are taken from Table 1

Variable

Packing ratio

2 3 5

k8
(1) 0.3729 0.3729 0.3729

k8
(2) 0.0728 0.0433 0.0247

k8
(3) 0.2038 0.1071 0.0759

b 0.6175 0.7127 0.7238
k>

(1) 0.1864 0.1864 0.1864
k>

(2) 0.0362 0.0212 0.00618
k>

(3) 0.0938 0.0435 0.00737
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cannot be precisely satisfied by the Darcy model. These create
short regions of disagreement, across thicknesses that are
about the size of the hexagonal cells.

3.1.3 Axial flux. We next consider the axial fluxes through
the sarcomere. Given the very good agreement of radial flux
illustrated in Fig. 3C, it follows from mass conservation that the
axial fluid fluxes should also agree in an averaged sense. This is
confirmed directly in Fig. 4, where the azimuthally averaged
FEM axial flux and the Darcy axial flux are plotted as functions
of r for select values of z. Overall we also find excellent
agreement at almost all values of r and z, with notable excep-
tions as discussed above. In particular, note that the fluctua-
tions of the FEM axial flux caused by the presence of the
filaments are averaged out by the Darcy model.

3.1.4 Lagrangian transport. Given this excellent agree-
ment, we can now use the Darcy model to compute and
consider the Lagrangian deformation of fluid particles within
the sarcomere. We numerically integrate (via a first-order
forward Euler scheme) the interstitial fluid velocity, u = U/F,
of the Darcy model to determine the deformation of marked
fluid elements over the course of a contraction. The results are
illustrated in Fig. 5 for sarcomere contractions of a = 5% (A),
25% (B), 50% (C), 75% (D) and 95% (E).

We observe that fluids in the thin and overlap regions
typically undergo very little deformation. Meanwhile the fluid
in the thick region undergoes large displacements and defor-
mations in both the axial and radial directions, with significant
axial compression and radial stretching of the fluid parcels,
and large radial efflux out of the sarcomere. Due to the
reversibility of Stokes flow, this fluid will be drawn back
(deterministically) into the sarcomere as it relaxes. This may
help to draw in useful substrates (such as ATP) during
relaxation.45 Furthermore, various metabolic processes occur
within the sarcoplasm, involving a variety of substrates with
uses and effects both inside and outside the sarcomere.52 Fluid
flow may beneficially redistribute these substrates, and in
particular may help rid the sarcomere of waste products (such
as lactate resulting from anaerobic respiration, and excess ADP
resulting from hydrolysis of ATP over prolonged activity) during
contraction. Interestingly, the axial compression of the fluid is
insufficient to keep the fluid parcels, that begin in the thick
region, in the thick region; the growing overlap region absorbs
much of this fluid. Similarly, much of the fluid that begins in
the thin region is pushed into the growing overlap region. Both
of these are likely to help advect useful substrates, such as ATP
and calcium ions needed for cross-bridging,31–33 into the over-
lap region. Importantly, advection of ATP is likely to be highly
impactful to sarcomere function, since the internal structure of
the sarcomere has been shown to impede ATP diffusion by
several orders of magnitude compared to free cytosol.65,66

Fig. 4 Comparisons of fluid flow between the Darcy and FEM models, for
a sarcomere at 50% contraction with a packing ratio of 5 in the absence of
an M disk. Plot of axial flux against r for the Darcy (red) and FEM (blue)
models, with z = 100, 300, 500, 700, 900, 1100, 1300 nm from bottom to
top. Axial fluxes have been individually rescaled to have the same max-
imum value of axial Darcy flux, to improve readability.

Fig. 3 Comparisons of fluid flow between the Darcy and FEM models, for
a sarcomere at 50% contraction with a packing ratio of 5 in the absence of
an M disk. (A) and (B) Heat map of fluid flux with arrows indicating direction
for Darcy (A) and FEM (B) models. Note that in A, the maximum flux
magnitude (found at the radial boundary, at the interface between regions
1 and 2) is approximately 1600 nm s�1, whereas the colour scale has a
maximum value of 1100 nm s�1; this is to improve readability of A and B,
and less than 0.1% of the domain surpasses 1100 nm s�1. (C) Plot of radial
flux against z for the Darcy (red) and FEM (blue) models, with r = 100, 200,
300, 400, 500 nm from bottom to top. Radial fluxes have been individually
rescaled to have the same maximum value of radial Darcy flux, to improve
readability.
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3.2 Analysis and comparisons of a variety of sarcomeres

Having established agreement between the Darcy model and
full numerical simulations in the above illustrative example, we
investigate in this subsection the impact of varying the nature
of the sarcomere. Specifically, we show a similar comparison in
the case of a sarcomere with a packing ratio of 3 in the absence
of an M disk at various stages of contraction in Fig. 6; this is the
case characteristic of invertebrate organisms.9,12,14,15 We also
show a similar result for a sarcomere with a packing ratio of 2
in the presence of an M disk in Fig. 7, here a situation relevant
to vertebrate sarcomeres.9,12,26–29,42,43

In both cases, we again observe overall excellent agreement
between the two models. When the M disk is present (Fig. 7),
some discrepancies are seen in its vicinity, all the more present
if the thick region is very small (limit of large contractions).
Despite this, the agreement between the Darcy approach and
the averaged numerics is essentially perfect at most values of r
and z.

We are now able to compare the properties of the flow
between the different sarcomeres. By examining Fig. 3, 6 and
7, we see that the radial efflux is low within the overlap region,
owing to the low permeability caused by the filaments, but is
typically greater in the thick and thin regions, a consequence of
the higher permeabilities. Generally speaking, the thick region

contributes the majority of radial flow out of the sarcomere –
the sarcomere contracts, and the thin filaments invade the
thick region, thus pushing fluid out of the sarcomere. A similar
argument of thick filaments invading the thin region (after an
appropriate change of frame) explains the significant radial
outflow occurring in the thin region. The radial outflow in the
thick region is most significant for higher packing ratios;
indeed, as the packing ratio increases, the relative importance
of the thin filaments increases. As such, the ‘plunger’ effect of
the thin filaments invading the thick region is effectively
increased, leading to a more significant radial efflux in the
thick region. Simultaneously, this increase in packing ratio
reduces the permeability in the thin region, thereby reducing
the radial efflux there. Predictably, this ‘plunger’ effect is most
evident near the interfaces with the overlap region.

Overall, we see that the Darcy model accurately predicts the
radial flux, and hence all fluid properties, for all levels of
contractions and sarcomere geometries. This agreement also
allows us to confirm, a posteriori, that the methods by which
the permeabilities were calculated (values in Table 2) were
correct, and hence, again in an averaged sense, the Darcy
model accurately determines the pressure and the interstitial
flow profiles between the filaments.

Fig. 5 Lagrangian deformation of marked fluid particles throughout a
sarcomere contraction, shown for contractions of a = 5% (A), 25% (B), 50%
(C), 75% (D) and 95% (E). Dashed black lines indicate interfaces between
the three regions.

Fig. 6 Radial fluid flux in a sarcomere with a packing ratio of 3 (cross-
section of overlap region illustrated on top left) in the absence of an M disk
at various stages of contraction, a = 5% (A), 25% (B), 50% (C), 75% (D), 95%
(E), showing the Darcy model (red) against the FEM model (blue). Each
figure shows five pairs of data sets, at r = 100, 200, 300, 400, 500 nm from
bottom to top.
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4 Discussion
4.1 Summary

The fluid flow past the many interdigitating filaments of the
sarcomere requires significant computational resources to cal-
culate accurately. In this paper, we demonstrated how to derive
a Darcy model that considers the sarcomere as an anisotropic
porous medium, and we compare its predictions with those of
full numerical (FEM) simulations.

The model gives a simple governing equation for the bulk
pressure P (eqn (5)) with further equations to obtain the bulk
fluid flux from this pressure (eqn (4)). The boundary conditions
valid in a full computational (FEM) model can be approximated
in the Darcy model, and force and flux balances allow for
appropriate interface conditions between the regions of the
sarcomere. The final solution for P is a truncated series
(eqn (16)) whose coefficients are easily calculated from these
boundary and interface conditions, by exploiting the orthogon-
ality condition between Bessel functions. In order to do this, we
calculate six permeabilities and the traction parameter b
(Table 2), which is done by adapting classical semi-analytic
schemes to triangles representing 1/12 of a hexagonal cell. The
calculated values for the permeabilities and b are then fed into

the equations for the coefficients (Appendix D). Having deter-
mined these coefficients, we can evaluate P and U at any given
point in the sarcomere practically instantly.

Overall, we obtain excellent agreement between the Darcy
and FEM models, with minor exceptions near the radial centre
and exterior radial boundary of the sarcomere, as well as near
interfaces and disks. The Darcy model therefore allows us to
calculate, with surprising accuracy, the fluid flow within the
sarcomere, in a vastly reduced amount of time. Indeed, the
FEM model required a multi-processor machine with specia-
lised software, taking around 24 hours to compute a particular
solution. Meanwhile, once the permeabilities are calculated,
the Darcy model can be computed using basic software in less
than a second on a simple laptop computer; the permeabilities
themselves can be calculated in less than a minute on the same
device.

4.2 Potential applications

In particular, this allows us to calculate the fluid flow easily in a
continuous range of contractions, enabling us to accurately
determine the time-evolution of the fluid within the sarcomere.
This allows us to study, both quantitatively and qualitatively,
the behaviour of the fluid flow, and consider how this may
affect the function of the sarcomere, such as by the transport of
substrates beyond that achieved by diffusion alone. A demon-
stration of this phenomenon is illustrated in Appendix F, where
preliminary results on substrate advection, reaction and diffu-
sion are shown.

Another potential application is in the calculation of viscous
drag or viscous energy dissipation as a result of fluid flow.
Importantly, these must be calculated at the pore scale, analys-
ing the semi-analytic flow profile to obtain a linear (though
anisotropic) relationship between pressure gradient (or fluid
flux) and viscous drag, and a quadratic relationship between
pressure gradient (or fluid flux) and viscous energy dissipation.
These can then be integrated over the sarcomere to obtain an
expression for the total drag force and total rate of doing work.
Alternatively, order-of-magnitude estimates can be obtained
using scaling arguments, with viscous drag per unit filament
surface area on the order of mu/l, and viscous dissipation rate
per unit fluid volume on the order of mu2/l2. Here u is a
characteristic fluid velocity (10�6 m s�1 (ref. 34–36)) and l is
the relevant length scale (i.e. the pore scale, 10�8 m). Even using
an upper estimate for sarcoplasm viscosity (being a few tens of
times that of water, O (10�2) Pa s67,68) we find that the viscous
drag experienced by each filament is at most O (10�14) N. This
figure was also classically obtained by Huxley, who additionally
noted that the total viscous drag experienced by the filaments
in the sarcomeres is several orders of magnitude smaller than
the forces muscles generate, and so is unlikely to be of
consequence.69 Viscous energy dissipation rate per unit volume
can be estimated either using the aforementioned direct scal-
ing argument, or simply by multiplying the viscous drag force
experienced by each filament by the contraction speed, and
accounting for the number of filaments per unit volume, and is
found to be at most O (102) W m�3. This is several orders of

Fig. 7 Radial fluid flux in a sarcomere with a packing ratio of 2 (cross-
section of overlap region illustrated on top left) in the presence of an M
disk at various stages of contraction, a = 5% (A), 25% (B), 50% (C), 75% (D),
95% (E), showing the Darcy model (red) against the FEM model (blue). Each
figure shows five pairs of data sets, at r = 100, 200, 300, 400, 500 nm from
bottom to top.
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magnitude smaller than the rate of energy metabolism from
ATP hydrolysis, being around 105 W m�3,52,70 and so is also
unlikely to be of consequence.

4.3 Versatility of semi-analytic solutions for flow within
periodic cells

The semi-analytic methods of calculating the fluid flow, and
hence the fluid flux and permeability, through the periodic
cells are highly adaptable. For example, whilst only three
possible packing ratios are shown in Fig. 2, packing ratios of
4, 6 and even 12 have been reported in biological sarcomeres.9

It is a simple matter to adapt the above methods to these more
exotic packing ratios, simply by placing thin filaments appro-
priately along the lower edge of the triangle (Fig. 2F–H).
Furthermore, the general method can be adapted to other
arrangements of filaments, such as a square arrangement
(e.g. as considered by Sangani & Acrivos71) by splitting the
traditional periodic cell into appropriate right-angled triangles.
In the case of a square arrangement, these would be isosceles
right-angled triangles. Since only one side of the triangle is
exposed to the boundary of the larger periodic cell (the other
two are simply lines of symmetry within the cell) only that
boundary can contain auxiliary filaments, making it a theore-
tically easy (though sometimes numerically cumbersome) mat-
ter to alter the numerical boundary conditions as appropriate
in the presence or absence of auxiliary filaments. Lastly, there is
nothing in our analyses that demands the thin filaments are of
equal size, or that all of the thin filaments are moving when
calculating the traction parameter b. This is not relevant for
sarcomeres, but could prove useful in other situations requir-
ing calculation of the flow past a complex periodic array of
(active) cylinders.

4.4 Limitations of the model sarcomere

The model studied in this paper (Fig. 1D) is a mathematical and
physical simplification of reality that allows us to demonstrate
the effectiveness of the Darcy approach to muscle flows, and a
number of potential improvements could be proposed.

Whilst myosin and actin are the two most abundant proteins
of the sarcomere, composing approximately 50% and 20% of
myofibrillar protein mass respectively,72,73 we did not include
the giant protein titin found in vertebrates, which makes up
around 10% of the myofibrillar protein mass.12,74 Titin has a
diameter of around 4 nm, and each titin molecule runs from
the M disk to the Z disk, via the thick filaments.75–78 Titin can
also bind to actin in certain places, though some of these are
uncertain,79–86 and it is unclear what precise shape the titin
molecules take in the thin region. Adding this to the fact that
there are believed to be six titin molecules per myosin half-
filament,87 we see that the presence of titin may have a non-
trivial effect on fluid flow within the thin region, and this could
be the basis of future work.

A further complication in the specific case of vertebrate
sarcomeres is that the thin region is often not a neat continua-
tion of the hexagonal geometry in the overlap region. The thin
filaments can become disorganised within the thin region, and

appear to ultimately bind with the Z disk in a square
arrangement.12,88,89 The resultant uncertainty in the permeabil-
ities within the thin region motivates a demonstration of how
the model can be applied to a continuous range of permeabil-
ities, which could be measured experimentally, without the
need to resolve the precise physical structure within the thin
region; we refer the reader to Appendix G for further details.

We finally note that in this work we do not focus on
cardiomyocytes (i.e. heart muscle cells) that contain branching
myofibrils whose radii can be as small as 200 nm,90–93 signifi-
cantly smaller than the 500 nm considered in Table 1. This
smaller length scale could impact the validity of the Darcy
model, and accounting for this should be the focus of
future work.

We hope that the simplicity of our Darcy approach, and its
agreement with full simulations, will encourage the further
development of porous media models for muscle
hydrodynamics.

Data availability

The MATLAB code and processed COMSOL data needed to
compute and verify the Darcy flow, and produce Fig. 3–7, have
been made freely available on GitHub.94

Conflicts of interest

There are no conflicts of interest to declare.

Appendices
A Calculating axial permeabilities

In this first Appendix, we apply and adapt a semi-analytic
method to calculate the axial flow induced by a constant axial
pressure gradient.95 The cross-section of the sarcomere seen in
Fig. 2A, of hypothetical radius 200 nm, consists of a hexagonal
filament lattice, as displayed in Fig. 2C–E, which shows packing
ratios of thin actin filaments to thick myosin half-filaments of
2, 3 and 5 respectively; note that this illustrates the lattice
within the overlap region, where both thick and thin filaments
are present. The lattices in the thick and thin regions are
obtained simply by removing the appropriate filaments. There-
fore, each region exhibits a hexagonal lattice. These hexagonal
cells can themselves be split into 12 right-angled triangles, seen
in Fig. 2F–H respectively, and reproduced for a packing ratio of
5 in Fig. 8. Note that, for all the packing ratios presented, and
any region of the sarcomere, the filaments present as sectors
occupying the vertices of these triangles.

These triangles within the lattice have dimensional height

H ¼ D10

� ffiffiffi
3
p

, but to ease these computations, we rescale the
triangle to have a height of 1. We also introduce temporary,
local polar coordinates (r,y), which notably are distinct from the
cylindrical polar coordinates used for the full sarcomere, and
these have been added to Fig. 8. Assuming that the pressure
gradient is entirely axial (i.e. along z), and varies over length
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scales much greater than the size of the triangle, we calculate
the flow w driven by a uniform axial dimensionless pressure
gradient of 1 by solving the resultant dimensionless Stokes
equation in the triangle

r2w ¼ @p
@z
¼ 1: (17)

We next apply a substitution w* = w � r2/4 and solve the
resultant Laplace equation in plane polar coordinates

@2w�

@2r
þ 1

r

@w�

@r
þ 1

r2
@2w�

@2y
¼ 0: (18)

We now assume that the length scale on which the applied
pressure gradient qP/qz changes is much larger than the size of
each triangle. Consequently, the axial flow profile in each
triangle and the three adjacent triangles is identical, after
appropriate reflections. Therefore, symmetry conditions man-
ifest along each edge of the triangle, qw/qn = 0. Note also the no-
slip condition w = 0 on the surfaces of the filaments. Thus we
obtain a boundary condition along each boundary, and the
problem is fully determined with a unique solution.

The solution to eqn (17) for the axial flow that satisfies the
symmetry conditions at y = 0 and y = p/6 is given by the
truncated series

w ¼ Aþ B logðrÞ þ r2

4
þ
XN
k¼1

Ckr
6k þDkr

�6k� 	
cosð6kyÞ: (19)

Once again, this value of N is temporary and distinct from
the value of N seen in eqn (16). We use Rthick to denote the
rescaled radius of the thick myosin filament. Within the thick
and overlap regions, applying w = 0 on the thick filament gives

w ¼ B log
r

Rthick

� �
þ r2 � Rthick

2

4

þ
XN
k¼1

Ckr
6k 1� r

Rthick

� ��6k !
cosð6kyÞ;

(20)

whilst in the thin region, regularity at r = 0 gives simply

w ¼ Aþ r2

4
þ
XN
k¼1

Ckr
6k cosð6kyÞ: (21)

Each of these solutions involves N + 1 coefficients, which we
determine numerically by applying the unused symmetry con-
dition on the lower edge, and the no-slip conditions on the thin
blue filaments (if present) via a least squares method. Upon
computing these coefficients, we have thus obtained a semi-
analytic solution for w.

Noting that the height of the triangle was rescaled to 1,

giving an area of 1
�
2
ffiffiffi
3
p

, and recalling that permeability is
defined as the ratio between fluid flux per unit area and
pressure gradient, we then calculate a dimensionless perme-

ability in each region k
ð jÞ
k ¼ 2

ffiffiffi
3
p

Fð jÞ, where Fð jÞ ¼
Ð
wð jÞdAð jÞ is

the total fluid flux through the triangle. The resulting values for
the dimensionless axial permeabilities of real sarcomeres (k( j)

8 ,
j = 1, 2, 3) are given in Table 2 in the main text. These
permeabilities must be re-dimensionalised to have the appro-
priate dimensions of length squared by multiplying k( j)

8 by H2,

where H ¼ D10

� ffiffiffi
3
p

is the original, dimensional height of the
triangle. To then incorporate these dimensional permeabilities
into eqn (16), they must be non-dimensionalised under the
same scheme as the sarcomere. Since each k( j)

8 refers to axial
flow, the appropriate scaling involves a division by L2, where L
is the dimensional sarcomere length. Therefore, each k( j)

8 in
Table 2 should overall by multiplied by D10

2/3L2 to be used in
eqn (16).

It should be noted that the least squares method is typically
more numerically robust if we rescale the terms of the semi-
analytic solution to not increase rapidly with n. For example,

since the maximum possible value of r is 2
� ffiffiffi

3
p

, we may rewrite
eqn (21) as

w ¼ Aþ r2

4
þ
XN
k¼1

~Ck

ffiffiffi
3
p

2
r

 !6k

cosð6kyÞ: (22)

Here, the value of N required to produce accurate results, as
given in Table 2, depends on the packing ratio and varies
between the regions of the sarcomere, as well as the particular
implementation of the least squares matching. In general,
retaining a few dozen terms allows for excellent accuracy, such
that the values given in Table 2 are accurate to the given
number of digits.

B Calculating the traction parameter b

With the axial permeabilities known, there remains the
task of calculating the value of the traction parameter b.
This may be done by adapting the axial flow solution from
Appendix A in the overlap region (since b exists only in the
overlap region), by removing the pressure gradient, and
replacing the boundary conditions on the thin blue
filament(s) with w = 1. The semi-analytic solution that
satisfies w = 0 on the thick filament r = Rthick and the
symmetry conditions qw/qy = 0 on the vertical edge y = 0

Fig. 8 Triangular domain, 1/12 of a periodic hexagonal cell, on which the
axial and lateral flow profiles are calculated, shown here for the overlap
region with a packing ratio of 5 (see Fig. 2). The triangle’s original height of

D10

� ffiffiffi
3
p

is rescaled (using a different non-dimensionalisation to that used

for the Darcy model) to 1. Polar coordinates (r,y), distinct from those used
for the Darcy model, are shown, with rescaled thick and thin filament radii
Rthick and Rthin indicated.
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and the hypotenuse y = p/3 is given by

w ¼ B log
r

Rthick

� �

þ
XN
k¼1

Ckr
6k 1� r

Rthick

� ��6k !
cosð6kyÞ: (23)

Again, the coefficients are determined numerically by a least
squares method, matching the remaining symmetry condition
along the lower edge, as well as the no-slip condition w = 1 on
the thin blue filament(s). We then calculate the value of b from

the flux, F ¼
Ð
wdA, as

b ¼ 2
ffiffiffi
3
p

Fð2Þ
F: (24)

Note that b requires no re-dimensionalisation. The resulting
values for b of real sarcomeres are given in Table 2 in the
main text.

C Lateral permeabilities

The lateral permeabilities are more complicated to
determine, but we can adapt a semi-analytic scheme, origin-
ally used by Sangani & Acrivos,71 who considered a hexagonal
array of cylinders of equal radii (i.e. our thick region)
as a series of repeating rectangles with quarter-circles in a
pair of opposite vertices. We could immediately apply this
method to the thick region, but in the other regions, the thin
filaments would render the method ineffective. However, by
considering additional symmetries not originally noted in ref.
71, we can significantly reduce the size of the domain and the
number of numerical boundary conditions, as well as generalise
the problem to the presence or absence of thick and/or thin
filaments.

To do so, we simultaneously solve for the two solutions
resulting from two orthogonal pressure gradients on the same
triangles illustrated in Fig. 2F–H, and reproduced for a packing
ratio of 5 in Fig. 8, thereby reducing the size of the domain on
which the solution is solved by a factor of six compared to the
original study.71 Within the thick region, there is only one
boundary condition that we must match numerically, com-
pared to three originally.71 Finally, we can include thin fila-
ments in any of the three packing ratios of Fig. 2C–H, and even
remove the thick filament, and can still solve the problem semi-
analytically.

As with the axial permeability calculations, we rescale the

triangle from a dimensional height of H ¼ D10

� ffiffiffi
3
p

to a dimen-

sionless height of 1, and we employ a temporary, local polar
coordinate system, (r,y), as in Fig. 8. We begin by identifying
the biharmonic equation for the streamfunction c, relating to
the vorticity o

r4c = �r2o = 0, (25)

which produces a velocity

u ¼ 1

r

@c
@y

er �
@c
@r

ey: (26)

On the surfaces of filaments, we have no slip, giving zero
normal derivative, qc/qn = 0. We also have zero tangential
derivative, qc/qt = 0, which we implement as c = const, where
the value of the constant is set by a flux condition. It will be
most convenient to universally specify the Darcy flux (i.e. flux
per unit area) to be 1, so the actual flux through the triangle
will depend on the direction of the pressure gradient. Speci-
fically, we set the flux across the triangle to be 1 for a

horizontal pressure gradient, and 1
� ffiffiffi

3
p

for a vertical pres-
sure gradient. We then consider four different directions for
the pressure gradient – one horizontal, one vertical, one
normal to the hypotenuse, and one parallel to the hypote-
nuse, with streamfunctions ch, cv, c> and c8 respectively. As
with the axial case, we assume that changes in rP occur over
length scales much larger than the size of each triangle,
giving symmetry conditions along the edges of the triangle,
dependent on the direction of the applied pressure gradient.
Whenever the pressure gradient is parallel to a side of the
triangle, we have qc/qt = o = 0 at that side boundary.
When the pressure gradient is normal to a side of the
triangle, we have qc/qn = qo/qn = 0 there. We relate the four
solutions by

ck ¼
ffiffiffi
3
p

2
cv �

1

2
ch; (27)

c? ¼
1

2
cv þ

ffiffiffi
3
p

2
ch: (28)

We apply boundary conditions on the hypotenuse for c8

and c>, as described above. Therefore, we have four
boundary conditions along the hypotenuse for cv and ch

together, leading to four conditions on each and every
boundary for the coupled system (cv,ch), which is hence
fully determined.

Complete expressions for the streamfunctions, for the three
regions of the sarcomere, with corresponding expressions for
vorticity and pressure, are provided in the following subsec-
tions. Note that, for any given pressure gradient, giving
streamfunction c in the triangles of Fig. 2F–H, we can use
appropriate superpositions of ch and cv (along with additive
constants) to determine the extension of the streamfunction to
the other triangles, and hence the entire hexagonal cell. Some-
what remarkably, we find that the solution in the entire
hexagonal cell is simply c extended to a domain of all y
between 0 and 2p.

Finally, the expressions for pressure allow us to determine
the dimensionless pressure change Dp over a length l through
the hexagonal cell, giving each permeability as

k
ð jÞ
? ¼ �

l

Dpð jÞ
: (29)
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As mentioned in the main text, the value of k( j)
> is independent

of the chosen direction for the applied pressure gradient. The
resulting values for the lateral permeabilities of real sarcomeres
(k( j)

> , j = 1, 2, 3) are listed in Table 2 in the main text. As with the
axial permeabilities, each k( j)

> must be multiplied by D10
2/3

to be re-dimensionalised. Since each k( j)
> refers to lateral flow,

they must then be divided by R2, where R is the dimen-
sional sarcomere radius, in order to have the same non-
dimensionalisation used for the sarcomere. This means the
k( j)
> in Table 2 must overall be multiplied by D10

2/3R2 to be used
in eqn (16).

C.1 Solutions in the thick and overlap regions. We obtain
solutions for the streamfunctions for horizontal and
vertical flow:

ch ¼A0r
3 1�2Rthick

2r�2þRthick
4r�4

� 	
cosðyÞ

þB0r 2logðrÞ�2log Rthickð Þ�1þRthick
2r�2

� 	
cosðyÞ

þ
X1
n¼1

Anr
6nþ3 ð6nþ1Þ�ð6nþ2ÞRthick

2r�2
�

þR12nþ4
thick r�ð12nþ4Þ

�
cos ð6nþ1Þyð Þ

þBnr
6nþ1 1�ð6nþ1ÞR12n

thickr
�12n�

þ6nR12nþ2
thick r�ð12nþ2Þ

�
cos ð6nþ1Þyð Þ

þCnr
6nþ1 ð6n�1Þ�6nRthick

2r�2þR12n
thickr

�12n� 	
� cos ð6n�1Þyð Þ

þDnr
6n�1 1�ð6n�1ÞR12n�4

thick r�ð12n�4Þ
�

þð6n�2ÞR12n�2
thick r�ð12n�2Þ

�
cos ð6n�1Þyð Þ;

(30)

and

cv ¼A0r
3 1�2Rthick

2r�2þRthick
4r�4

� 	
sinðyÞ

þB0r 2logðrÞ�2log Rthickð Þ�1þRthick
2r�2

� 	
sinðyÞ

þ
X1
n¼1

Anr
6nþ3 ð6nþ1Þ�ð6nþ2ÞRthick

2r�2
�

þR12nþ4
thick r�ð12nþ4Þ

�
sin ð6nþ1Þyð Þ

þBnr
6nþ1 1�ð6nþ1ÞR12n

thickr
�12nþ6nR12nþ2

thick r�ð12nþ2Þ
� �

� sin ð6nþ1Þyð Þ

�Cnr
6nþ1 ð6n�1Þ�6nRthick

2r�2þR12n
thickr

�12n� 	
sin ð6n�1Þyð Þ

�Dnr
6n�1 1�ð6n�1ÞR12n�4

thick r�ð12n�4Þ
�

þð6n�2ÞR12n�2
thick r�ð12n�2Þ

�
sin ð6n�1Þyð Þ:

(31)

These give vorticities

�1
4
oh ¼ 2A0rþ B0r

�1� 	
cosðyÞ

þ
X1
n¼1
ð6nþ 1Þ ð6nþ 2ÞAnr

6nþ1�

þ 6nR12n
thickBnr

�ð6nþ1Þ
�
cosðð6nþ 1ÞyÞ

þ
X1
n¼1
ð6n� 1Þ 6nCnr

6n�1�

þ ð6n� 2ÞR12n�4
thick Dnr

�ð6n�1Þ
�
cosðð6n� 1ÞyÞ;

(32)

and

�1
4
ov ¼ 2A0rþ B0r

�1� 	
sinðyÞ

þ
X1
n¼1
ð6nþ 1Þ ð6nþ 2ÞAnr

6nþ1�

þ 6nR12n
thickBnr

�ð6nþ1Þ
�
sinðð6nþ 1ÞyÞ

�
X1
n¼1
ð6n� 1Þ 6nCnr

6n�1�

þ ð6n� 2ÞR12n�4
thick Dnr

�ð6n�1Þ
�
sinðð6n� 1ÞyÞ:

(33)

We calculate dimensionless pressure analytically by noting
that qp/qy = rqo/qr:

�1
4
ph ¼ p0 þ 2A0r� B0r

�1� 	
sinðyÞ

þ
X1
n¼1
ð6nþ 1Þ ð6nþ 2ÞAnr

6nþ1�

� 6nR12n
thickBnr

�ð6nþ1Þ
�
sinðð6nþ 1ÞyÞ

þ
X1
n¼1
ð6n� 1Þ 6nCnr

6n�1�

� ð6n� 2ÞR12n�4
thick Dnr

�ð6n�1Þ
�
sinðð6n� 1ÞyÞ;

(34)

and

�1
4
pv ¼ p0 þ �2A0rþ B0r

�1� 	
cosðyÞ

þ
X1
n¼1
ð6nþ 1Þ �ð6nþ 2ÞAnr

6nþ1�

þ 6nR12n
thickBnr

�ð6nþ1Þ
�
cosðð6nþ 1ÞyÞ

�
X1
n¼1
ð6n� 1Þ �6nCnr

6n�1�

þ ð6n� 2ÞR12n�4
thick Dnr

�ð6n�1Þ
�
cosðð6n� 1ÞyÞ:

(35)
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C.2 Solutions in the thin region. In the thin region, the
solutions are different due to the regularity condition at r = 0.
We have

ch ¼ A0r
3 cosðyÞ þ B0r cosðyÞ

þ
X1
n¼1

Anr
6nþ3 þ Bnr

6nþ1� 	
cos ð6nþ 1Þyð Þ

þ
X1
n¼1

Cnr
6nþ1 þDnr

6n�1� 	
cos ð6n� 1Þyð Þ;

(36)

cv ¼ A0r
3 sinðyÞ þ B0r sinðyÞ

þ
X1
n¼1

Anr
6nþ3 þ Bnr

6nþ1� 	
sin ð6nþ 1Þyð Þ

�
X1
n¼1

Cnr
6nþ1 þDnr

6n�1� 	
sin ð6n� 1Þyð Þ:

(37)

These give vorticities

�1
4
oh ¼ 2A0r cosðyÞ þ

X1
n¼1
ð6nþ 2ÞAnr

6nþ1 cosðð6nþ 1ÞyÞ

þ 6nCnr
6n�1 cosðð6n� 1ÞyÞ;

(38)

�1
4
ov ¼ 2A0r sinðyÞ þ

X1
n¼1
ð6nþ 2ÞAnr

6nþ1 sinðð6nþ 1ÞyÞ

� 6nCnr
6n�1 sinðð6n� 1ÞyÞ;

(39)

and dimensionless pressures

�1
4
ph ¼ p0 þ 2A0r sinðyÞ þ

X1
n¼1
ð6nþ 2ÞAnr

6nþ1 sinðð6nþ 1ÞyÞ

þ 6nCnr
6n�1 sinðð6n� 1ÞyÞ;

(40)

�1
4
pv ¼ p0 � 2A0r cosðyÞ þ

X1
n¼1
�ð6nþ 2ÞAnr

6nþ1 cosðð6nþ 1ÞyÞ

þ 6nCnr
6n�1 cosðð6n� 1ÞyÞ:

(41)

D Boundary and interface conditions

The solution for the Darcy pressure is the truncated series of
eqn (16):

Pð jÞðr; zÞ ¼
XN
n¼1

Að jÞn eG
ð jÞ
n z þ Bð jÞn e�G

ð jÞ
n z

h i
J0 lnrð Þ; (42)

where J0 is the zero order Bessel function of the first kind, ln is

the nth zero of J0, and G
ð jÞ
n ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
ð jÞ
?

.
k
ð jÞ
k

r
. To identify the

values of the coefficients, we apply the boundary and interface
conditions (8)–(14) via the following orthogonality condition for
Bessel functions:96

ð1
0

rJ0 lnrð ÞJ0 lmrð Þdr ¼ 1

2
dm;nJ1 lnð Þ2: (43)

For each n, we define

In ¼
2
Ð 1
0rJ0 lnrð Þdr
J1 lnð Þ2

¼ 2

lnJ1 lnð Þ
; (44)

where we have evaluated the integral using the definition of
J0(x)

x2J 000 ðxÞ þ xJ 00ðxÞ þ x2J0ðxÞ ¼ 0; (45)

and the fact that J 00ðxÞ ¼ �J1ðxÞ. We hence obtain the
following equation for the coefficients, independently for each
value of n,

M

A1;n

B1;n

A2;n

B2;n

A3;n

B3;n

0
BBBBBB@

1
CCCCCCA
¼

0
0

bF2 þ 1� F3ð Þð ÞIn
F3 � bF2ð ÞIn

0
0

0
BBBBBB@

1
CCCCCCA
; (46)

where

M ¼

1 �1 0 0 0 0

0 0 0 0 eGn
ð3Þ �e�Gn

ð3Þ

kk1Gn
ð1ÞeGn

ð1ÞL1 �kk1Gn
ð1Þe�Gn

ð1ÞL1 �kk2Gn
ð2ÞeGn

ð2ÞL1 kk2Gn
ð2Þe�Gn

ð2ÞL1 0 0

0 0 kk2Gn
ð2ÞeGn

ð2ÞL2 �kk2Gn
ð2Þe�Gn

ð2ÞL2 �kk3Gn
ð3ÞeGn

ð3ÞL2 kk3Gn
ð3Þe�Gn

ð3ÞL2

eGn
ð1ÞL1 e�Gn

ð1ÞL1 �eGn
ð2ÞL1 �e�Gn

ð2ÞL1 0 0

0 0 eGn
ð2ÞL2 e�Gn

ð2ÞL2 �eGn
ð3ÞL2 �e�Gn

ð3ÞL2

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: (47)
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Provided with values for the permeabilities, we solve these
equations numerically for each n, thereby obtaining the coeffi-
cients A( j)

n and B( j)
n and hence the pressure P. However, it is

generally more numerically robust to write this system as

Pð jÞðr; zÞ ¼
XN
n¼1

~Að jÞn eG
ð jÞ
n z�Ljð Þ þ ~Bð jÞn e�G

ð jÞ
n z�Lj�1ð Þ

h i
J0 lnrð Þ;

(48)

where L0 = 0 and L3 = 1, with corresponding matrix equation

~M

~A1;n
~B1;n
~A2;n
~B2;n
~A3;n
~B3;n

0
BBBBBB@

1
CCCCCCA
¼

0
0

bF2 þ 1� F3ð Þð ÞIn
F3 � bF2ð ÞIn

0
0

0
BBBBBB@

1
CCCCCCA
; (49)

where the matrix M̃ is given by

Under these rescalings, both P and M̃ contain only terms that
are at most O (1) (or more accurately, O (n)), greatly improving
numerical accuracy. In practice, we find that the coefficients
Ãn

(3) and B̃n
(1) decay exponentially with n, whilst the remaining

coefficients decay like n�3/2. We find that, upon reaching n = 50,
all coefficients have decayed to less than 2% of that coefficient’s
peak value across all values of n, and the decay is usually
significantly greater than this, around 0.1%. From this, we
conclude that a truncation of N = 50 is sufficient to produce
accurate values for the pressure field, and hence the velocity
fields.

E FEM computations

The full computations (finite element method) were performed
dimensionally within COMSOL Multiphysics Version 5.6,64

using a stationary study and creeping flow physics interface.
We used COMSOL’s option for a normal mesh size, with a
maximum element size of 47.4 nm, maximum element growth
rate of 1.15, curvature factor of 0.6 and resolution of narrow
regions of 0.7. However we manually reduced the minimum
element size to 6.5 nm, allowing filament cross-sections to be
approximated as octagons by the mesh. We applied no-slip
conditions on the surfaces of filaments and disks, and sym-
metry conditions at z = 0 when the M disk was absent. The Z
disk and thin filaments had a contraction speed of 1000 nm
s�1, and the dynamic viscosity of the fluid was set to that of

water at room-temperature, 0.001 Pa s, though both of these are
largely irrelevant due to linearity. Symmetry conditions allowed
us to consider only a 301 sector of the sarcomere. We approxi-
mated a stress-free far-field condition by extending the Z disk
and M disk boundaries (whether present or absent), and their
corresponding boundary conditions, to twice the sarcomere
radius, effectively producing a sarcomere with twice the radius,
but with filaments present within only the inner half-radius.
We then applied a stress-free condition on the enlarged outer
radial boundary.

F Advection–reaction–diffusion

Experiments have shown that diffusion of ATP inside the
sarcomere is surprisingly slow, with diffusive coefficient
estimated to be D E 2 � 10�15 m2 s�1, several orders of
magnitude lower than what would be observed in water.66

This is likely due to the dense ecology of substrates and

enzymes within the sarcoplasm.52,66 For contraction consis-
tent with human cardiac sarcomeres, this gives a relevant
Péclet number of Pe E 125, suggesting that advection has
significant impact on ATP distribution.9,34,35,42,90–93,97 We
model the reaction of ATP as occurring in the overlap region
only, and during contraction only. We quantify the reaction
using Michaelis–Menten kinetics, with reaction rate VmC/
(Km + C), where C is the ATP concentration, maintained at
10 mM outside the sarcomere, and Michaelis constants Vm =
1 mM and Km = 0.01 mM.66 We non-dimensionalised the
system, scaling all lengths with sarcomere radius R, and
scaling ATP concentration with the external ATP concen-
tration of 10 mM. We set boundary conditions C = 1 at r =
1, qC/qr = 0 at r = 0 and qC/qz = 0 at z = 0 and z = L, where L is
the dimensionless sarcomere length, and solved for the
evolution of the system using an advective grid method that
stretches with the sarcomere as it contracts and relaxes
sinusoidally, with continuity of both C and substrate flux
applied at interfaces between regions, until a periodic state
was reached. Comparisons between this periodic state, and
the state achieved in the absence of fluid advection, are
shown in Fig. 9 (A: no flow; B: advection by flow included)
at various stages of contraction (i, ii, iii). We clearly see that
the fluid flow significantly reduces the sizes of ATP ‘‘dead-
zones’’, i.e. regions of very low ATP concentration, and over-
all increases the average reaction rate by approximately 26%,

~M ¼

e�Gn
ð1ÞL1 �1 0 0 0 0

0 0 0 0 1 �e�Gn
ð3Þ 1�L2ð Þ

kk1Gn
ð1Þ �kk1Gn

ð1Þe�Gn
ð1ÞL1 �kk2Gn

ð2Þe�Gn
ð2Þ L2�L1ð Þ kk2Gn

ð2Þ 0 0

0 0 kk2Gn
ð2Þ �kk2Gn

ð2Þe�Gn
ð2Þ L2�L1ð Þ �kk3Gn

ð3Þe�Gn
ð3Þ 1�L2ð Þ kk3Gn

ð3Þ

1 e�Gn
ð1ÞL1 �e�Gn

ð2Þ L2�L1ð Þ �1 0 0

0 0 1 e�Gn
ð2Þ L2�L1ð Þ �e�Gn

ð3Þ 1�L2ð Þ �1

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

:

(50)
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representing a significant improvement in sarcomere activ-
ity. These preliminary calculations warrant further
investigations.

G Varying permeabilities in the thin region

In mammalian sarcomeres, the presence of the giant protein
titin and the disorganisation of the thin filaments within the
thin region may give pause for concern regarding the calculated
permeabilities k8

(3) and k>
(3). As discussed in the main text, a

semi-analytic calculation of these permeabilities would be
unfeasible, however they may be calculated numerically (pro-
vided sufficiently accurate physical models of the molecular

microstructure are available) or possibly measured experimen-
tally. To demonstrate the potential for the Darcy model to be
applied to this new system, we plot in Fig. 10 the total radial
efflux leaving the sarcomere, in each of the three regions (A, B,
C for regions 1, 2, 3 respectively), for the same sarcomere as in
Fig. 7c, consistent with mammalian sarcomeres, with the only
changes being variation of k8

(3) and k>
(3) from their standard

values in Table 2 by dimensionless factors ranging between 0.3
(making them comparable to the permeabilities in the overlap
region) and 2. These results demonstrate how the Darcy model
can be applied to a continuous range of parameters (as well as
highlighting the independence of the radial efflux in the thick

Fig. 10 Total dimensionless radial efflux in regions 1 (A), 2 (B) and 3(C) due to variations of k8
(3) and k>

(3) by factors between 0.3 and 2, compared to their
values in Table 2. The porosity F(3) in the thin region is fixed at its established value used in previous examples in the main text.

Fig. 9 ATP concentration over the course of a contraction, in a human cardiac sarcomere with no advection (A) and advection by the fluid flow (B).
Snapshots of ATP concentration are shown at low (i), intermediate (ii) and high (iii) levels of human cardiac sarcomere contraction. Horizontal axis
represents the dimensionless axial coordinate of the sarcomere, and the vertical axis represents the dimensionless radial coordinate. Dashed lines
indicate transitions between the key regions of the sarcomere, and reaction occurs in the middle region only.
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and overlap regions on the lateral permeability in the thin
region, k>

(3)). Importantly, the Darcy model can be applied to
any system with specified, even arbitrary permeabilities, with-
out the need to resolve the precise physical structure of the
filaments.
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