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Nonaffine motion and network reorganization
in entangled polymer networks

Saleh Assadi,a Samuel C. Lamont,a Nitin Hansoge, b Zhuonan Liu,b

Victor Crespo-Cuevas,b Fay Salmonb and Franck J. Vernerey *a

This paper presents a computational model designed to capture the mechanical behavior of entangled

polymer networks, described by dynamic and slideable cross-linking junctions. The model adopts a

network-level approach, where the polymer chains between junctions are represented by segments

exhibiting entropic elasticity, and the sliding of chains through entanglements is governed by a fric-

tional law. Additionally, the model incorporates stochastic processes for the creation and depletion of

entanglement junctions, dynamically coupled with sliding mechanics. This framework enables the

exploration of the time-dependent mechanical response of entangled polymers with and without

covalent cross-links. We apply this model to study the nonlinear rheology of such networks, linking

macroscopic stress–strain behavior to the underlying microscopic events within the network. The

approach is computationally efficient, making it a useful tool for understanding how network design

influences polymer performance in elasticity, rheology, and general mechanical features. This work pro-

vides valuable insights into the relationship between molecular-level interactions and the macroscopic

properties of entangled polymer systems, with potential applications in the design and optimization of

advanced polymer materials.

1 Introduction

It is now well established that the viscoelastic behavior of
polymers depends not only on the response of its constitutive
chains but also on the collective intermolecular interactions
between them. In particular, above the glass transition tem-
perature, entanglements between chains dominate molecular
deformation mechanisms over long timescales.1 Although they
can exhibit complex topologies, entanglements are often con-
ceptualized as transient (or sliding) cross-links, which strongly
constrain chain movement at fast loading rates but allow their
relaxation and flow over long time scales. The second half of the
20th century has seen major developments in understanding the
relation between structure, entanglement, and rheology, notably
with the seminal works of Green and Tobolsky,2 Edwards3 and
de Gennes.4 The effect of entanglements on viscoelasticity and
extensive ductility, however, is less understood. Yet, their role
is widely acknowledged in industrial applications, a notable
example of which is pressure-sensitive adhesives (PSAs) whose
design relies on using high molecular weight polymers with
low cross-link density for their superior bond strength. These
materials display a maximum fracture energy slightly above the

glass transition temperature in a regime where entanglements
dominate the deformation.5 Furthermore, recent evidence
shows that a proper ratio of entanglement to covalent cross-
links can yield soft materials with the ability to be highly
stretched without being ruptured or damaged6 since they can
redistribute the applied energy and dissipate it.

The critical role of entanglements on macroscopic response
is due to their role in mediating the complex, non-affine, and
time-dependent motion of polymer chains within a network.
In this context, the term ‘‘network’’ does not denote the
presence of covalent bonds but rather refers to an assembly
of polymer chains (the segments) that are entangled at discrete
junctions (the nodes). At the molecular scale, this phenomenon
is characterized by the snake-like sliding of chains through a
transient tube formed by surrounding chains,4 which leads to a
nonlinear and dynamic response to external forces. As chains
reptate, the local load-sharing mechanisms within the network
evolve, causing a shift from initial, relatively homogeneous load
distribution to a more complex, temporally variable pattern.
Thus, a chain in a fully entangled network may initially deform
with the surrounding medium but will eventually relax by
reptation.1 Collectively, this not only yields network-level stress
relaxation but also dissipates the localized tension in chains
over time, such that chain rupture events may completely
disappear at low strain rates.7 In addition to reptation,
localized events such as entanglements and disentanglements
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can introduce further local stress concentrations but also play a
crucial role in the permanent reorganization of the network
structure. As this reorganization is the source of permanent
(plastic) strains8 that are undesirable in most structural appli-
cations (for instance in PSAs), a small number of covalent cross-
links are often added to the network.9 In this case, cross-linking
points can preserve the long-term elasticity of the polymer6

while relaxation from reptation dynamics can delay damage
initiation.10 It is therefore not surprising that materials with a
high concentration of entanglements benefit from fracture
resistance and rate-dependent energy dissipation.11,12 The
interactions between entanglement dynamics and the force
transfer at covalent junctions is however poorly understood6

and constitutes a motivation for this work.
Although the mechanisms behind reptative relaxation and

delocalization may be intuitive, developing theoretical models
to describe their effects on stress re-distribution and molecular
structure is a challenging task. Perhaps one main reason for
this is that these mechanisms of structural re-organization are
inherently non-affine deformation modes.13–15 In other words,
classical models that assume microstructural motion is governed
by macroscopic motion do not apply.16,17 Instead, network
conformation is highly sensitive to local load transfer between
interacting chains. This calls for modeling strategies based on
an accurate representation of network topology and architec-
ture.18 The most direct way to introduce the details of these
effects is by performing molecular dynamics simulations.19–22

For instance, the work of ref. 20 aimed to study the relaxation
and chain retraction of an entangled network after a large step
uni-axial deformation by using the bead-spring model pio-
neered by Kremer and Grest.21 Coarse-grained molecular
dynamics, such as the theoretically informed coarse-grained
approach of Ramı́rez-Hernández et al.,23 have also been used
to explore the relaxation spectrum of entangled networks.
However, it should be noted that these simulations generally
suffer from prohibitive computational costs, limiting their use
to small physical domains (1–100 nanometers).

More efficient models, following theoretical concepts such
as the tube model and primitive path analysis, were developed
with even further coarse-grained descriptions to follow the
respective motion of chains and their tubes with Langevin-
type stochastic equations.23,24 This was quickly followed by full
network models in the early 2000s, particularly with the primi-
tive chain network of Masubuchi et al.25–29 and the slip-link
model by Doi and Takimoto.30 In these models, entanglement
points are seen as temporally cross-linked junctions (slip-links)
about which chains can reptate over time. The creation and
deletion of entanglement at the start and end of the tube may
then be handled using a Langevin equation. These approaches
were mainly used to explore the nonlinear rheology31 of various
types of polymers (linear and star-shaped), with various mole-
cular weights such as the works of de Pablo et al.32,33 In a more
recent work,34 a slip-spring-based mesoscopic simulation was
developed in which entanglements are modeled as slip-springs
that can hop between Kuhn segments of two chains. These
developments on modern mesoscale network models reflect

their promising usage for bridging small-scale physics and
network motion to better understand the mechanical behavior
of polymer materials.35

To further extend mesoscale simulations on entangled
systems and more accurately capture strain-induced local topo-
logical changes, we propose a discretized framework that
reflects physical mechanisms controlled at the individual chain
level. Our approach begins with a theoretical description of an
idealized network composed of entangled chains (without
crosslinks). We then construct a free energy functional and
employ energy minimization techniques to derive the govern-
ing equations for chain motion and reptation. Subsequently,
we establish a diffusion-based model for the creation of entan-
glements and disentanglements, where the local topology
of each chain dictates these events, as opposed to a globally
applied rule controlling the number of entanglements per
chain.25 In more detail, we have used the diffusion dynamics
of free dangling polymer chains to derive a governing timescale
for the hooking processes of dangling ends which are assumed
as Poisson processes. Finally, we implement the discretized
governing equations within a molecular dynamics framework
(using LAMMPS) and conduct a detailed analysis of stress
redistribution and network reorganization in entangled networks
during a uniaxial stress relaxation test. We illustrate our model to
capture non-uniform motion and modes of reptation, resulting in
network-scale defects that serve as initiation points for fracture or
cavitation.

2 Discrete model of entangled
networks

As depicted in Fig. 1A, entangled polymer networks are made of
long flexible chains whose motion is restricted by entangle-
ment junctions. Near these junctions, the steric hindrance
created by the densely packed polymer chains restricts their
ability to move freely, as bulky segments of one chain physically
block the movement of adjacent chains, limiting the conforma-
tional freedom of the polymer segments. This is conceptually
illustrated by the tube model,4,36 in which chains can only slide
through the tube-like regions formed by neighboring chains.
The crowded environment then makes it more difficult for
chains to disentangle or to move past each other, leading to
increased frictional interactions and an overall time-dependent
mechanical response of the material. This generally includes
stress relaxation and a pronounced visco-elastic behavior
whose characteristic timescale reflects the difficulty of chain
motion in the entangled state. In addition to chain reptation,
new entanglements may be formed while existing ones might
be lost. These events, denoted here as re-entanglement and dis-
entanglement, respectively, are discussed in more detail below.
These events induce topological changes in the network which
can create network defects that abruptly change network’s
mechanical properties.

To capture these coupled phenomena, we here propose a
meso-scale approach to model entangled polymer networks.
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The network exists in a two-dimensional region O C R2 whose
dimensions are much greater than the characteristic length-
scale of the polymer chains. We consider that each ‘branch’ of
an entangled chain (i.e., the portion spanning between two
entanglements or cross-links) acts as a constrained entropic
spring. The constraining network junctions are modeled by two
nodes connected by a rigid spring whose centerpoint is located
inside the region O A R2 (Fig. 1B). We note that these springs
are significantly stiffer than polymer chains and thus exhibit
very little deformation. Each node belongs to only one chain,
which facilitates tracking chain sliding as pertaining to a
unique polymer chain. We may, therefore, divide a single chain
into Nsubchain internal load carrying subchains constrained by
Nsubchain + 1 entanglements with two additional (dangling) end
subchains which are only constrained at one end. Within a
divided chain, we consider only the internal subchains as
storing elastic energy and do not explicitly model the location

of the dangling ends. We may then define a numbering scheme
that assigns an index i A {1, 2, . . ., Nsubchain} to each internal
subchain, which is, in turn, constrained by two entanglements
with indices i and i + 1, respectively. We may then refer to the
dangling ends as subchains 0 and Nsubchain + 1, respectively,
noting that their existence is accounted for to describe stochas-
tic dis-entanglement and re-entanglement events. The details
regarding chain elasticity, sliding dynamics, and stochastic re-
entanglement and dis-entanglement are discussed next.

2.1 Elasticity in entangled polymer tubes and resultant
junction motion

A network’s constitutive properties are inherently tied to the
force–extension behavior of its constitutive elements (i.e., the
subchains). We here assume that subchains can be modeled as
flexible Gaussian chains with a linear force–extension relationship
(Fig. 2A). A more realistic model, such as the Langevin chain

Fig. 2 Normalized free energy F* = F/kT plotted for a subchain with n = 100 Kuhn segments. Energy is plotted versus normalized end-to-end length
r* = r/bn, where r* = 1 is the contour length of the subchain. (A) Normalized elastic and volumetric energy contributions plotted versus normalized end-
to-end length. (B) Normalized total free energy and normalized tension f* = fb/kT are plotted, and the resting length r0 is shown on both plots.

Fig. 1 Physical depiction of an entangled polymeric network. (A) Schematic illustrating the topology of an entangled chain that can reptate in the
entanglement tube constrained by mechanical interlock of entanglements. It must be noted that only one chain is highlighted here, and each chain
can reptate through its entanglement tube. (B) Discretized depiction of an entangled network where the long chain is discretized to Nsubchain = 4
subchains (dangling ends are not visualized) and 5 entanglements.
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model,37 may also be considered to account for the finite
extensibility of polymer chains. Moreover, the enthalpic stiff-
ness of the polymer backbone may be incorporated when an
energetic damage criterion is desired,7,38,39 but at the expense
of increasing the model complexity. For this reason, we limit
our model to moderate chain deformations such that each
subchain remains in the linear elastic range (i.e. the end-to-end
distance of each subchain is much shorter than its contour
length). With the flexible chain model,40 the entropic elastic
free energy Fel

i of subchain ‘‘i’’ with ni Kuhn segments and end-
to-end vector ri takes the form

Fel
i rið Þ ¼

3kT

2nib2
ri
2; (1)

where ri = |ri|, k is Boltzmann constant, T is the absolute
temperature, and b is the Kuhn length. Furthermore, the end-
to-end vector is written in terms of the position vectors xi+1 and
xi of the adjacent junctions by ri = xi+1 � xi. To further account
for volume exclusion forces in the network that originate from
the inherent volume of Kuhn segments, the above potential is
enriched with a short-range repulsive potential preventing
chains from contracting to a single point.41 This contributes
the following volumetric elastic free energy Fvol

i for subchain i:

Fvol
i rið Þ ¼ kTb3

ni
2

ri3
: (2)

Note that while volume exclusion forces classically behave
isotropically (similar to pressure), they are here modeled as
an effective force between nodes that are connected by a
subchain (in a pairwise manner). Consequently, the force
qFvol

i /qri is always in line with the end-to-end vector ri of the
subchain. The total elastic free energy Fi of subchain i with ni

Kuhn segments can be written by combining (eqn (1) and (2)):

Fi ¼Fel
i þFvol

i ¼ kT
3ri

2

2nib2
þ b3ni

2

ri3

� �
: (3)

Fig. 2 plots both free energies versus the normalized end-to-end
length r* = r/bn of the chain (where bn is the contour length).
In this work, we present all numerical results in normalized
non-dimensional units to promote generality. Furthermore,
we consider lengths in units of the Kuhn length b and energies
in units of the thermal energy-scale kT. In practice, this equates
to setting kT = b = 1 for obtaining numerical results.

As depicted in Fig. 2A, the chosen energy potential creates a
force that repels the two ends of a subchain at a distance that is
determined by the chain length (or ni) (Fig. 2B). To calculate
this equilibrium point, we minimize F with respect to ri,
yielding ri

0 = bni
0.6, which confirms the dependency of the

equilibrium segment end-to-end distance with ni. The defini-
tion of the free energy further enables us to calculate the
tension force fi in each subchain by taking the derivative of
Fi with respect to the end-to-end vector ri as:

f i ¼
dFi

dri
¼ 3kT

1

nib2
� ni

2b3

ri5

� �
ri (4)

By setting fi = 0, we indeed confirm that subchains are tension-
free when r0 = bni

0.6 (Fig. 2B). The equation of motion for node i
can then be derived using a Langevin equation, previously used
by Masubuchi in ref. 25, and omitting the thermal noise term,
assumed here to be small. This gives for node with index i

P
fi � m :xi = miẍi, (5)

where mi is the mass of node i,
P

fi is the sum of the elastic
forces acting from connected subchains on the entangled node
pair, and m is the viscosity imposed by medium, which resists
the motion of an entanglement junction (Fig. 3B). At this
molecular length-scale, inertial forces miẍi are typically much
smaller than elastic and viscous forces such that the equation
of motion can be simplified to

m :xi =
P

fi = fi + fi+1 + fj + fj+1, (6)

Fig. 3 (A) Schematic representing a chain diffusing through it’s entanglement tube from a subchain with higher pressure of Kuhn segments to the
neighboring subchain with lower pressure. (B) Discretized representation of an entanglement formed between two chains at junction i � j. The free body
diagram shows the forces acting on entanglement pair by the subchains which are attached to them.
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where
P

fi is the sum of the tensions applied by subchains
connected to that entanglement, composed of the four sub-
chains depicted in Fig. 3B.

2.2 Viscous chain reptation through entangled junctions

Chain reptation describes the constrained motion of polymer
chains within a complex network of entanglements. The repta-
tion model was first introduced by Pierre-Gilles de Gennes4

based on the snake-like movement of the chains as they
navigate through this network, sliding along their length rather
than moving freely in three dimensions. In this model, a
polymer chain is effectively trapped within an imaginary tube
formed by the surrounding entanglements, thereby confining
its motion to one dimension. Importantly, the diffusion-like
motion of the polymer chain within its confining tube can be
described using the same diffusion coefficient as that of a free,
unentangled chain predicted by the Rouse model.1 In the
present model, this diffusion describes the transfer of mono-
mers from one side of an entanglement junction to the other
(Fig. 3A). For this, we introduce the variable _ni that measures
the rate at which monomers slide through junction i. This
variable is related to the rate of change :

ni in subchain i by the
conservation relation _ni ¼ _niþ1 � _ni.42

To calculate the flow of Kuhn segments through each
entanglement, we consider minimizing the total free energyP

Fi of the chain. We first define the volume Vtube
i of the i’th

segment, which can be estimated by multiplying its area by its
length ri. Using previous results showing that the diameter of a
tube with ni Kuhn segments scales with b

ffiffiffiffi
ni
p

,1 we can write:

V tube
i � pri

b
ffiffiffiffi
ni
p

2

� �2

¼ p
4
b2niri: (7)

Next, we consider that each Kuhn segment occupies the same
volume Vi within a chain. We may then express this volume as

Vi = Vtube
i /ni = pb2ri/4. (8)

We therefore find that the volume of a Kuhn segment is directly
proportional to the end-to-end vector of a subchain and is
independent of the number ni of monomers in this segment.
Considering reptation as a first-order thermodynamic process,
we may then describe the motion of monomers across a
junction using the relation

z _ni ¼ Pi �Pi�1; where Pi ¼
@Fi

@Vi
: (9)

In this equation, Pi can be interpreted as the pressure exerted
by the volume Vi of the Kuhn segment along subchain i, while
z is the sliding friction coefficient at the sliding junction. Thus,
the above equation describes a process where monomers slide
along a cross-linking junction from high to low pressure.
Equilibrium is reached when all Kuhn segments of each sub-
chain have the same volume Vi. This result can finally be used
to calculate driving potential Pi for the flow of Kuhn segments

through entanglement via eqn (9):

Pi ¼
4

pb2
@Fi

@ri
¼ 12kT

pb2
ri

nib2
� b3

ni
2

ri4

� �
: (10)

We note that this pressure quantity is exactly equal to the
magnitude of tension (eqn (4)) divided by pb2/4 in each subchain.
In other words, the motion of monomers through entanglement
junctions is driven by the tension difference between adjacent
segments. Interestingly, a similar rule was previously empirically
postulated by Masubuchi et al. in ref. 25. However, here we can see
that reptation rate of monomers will be slowed down by having
larger Kuhn segments.

2.3 Disentanglement and re-entanglement

In contrast to reptation, which describes the motion of chains
within an existing network, entanglement/disentanglement
dynamics involve changes in the network topology itself.
We here describe how each of these mechanisms is accounted
for in the network model. A simple study exemplifies each case
to illustrate the conditions and implementation of the dynamic
entanglement process.

2.3.1 Disentanglement. When a polymer chain is stretched,
different segments experience varying degrees of elongation,
creating a force imbalance across entanglement points. This
variation in tension causes the chain to slide through the
entanglement until it is completely disentangled. A disentan-
glement event therefore occurs when a sliding junction is
removed, allowing the chains to move more freely. To illustrate
how the proposed model captures this mechanism, let us
consider a subchain fixed at one end and entangled with
another fixed point at its other end (see Fig. 4A). The chain is
assumed to initially possess n0 Kuhn segments. On the other
side of the entanglement, the chain possesses a dangling end
characterized by nres Kuhn segments in its initial state. Let us
then take the system out of equilibrium by subjecting the inner
subchain to a prescribed level of stretch l = r/r0 at stretch rate _l,
up to a maximum value lmax. Deformation is ceased afterward
(i.e., _l = 0) to allow for relaxation. It can easily be shown (see
Appendix A) that the dangling chain will eventually slip out of
its entanglement point when the maximum stretch is above the
critical value lcrit given by:

lcrit ¼
nres

n0
þ 1

� �0:6

: (11)

The model predicts that if the maximum stretch remains below
the critical stretch lcrit, the subchain is expected to gradually
relax its tension by reptation and stop sliding before a disen-
tanglement occurs (Fig. 4). Conversely, if the stretch exceeds
lcrit, disentanglement will occur. With this said, we note that
reptation is a rate-dependent process imposed by the friction
parameter z. Thus, the subchain might exceed critical stretch
before occurrence of disentanglement or it might disentangle
exactly as it is stretched to critical stretch.

To illustrate this point, we consider stretching a chain at
a rate _lfast faster than sliding and at a rate _lslow slower than
sliding. Noting that the sliding coefficient z has units of
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viscosity (pressure � time), we may set the sliding timescale,
t = zb3/kT in units of our characteristic length- and energy-
scales. Then, ‘fast’ loading rates correspond to _l Z 1/t and
‘slow’ loading rates correspond to _l o 1/t. With this in mind,
we may choose instead to characterize the loading rate by the
non-dimensional strain rate number, Y, which is defined as:

Y ¼ _lt ¼ z _lb3

kT
: (12)

With this definition, Y Z 1 corresponds to a fast deformation
relative to reptation, and elastic energy will be stored in sub-
chains. In contrast, Yo 1 implies a relatively slow deformation
such that the system remains close to equilibrium as it is
deformed. One might notice that here the size of Kuhn length
is also affecting this competition. As is also shown in eqn (10),
the larger the Kuhn segments, the slower the rate of sliding.
This can be explained by the fact that reptation is fueled by
monomer diffusion through entanglement junctions, which
occurs at a slower rate for larger Kuhn segments.

In Fig. 4, we consider stretch rates of _lfast = 1/t and _lslow =
0.01/t, corresponding to Y = 1 and Y = 0.01, respectively.
We then consider three maximum stretch values of lmax =
1.2, lmax = 1.5, and lmax = 1.8. By looking at tension over time
curves (Fig. 4B and C), we see that disentanglement can occur
both during or after deformation phase which depends on
stretch rate. When the subchain is stretched slowly (Fig. 4C),
there is enough time for reptation such that the subchain
remains close to equilibrium during deformation. In this
condition, disentanglement occurs immediately as the stretch
reaches lcrit (sub-plot in Fig. 4C). By contrast, if deformation is
imposed rapidly (Fig. 4B), reptation does not have enough time
to equilibrate the tension between segments, allowing the
chain to temporarily reach a stretch l 4 lcrit during the
deformation phase. The model therefore predicts that disen-
tanglement takes place during relaxation phase under this
condition.

2.3.2 Re-entanglement. The creation of new entanglement
can arise randomly from the diffusion of chains through space,
where they can become intertwined with neighboring chains.25

This process can be assisted by network deformation, wherein
the forced motion of chains causes them to slide past one
another and become entangled. Therefore, unlike disentangle-
ment, the creation of new entanglements is a stochastic process
that is highly dependent on the local configuration and motion
of the chains with respect to their neighbors. In the proposed
model, entanglements can only occur between a dangling end
and a neighboring subchain (Fig. 5A). An entanglement event is
then modeled as an independent stochastic Poisson process
with an average rate of kent.

43 We can, therefore, compute
the probability of entanglement creation during each discrete
timestep of simulation (Dt) as

Pent = 1 � e�kentDt. (13)

This exponential probability density function is originally
expressed in differential form as dPent = kente

�kenttdt. By inte-
grating this probability density over the time-span of one
discrete timestep Dt, we will find eqn (13). This equation,
describes the cumulative probability for creation of an entan-
glement after one discrete timestep Dt. Let us now seek an
equation to relate the number of Kuhn segments nres in the
dangling ends to the rate kent of stochastic re-entanglement. For
this, we consider two contributions to the characteristic time-
scale tent = 1/kent of entanglement: (i) the diffusive timescale
tdiff and (ii) the ‘hooking’ timescale thook. The ‘hooking’ time-
scale is interpreted as the finite amount of time required for
segments within the entanglement distance to become inter-
twined. In this study, we consider thook to be a constant model
parameter that does not depend on the distance between the
dangling end and the proposed entanglement section.

The diffusive timescale can be expressed using the Einstein
relation,40 wherein the characteristic timescale of diffusion tdiff(d)
over a distance d may be approximated as tdiff(d) E d2/Dchain,

Fig. 4 (A) Schematic displaying a subchain initially at rest with n0 = 100 Kuhn segments, which is entangled at one end and attached to a reciprocal
link at the other end. The neighboring dangling end also has nres = 100 Kuhn segments. (B) Normalized tension f* = fb/kT plotted versus normalized time
t* = tkT/zb3 for loading at a fast strain rate with respect to sliding _l = (kT/zb3). (C) Normalized tension f* plotted versus normalized time t* for loading at a
slow strain rate with respect to sliding _l = 0.01(kT/zb3). In both cases critical stretch is equal to lcrit = 1.52.
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where Dchain = kT/mnres is the diffusion coefficient for the
dangling end subchain.1 Since dangling ends are tension-free,
they most likely reside at their rest length r0 = bnres

0.6 and are
unlikely to diverge from this length due to strong volumetric
exclusion. We can, therefore, assume that dangling ends need to
diffuse a distance of d � bnres

0.6 to reach their target subchain.
With this said, when d � bnres

0.6 approaches the contour length
of the polymer chain, its diffusion is greatly hindered by non-
linear entropic elasticity.1 We, therefore, normalize the diffusion
time by the quantity (bnres � d)�1, making it impossible to
diffuse over a total distance greater than its contour length.
The timescale of diffusion can then be expressed as

tdif nres; dð Þ � mnres
kT

d � bnres
0:6

� �2� bnres � dð Þ�1: (14)

Finally, we may express the entanglement rate kent as a function
of the distance d between the dangling end and the proposed
entanglement junction and the number nres of monomers in the
dangling end to be

kent nres; dð Þ ¼ 1

tdif nres; dð Þ þ thook
(15)

To illustrate this stochastic event, let us consider the situation
depicted in Fig. 5A, where a dangling end with nres = 100 Kuhn
segments originates from a fixed location at a distance d from a
potential target subchain. We then assess the model prediction
regarding the time t for an entanglement event to take place
between those subchains. Due to the stochasticity of this mecha-
nism, the results are expressed as the probability density Pent of
occurring at a specific time. The data shown in Fig. 5B is the
result of 104 simulations used to record the time at which re-
entanglement happens. Results confirm that the probability Pent

follows a Poisson distribution consistent with eqn (13). To assess
the dependency of this distribution with distance d, this exercise
was repeated for three values of d. Results show, as expected,
that smaller distances (d = 0.1bnres) are associated with shorter
mean entanglement times while larger distances (d = 0.9bnres)
increase this time until the entanglement event may even no
longer take place. The resulting probability densities can be

verified by the theoretical curve explaining the Poisson process,
which is the exponential distribution expressed as

Pent = kente
�kentt. (16)

By plotting the exponential distribution curves it can be seen that
results from the stochastically implemented model, match well
with the exponential distribution of each case of simulation.

3 Modeling polymer networks

In this section, the previously introduced physical laws are
incorporated into a discrete meso-scale model. We consider
finite two-dimensional periodic domains, wherein the motion
of entanglement junctions is governed by eqn (6), and sliding
dynamics are described by eqn (9). The network is generated
using a random walk method to capture the stochastic behavior
of polymer chain configurations, following the approach out-
lined by Doi.40 Implementation details are provided, along with
a simulation that visualizes the evolution of the network and
the resulting mechanical response.

3.1 Network generation

In this study, we focus on the generation of two-dimensional (2D)
networks through a series of computational steps to achieve an
equilibrium state. The process begins with the creation of an
initial network using a discrete random walk method44 on an
Ncell� Ncell grid, where each cell has dimensions of lcell� lcell. The
total number of chains, Nchains, is defined by

Nchains ¼
2 Ncell � lcellð Þ2

Nsubchain þ 1
; (17)

and each chain is represented by a random walk consisting
of Nsubchain steps, as illustrated in Fig. 6A. The random walk
is initiated from a randomly selected cell, and subsequent
steps are taken randomly to neighboring Moore cells45 until
the subchains for that chain are fully generated. During this
process, the random walk is constrained such that it cannot
intersect it’s previous cell. This operation is repeated for all

Fig. 5 (A) Schematic representing a section of a network where a dangling end with nres Kuhn segments is diffusing in space around it. The grey rings
show the probability of finding the chain at each radius, and no dangling end subchain can diffuse to a distance larger than bnres. (B) The probability
distribution of entanglement creation Pent is plotted over normalized time t* = tkT/zb3 for a dangling end with nres = 100 and a potential subchain at
distance d. Dashed curves are the theoretical distribution given in eqn (16).
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chains, with the total number of chains (or chain density)
determining the number of separate random walks generated
on the grid. Following the initial network generation, entangle-
ment junctions are identified at points where two chains
intersect, involving exactly two nodes. To prevent overlapping
entanglements, the random walk is restricted from selecting
Moore neighbor cells that are already occupied by two nodes
(i.e., where an entanglement is already present). For simplicity,
this study focuses on mono-disperse networks, where all sub-
chains have an equal number of Kuhn segments, NKuhn. After
constructing the network, energy minimization is performed
to bring the system to a global equilibrium state before con-
ducting stress relaxation simulations.

3.2 Numerical scheme and energy minimization

To perform energy minimization during discrete time steps,
both for the initial network equilibration and throughout the
simulations, it is necessary to numerically integrate the dis-
placement of nodes and the reptation of chains through each
entanglement node pair. Defining equilibrium requires quan-
tifying the stress at the network scale, which is determined
using the virial formulation given by:46

sij ¼
1

2V

X
ri � tj ; (18)

Where V is the volume of the domain, and the sum is taken over
all the bonded interactions per node. Here, the inertial term of
the virial stress is not considered since the overdamped
assumption implies that the nodes’ inertia is negligible. Now
we can define the equilibrium as sij o wTOL, where wTOL is a
numerical tolerance. In this work, we use wTOL = 1 � 10�6(kT/b3).
Finally, to perform the energy minimization, we integrate the
position of nodes (eqn (6)) and flow of Kuhn segments (eqn (9))
using the discrete forward Euler method whose details are found
in Appendix B.

In Fig. 6B, we illustrate three snapshots of a network as
generated, during minimization, and at equilibrium. The net-
work includes Nchains = 800 chains, each having Nsubchain = 4
internal subchains and two dangling ends. Regarding Kuhn
segments, we have set NKuhn = 150 for internal subchains and
NKuhn = 100 for dangling ends. The network is generated on a
two-dimensional periodic square domain with length 800b with
an area equal to the combined area of all Kuhn segments.
In each snapshot, subchains under high tension are illustrated
in black and they are shown thicker. To assess the topology of
the network, we present two-dimensional histograms (Fig. 6B)
of the normalized components of the end-to-end vector, r�x ¼
rx=b and r�y ¼ ry

�
b, at each phase. To capture the local stresses

in an average manner, we have also plotted radial force density
plots in which the normalized average force components,

Fig. 6 (A) Random walk procedure for the red subchain where it has chosen a random start point as the initial entanglement. As it can be seen it takes a
step to one of the Moore neighbor cells randomly and this continues for each chain until full walking of the network. A chain cannot walk to previous cell
or the cells that are already occupied by two nodes. (B) Snapshots of generated networks immediately after generation and during equilibration, where color
map shows the magnitude of tension in subchains. The generated network initially exhibits numerous black subchains, indicating regions of tension.
Upon reaching equilibrium, these subchains transition to a light grey color, signifying their relaxation into a rest state. Also the radial force density plots and
end-to-end vector distributions are shown for each stage. These plots can help to capture local stresses and strains in addition to the total virial stress.
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f �x ¼ fxb=kT and f �y ¼ fyb
�
kT , of the subchains oriented in each

radial plane section is calculated and plotted. The gray-scale
color map is based on the normalized population of each radial
section (i.e., the number of subchains oriented in the range of
the section divided by a maximum number of subchains
between all planar sections). The progression of each of these
quantities illustrates the path from a randomly generated
initially out-of-equilibrium network to one that is in internal
equilibrium. In the network snapshots, we see that chains have
faded from black (high tension) to light grey (no tension), and
the entanglement junctions have become more randomly dis-
tributed in space. From the histograms, we see that each end-
to-end vector has approached its resting length r0 = bNKuhn

0.6

and is uniformly distributed in all directions. Finally, we see
that the forces vanish in the radial plots, indicating that all
subchains are force-free. In subsequent network illustrations,
we omit the scale bars and legends from the histogram and
force density plots to prevent overcrowding. Note that, in all
presented results, the scale bars are kept constant for compar-
ison. We next present the basic mechanical response of an
entangled network undergoing stress relaxation.

3.3 Basic mechanical response during stress relaxation test

The discrete numerical schemes presented in the previous
section were implemented as a custom ‘fix’ in the LAMMPS
molecular dynamics codebase.47 In this section, we illustrate its
basic modeling capabilities by considering a fully entangled
network subject to stress relaxation conditions. The custom-
developed numerical scheme is capable of modeling both
three- and two-dimensional networks (Fig. 7). However, due
to computational cost of three-dimensional simulations and
because similar trends are effectively captured regardless of
dimensionality, the remainder of this work exclusively focuses
on two-dimensional networks. The two dimensional entangled
network is generated with Nchains = 800 where each chain
consists of Nsubchain = 4 subchains (divided by 5 entanglements)
and each subchain has NKuhn = 150 Kuhn segments. The
network is generated on a periodic square domain with initial

length of 800b. The coefficient for medium viscosity is set equal
to m = 10�2zb, and it must be noted that medium viscosity here
is chosen so that characteristic timescale of viscous motion of
entanglements is much smaller than simulation timestep. The
discrete timestep is set equal to Dt = 10�6(zb3/kT). After equili-
brating the network, we stretch the domain uni-axially with
non-dimensional strain rate value of Y = 1 up to twice its initial
length (e11 = (LO � LO0

)/LO0
= 1) in an isochoric manner (Fig. 8).

In the second phase, a relaxation regime ensues, during which
stretch is held constant until a new equilibrium state is
achieved. In Fig. 8A, we plot the normalized tensile stress s�11 ¼
sb3
�
kT versus normalized time t* = tkT/zb3 during the experi-

ment. Five representative moments during the simulation are
chosen (labeled 1–5) as indicated, and snapshots of the network
configuration at these times are illustrated in Fig. 8B. Histograms
of the end-to-end vectors and force density plots, as defined in
Fig. 6, are plotted at these times in Fig. 8C. During loading, we see
an initial rise in stress as chains begin storing elastic energy in
response to the deformation. The plateau just before point (2)
indicates that a significant number of disentanglements occur as
the reserve of many dangling ends is depleted. As indicated in the
histograms and force distribution plots, we observe a high degree
of alignment of chains with the loading direction, as would be
expected in a flexible polymer network.

During the relaxation phase, two mechanisms work together
to dissipate energy: (i) the reptation of segments from the
dangling ends into the elastic subchains and (ii) disentangle-
ment events. In the first process, segments flowing out of the
dangling ends and into the elastic subchains leads to a larger
contour length of the elastic subchains, which, in turn, leads to
a softer response. Thus, the reptation of segments releases
elastic energy by effectively softening the entropic springs
of chains that are in tension. In contrast, disentanglement
events completely dissipate all elastic energy that was stored
in chains connected to the disentangled node. The insets of
Fig. 8B highlight a disentanglement event occurring between
time 2 and time 3. As each node in our network represents an
entanglement junction, the network eventually releases all

Fig. 7 Stress relaxation test is performed on a three dimensional network. The greyscale color map of the chains is representative of tension in each
chain where white chains are tension free and black ones are mostly tensioned.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
21

/2
02

5 
12

:1
9:

39
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm01278j


This journal is © The Royal Society of Chemistry 2025 Soft Matter, 2025, 21, 2096–2113 |  2105

stored elastic energy as t* - N as indicated by the vanishing
stress and chain tension. In a network with covalent cross-
links, some long-term elasticity would be maintained, as
explored in the next section. Interestingly, we observe in panel
4 that the final resting configuration of the network is aniso-
tropic, as indicated by the histogram. While this may reflect the
alignment of polymer chains during the deformation, we
acknowledge that the periodic e1 dimension has increased
during the deformation with respect to the periodic e2 dimen-
sion, which could induce sampling bias in our calculation.
Nonetheless, we do observe the existence of aligned ‘pockets’
even in the long-term equilibrium state. The observed aniso-
tropy in the final equilibrium state, and the inability to capture
chains retracting to their initial configuration, arises from the
inclusion of volume exclusion effects of Kuhn segments within
the chain energy expression (eqn (3)). This approach is not the
most accurate representation of volumetric forces, as such
forces are inherently many-body interactions. Specifically, volu-
metric interactions occur between all Kuhn segments across all
subchains, rather than being limited to a single subchain.
Consequently, the chains relax to a non-zero end-to-end dis-
tance determined by the number of Kuhn segments in each
chain. While it is theoretically possible to introduce thermal
fluctuations into the simulations, doing so would not resolve
the anisotropy in the final configuration. This limitation stems
from the combination of a volumetric force, which inherently
acts isotropically in all directions, with a chain force modeled
as a one-dimensional interaction. To overcome this limitation,
we are actively developing a multi-body potential framework
that can more accurately capture volumetric interactions. This
approach would enable interactions between Kuhn segments to
be modeled in a more realistic manner, leading to chain
retraction and a uniform final configuration.

4 Results

With the foundational framework now implemented, we can
investigate the influence of network architectural parameters
on the macroscopic mechanical response and network reorga-
nization. As described in Section 3.1, the number of subchains
per chain, Nsubchain, serves as an input parameter for the network
generator, effectively representing chain length. Furthermore, we
examine entangled networks in which a fraction of the entangle-
ments, pcovalent, are covalently locked. The proportion of covalent
cross-links ranges from pcovalent = 0%, representing a fully
entangled network, to pcovalent = 100%, which corresponds to a
fully cross-linked network. This framework allows us to study the
effects of chain length and covalent cross-linking on macroscopic
stress, local strains, and forces by conducting stress relaxa-
tion tests across various networks, systematically varying each
parameter.

4.1 Network re-organization and stress relaxation

As observed in Fig. 8C, the length and orientation distributions
of subchains change throughout the stress relaxation test, as

demonstrated by the histograms of end-to-end vectors. During
deformation, subchains aligned approximately in the direction
of the applied strain experience the greatest elongation. Force
density plots indicate that these subchains bear the majority of
the load, while subchains oriented perpendicularly to the
deformation carry minimal force. However, during the relaxation
phase, the stretched subchains pull additional Kuhn segments
from less stretched neighboring subchains, eventually relaxing to
a new equilibrium state. This behavior is confirmed by the force
density plots, where all energy is dissipated (force is fully relaxed),
leaving no subchains under tension. The reorganization observed
during relaxation is primarily driven by reptation, disentangle-
ments, and re-entanglements. Reptation continues until tension
is eliminated in all subchains, allowing fully entangled networks
to redistribute stress and dissipate the stored elastic energy. In the
following, we first examine the effect of strain rate, demonstrating
that entangled networks can exhibit a range of stress responses,
from elastic solid-like behavior to viscous fluid-like behavior,
depending on the rate of deformation. Subsequently, we will
investigate the influence of the two architectural parameters
introduced earlier on the network’s mechanical response.

4.1.1 Effect of strain rate. As shown in Fig. 9, three stress
relaxation simulations were conducted at different strain rates:
Y = 1.00, Y = 0.25, and Y = 0.1 on the same fully entangled
network discussed in Section 3.3. In each simulation, the
network domain is deformed up to twice its initial length
(e11 = 1) under isochoric conditions. The normalized uni-axial
component of the resulting virial stress, s�11 ¼ s11b3

�
kT , is

plotted against normalized time, t* = tkT/zb3, for each simula-
tion (Fig. 9A). The results reveal that the stress response is
highly dependent on the applied strain rate. When deformation
is applied relatively quickly (black curve), the network exhibits
behavior resembling that of an elastic solid. As the strain rate
decreases (gray curve), the network’s stress response becomes
more characteristic of a polymer melt. The observed rate
dependency arises from the time-dependent nature of repta-
tion, which operates on a specific timescale t = zb3/kT deter-
mined by the friction coefficient. When the network chains are
stretched slowly relative to this timescale, reptation has suffi-
cient time to dissipate the stored elastic energy concurrently
with deformation, resulting in a lower stress. Conversely, when
the network is deformed rapidly, reptation cannot keep pace
with the deformation, leading to higher stress at the end of the
deformation phase. To analyze network reorganization, local
strains and forces were examined through end-to-end vector
histograms and force density plots at the end of the deforma-
tion phase for each simulation. Our results indicate that, under
fast deformation, slightly larger local strains are imposed on
subchains, particularly those oriented in the direction of defor-
mation. As the strain rate decreases, the magnitude of local
strains slightly diminishes, but the distortion of the sub-chain
distribution intensifies. Additionally, force density plots reveal
that subchains oriented in the direction of stretch are primarily
responsible for carrying the load in all experiments, although
the intensity of the imposed forces is significantly lower when
the strain rate is reduced. We have additionally plotted the
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relaxation section of the stress response for each simulation on
a logarithmic scale (Fig. 9B). Similar relaxation behaviors have
previously been observed in molecular dynamics simulations,
as reported by O’Connor et al.48 This qualitative agreement
suggests that our network model may serve as a valuable
tool for bridging molecular dynamics with continuum-scale
modeling in future studies.

4.1.2 Effect of chain length. To investigate the effect of
chain length, networks with varying numbers of subchains (per
chain) were generated and subjected to identical stress relaxa-
tion tests. The domain size and network parameters were kept
consistent with those used in previous simulations (Section
3.3). To maintain constant chain concentration, as per eqn (17),
networks with longer chains contained fewer total chains
compared to those with shorter chains. Fig. 10A illustrates

the deformation of networks with different chain lengths
(Nsubchain = 4, Nsubchain = 8, Nsubchain = 16, and Nsubchain = 32)
up to twice their initial length under a true strain rate of _e11 = 1.
The normalized tensile stress, s�11 ¼ s11b3

�
kT , is plotted

against normalized time, t* = tkT/zb3, during the stress relaxa-
tion tests. The model predicts that networks with longer chains
exhibit higher stress at the end of the deformation phase and
longer relaxation timescales. In the subplots of Fig. 10A, the
relaxation timescale of the network, trelax, is normalized
t�relax ¼ trelax kT

�
zb3

� �� �
and plotted versus Nchain to demon-

strate that an increased chain length inherently extends the
relaxation timescale of the network. These relaxation time-
scales were estimated by fitting exponential decay functions
to the stress versus time data during the relaxation phase. This
increase in relaxation time can be attributed to the fact that

Fig. 8 (A) Normalized uni-axial component of stress s�11 ¼ s11b3
�
kT is plotted versus normalized time t* = tkT/zb3 for the stress relaxation test

performed on a network of fully entangled chains. (B) Network snapshots at specified time frames are shown. The sub-figures are comparing the
topology of a local section after a few disentanglements and re-entanglements occurred. (C) The end-to-end vector histograms and force density plots
are plotted at the same time frames to capture local forces and stretches applied to subchains. As it can be seen in force density plots all the chains have
relaxed completely by time frame (4).
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relaxation of stressed subchains primarily occurs through
reptation of Kuhn segments from less stressed neighboring
subchains or stress-free dangling ends. For a chain with a larger
number of subchains, Kuhn segments must traverse a longer
distance to relieve stress in the middle subchains. Conversely,
for shorter chains, Kuhn segments travel shorter distances.
This mechanism also explains the higher stress observed at the
end of the deformation phase in networks with longer chains,
as the lower relaxation rate allows these networks to store more
elastic energy during deformation. It must be noted that the
similar dependency of relaxation timescale on the number of
subchains per chain was previously captured by Masubuchi
et al.29 A power-law fit of the relaxation timescale versus the
number of subchains plot yields the relation trelax p Nsubchain

1.67,
indicating that the relaxation timescale scales non-linearly with
the number of subchains per chain. We note that the observed
power law relation differs from that predicted by reptation
theory,4 which suggests trelax p Nsubchain

3. However, the relaxa-
tion time dependence on the number of subchains is modified
by two mechanisms: tube length fluctuations and constraint
release (disentanglements), both of which serve to reduce the
relaxation time.1 Given that our model incorporates both the
spatial fluctuations of dangling ends and the effects of disen-
tanglements, it is expected to observe a smaller power law
dependence on Nsubchain.

Additionally, end-to-end vector histograms and force density
plots were analyzed at three different time points (labeled 0–2)
to capture network distortion. Fig. 10B shows that histograms
for networks with longer chains are both more stretched and
distorted, indicating greater local strains on the subchains.
Force density plots confirm this observation, revealing that
networks with longer chains experience larger forces and

stretch compared to those with shorter chains, since reptation
takes longer to relieve stress in these networks.

4.1.3 Effect of cross-link ratio. We previously introduced
the concept of mixed networks, in which a fraction of entangle-
ments are covalently locked, thereby preventing chain reptation
through these junctions. To examine the impact of such
covalent cross-links on macroscopic mechanical response,
we generated five networks with varying covalent cross-link
ratios: pcovalent = 0%, pcovalent = 40%, pcovalent = 60%, pcovalent =
80%, and pcovalent = 100%. We note that cross-links are intro-
duced in the network after the initial energy minimization. This
ensures that the generated network can reach a homogeneous
mono-disperse distribution. The networks under investigation
consist of Nchain = 800 chains, each composed of Nsubchain =
4 subchains, with each subchain containing NKuhn = 150 Kuhn
segments. These networks are generated on a square domain
with an initial length of 800b. The medium viscosity coeffi-
cient is set to m = 10�2zb, and the discrete time step is Dt =
10�6(zb3/kT). Following initial equilibration, the networks are
deformed isochorically with a strain rate of _e11 = 1 up to twice
their initial length (e11 = 1) and subsequently held at the
deformed state. Analysis of the stress relaxation curves pre-
sented in Fig. 11A reveals that the introduction of covalent
cross-links into the entangled networks significantly alters their
viscoelastic behavior. Initially, it is observed, in normalized
stress s�11 versus normalized time t* plots, that networks with a
higher ratio of covalent cross-links exhibit greater stress at the
end of the deformation phase (see Fig. 11A). Furthermore, the
inclusion of these cross-links prolongs the relaxation timescale.
When the covalent cross-link ratio exceeds a critical threshold
of pcovalent E 41%, the network is unable to fully relax the
applied stress. This indicates a transition from a viscoelastic

Fig. 9 (A) Normalized uni-axial stress s�11 is plotted versus normalized time t* for the stress relaxation tests with three different strain rates of _e11 = 1.00,
_e11 = 0.25 and _e11 = 0.1. End-to-end vector histograms and force density plots are shown at the end of deformation phase for each simulation.
(B) The relaxation section of normalized uni-axial stress is plotted versus normalized time in logarithmic scale.
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fluid-like response to a viscoelastic solid-like behavior. The
underlying reason for this transition is that covalent cross-
links act as barriers to the reptation mechanism. When a
sufficient number of cross-links are present, they can obstruct
the reptation pathways for some chains, thereby impeding their
ability to relax stress (see Fig. 11A). Consequently, deformation
applied to the network may result in some chains retaining
residual stress even after the system reaches equilibrium.

End-to-end vector histograms and force density plots
(Fig. 11B) were generated for each network at the end of the
deformation phase and after reaching equilibrium to illustrate
the impact of covalent cross-links on local strains and forces.
The data show that the introduction of cross-links leads
to slightly higher localized strains on subchains. Force den-
sity plots confirm that, beyond a certain ratio of covalent
cross-links, the network fails to relax all subchains, with some
remaining stretched even after equilibrium is achieved.

Notably, end-to-end vector histograms indicate that adding cova-
lent cross-links results in less distortion of the network distribu-
tion. This observation may be attributed to the absence of
reptation, disentanglements, and re-entanglements in a fully
cross-linked network, which significantly affects the dispersity of
subchain lengths and the network’s topological organization.

To elucidate the impact of covalent cross-links on stress
relaxation, we present the normalized relaxed stress, sN11/smax

11 ,
where sN11 represents the stress after sufficient time has passed for
network to equilibrate and smax

11 is the maximum attained stress
(Fig. 12). This normalized stress is plotted as a function of the
covalent cross-link fraction, pcovalent, with each data point corres-
ponding to a separate stress relaxation test. Additionally, snap-
shots of equilibrated networks at the end of the stress relaxation
tests are provided at four times labeled 1 to 4. In these snapshots,
stress-free subchains are depicted as thin grey lines, while highly
tensioned subchains are represented by thick black lines.

Fig. 10 (A) Normalized uni-axial component of stress s�11 is plotted against normalized time t* for a stress relaxation test on four networks each with
different chain sizes. One subplots shows the uni-axial strain e11 versus normalized time t* which is identical for all four simulation. Also one other subplot
is showing the relaxation timescale t�relax versus number of subchains per chain Nsubchain. (B) Force density plots and end-to-end vector histograms are

plotted at three different time frames of simulation for different chain lengths of Nsubchain = 4, Nsubchain = 16 and Nsubchain = 32.
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The results demonstrate that at low or zero covalent cross-
link fractions, the network relaxes all the applied stress, result-
ing in stress-free subchains at the end of the stress relaxation
test, as shown in subplot 1 of Fig. 12. However, beyond a critical
cross-link density pcovalent E 41%, the network’s ability to fully
relax the stress is hindered, with some subchains remaining in
tension at the end of the test (subplot 2, Fig. 12). This occurs
because the covalent cross-links restrict the reptation path-
ways for these subchains. As the covalent cross-link fraction
increases more, the network retains a larger portion of the
imposed stress. At pcovalent = 100%, the network conserves all
the imposed stress, as evidenced by the presence of numerous
highly stretched subchains in subplot 4 of Fig. 12.

5 Concluding remarks

In conclusion, we introduced a discrete network model designed
to capture the time-dependent mechanical response of entangled

polymer networks and its relationship with the underlying local
physics, including chain stretch, reptation, entanglements, and
disentanglement. This approach is driven by the need to under-
stand how the architecture of polymer networks and their
dynamic changes during deformation – such as topological
shifts and chain rupture – affect the complex mechanical
behavior observed in experiments. Our network model aims to
improve the current understanding while maintaining a rela-
tively simplified form leading to lower computational cost
compared to traditional molecular dynamics simulations.
We have demonstrated the utility of this model through a series
of elementary examples and extended its application to investi-
gate the response of networks containing a mixture of covalent
bonds and entanglements, which are representative of many
synthetic polymers.

In summary, we have reproduced a similar stress relaxation
trend as previously reported by Masubuchi et al.25,49 Addition-
ally, we demonstrated that the relaxation timescale of the
network exhibits a power-law dependency on the number of

Fig. 11 (A) Normalized uni-axial component of stress s�11 is plotted as a function of time t* during stress relaxation tests on five networks with different
covalent cross-link ratios. (B) End-to-end vector histograms and force density plots are shown for each experiment at the end of deformation phase and
after reaching equilibrium.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
21

/2
02

5 
12

:1
9:

39
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm01278j


2110 |  Soft Matter, 2025, 21, 2096–2113 This journal is © The Royal Society of Chemistry 2025

subchains per chain (i.e., chain length), characterized as
trelax p Nsubchain

1.67. This dependency was also observed in
the work of Masubuchi,29 where the molecular mass of the
chains—effectively their length—was varied and longer relaxa-
tion times were observed for networks with longer chains. As
discussed in Section 4.1.2, the divergence of this power law
from that predicted by reptation theory4 arises due to the
latter’s exclusion of tube length fluctuations and constraint
release mechanisms, both of which reduce the relaxation time.

Furthermore, we conducted stress relaxation experiments
using the model on mixed networks comprising both entangled
junctions and covalently cross-linked junctions. These experi-
ments revealed that the incorporation of cross-linking points
significantly influences the viscoelastic properties of entangled
networks. Specifically, beyond a critical proportion of cova-
lently cross-linked junctions (41%), the network’s mechanical
response transitions from that of a viscoelastic fluid—capable
of dissipating all imposed energy through stretching—to that
of a viscoelastic solid, which can only dissipate a part of
the imposed energy. The mechanics and failure mechanisms
of such networks have been extensively studied in prior experi-
mental6 and theoretical investigations.50

While our discrete network model provides a powerful
framework for understanding the time-dependent mechanical
response of entangled polymer networks, there are several
limitations that highlight areas for future improvement. First,
the model currently assumes a Gaussian response for the
polymer chains, which is a reasonable approximation for small
deformations but becomes less accurate as the deformation
increases, especially near fracture. For large deformations,
more realistic models, such as the Langevin chain model,
should be considered. The Langevin model accounts for the

finite extensibility of polymer chains, providing a more accurate
description of the material’s behavior under extreme conditions.
Second, the current implementation of chain sliding at entan-
glement points does not account for the force dependence of the
friction law.6 Introducing a force-dependent friction law in
future versions of the model would allow for a more accurate
capture of the nonlinearity observed in polymer rheology.51 This
enhancement would better represent how the resistance to chain
motion varies with the applied force, leading to a more realistic
description of the material’s mechanical response.

It is important to note that this model is also capable of
studying the viscoplastic behavior of entangled polymer net-
works. Viscoplasticity, which describes the time-dependent
irreversible deformation of materials under applied stress, is
a key characteristic of entangled networks.52 By capturing the
complex interplay between molecular chains, entanglements,
and external forces, this model provides valuable insights into
how these networks respond under prolonged loading condi-
tions, making it a versatile tool for investigating both elastic
and plastic deformation behaviors.

Looking ahead, integrating our network approach with
molecular dynamics simulations has the potential to enhance
the model’s realism. By performing molecular dynamics simu-
lations on small domains, we can extract key physical para-
meters, such as chain friction and initial network topology,
which can then be fed into the network model. This hybrid
approach will allow us to model larger domains (up to several
microns) while maintaining computational efficiency. Ultimately,
this may enable a deeper understanding of how network design
influences complex phenomena such as fracture, cavitation, and
nonlinear rheology in a wide variety of polymers, including
pressure-sensitive adhesives.

Fig. 12 Normalized stress sN11 /smax
11 is plotted against covalent cross-link ratio pcovalent. Also network snapshots are provided at four different covalent

ratios pcovalent = 20%, pcovalent = 41%, pcovalent = 80% and pcovalent = 100% after the network is equilibrated in deformed form.
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Appendices
Appendix A: proof of critical stretch equation for
disentanglement

As it can be seen in (Fig. 4A), the subchain initially at equili-
brium with n0 Kuhn segments is stretched by factor l. It is
shown that initial subchain at equilibrium has length of r0 =
bn0

0.6 and after the deformation it will have new length of lr0.
Due to tension difference Kuhn segments will flow from
dangling end to stretched subchain until new equilibrium
point. We can calculate that a subchain with length lr0 requires
(lr0/b)5/3 or n0l

5/3 Kuhn segments to be at relaxed state. The
disentanglement always happens if the difference between
required number of Kuhn segments and initial one is greater
than number Kuhn segments in the dangling end nres:

n0l
5/3 � n0 4 nres (19)

Based on this, the critical stretch above which disentanglement
always happens for the system shown in (Fig. 4A) can be
calculated as:

lcrit ¼
nres

n0
þ 1

� �0:6

: (20)

Appendix B: forward Euler integration scheme

By minimizing free energy and using a Langevin equation, we
found the equation of motion for each node (eqn (6)). We can
numerically solve this ordinary differential equation for each
node by writing it in discrete forward Euler form as

xiðtþ DtÞ ¼ xiðtÞ þ
ti þ ti�1 þ tj þ tj�1
� �

m
Dt: (21)

The other side of energy minimization is related to reptation,
where we integrate the flow of Kuhn segments through each
node by discretizing (eqn (9)) as

niðtþ DtÞ ¼ niðtÞ þ
Pi �Pi�1

z

� �
Dt: (22)

Using the equations above, nodal positions and monomer flows
are numerically integrated after each discrete timestep Dt.
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