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1 Introduction

Poroelasticity and permeability of fibrous polymer
networks under compressiont

@ Jakub A. Kochanowski, (2 ? Yifei Ren, <

*39 3nd Prashant K. Purohit (2°

Paul Mollenkopf, © Kyle H. Vining,

Paul A. Janmey

Soft biopolymer networks play pivotal roles in governing cellular mechanics, tissue structure, and
physiological processes such as blood coagulation. Understanding their permeability and mechanical
responses under compression is crucial for elucidating mass transport phenomena and their impact on
extra- and intra-cellular behavior as well as processes affecting functionality of blood clots, cartilage and
other fibrous tissues. The nonlinear responses of these networks to mechanical stresses prevent
application of established linear poro-elasticity models. Despite extensive studies of fibrous network
viscoelastic properties under shear deformations, their dynamic responses to compressive deformations
remain poorly understood, particularly in physiological contexts of growth and collective migration of
solid bodies. Conventional experimental techniques face challenges in accurately evaluating the
permeability of these networks, hindering comprehensive understanding of their poromechanical
behavior. In this study, we employ a novel poroelastic hybrid approach combining rheometer-based
compression rheology with camera-facilitated sample shape detection to directly measure fluid flux and
network permeability under controlled compressive strains. Accompanying experimental investigations, a
continuum model implemented in finite elements, and an analytical model are developed to interpret
the findings. The experimental data align well with the analytical model, revealing the emergence and
disappearance of distinct densification regimes within the gel under mechanical stress. This study
advances our understanding of the intricate interplay between mechanical forces, fluid flow, and
structural properties in soft biopolymer networks, with a specific focus on fibrin- and collagen-based
gels which represent the most abundant protein networks in the extracellular environment.

their impact on cellular behavior and blood clot functionality.
Polymer networks have been extensively studied for their beha-
vior under shear deformations.'®"> Along with experimental

Soft biopolymer networks are indispensable components of
living systems, governing cellular mechanics,"* structural
properties of tissue,® and physiological processes such as blood
coagulation.”” These intra- and extracellular components, char-
acterized by hydraulic permeability and viscoelastic properties,®
regulate cellular shape and dynamics,” and material transport,®
and provide mechanical support within the extracellular matrix
(ECM).? Understanding their permeability is crucial for unravel-
ing mass transport phenomena in soft tissues and elucidating
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advances, theoretical frameworks have been developed™ to
describe the viscoelastic properties of networks across various
phases including the vast phase space of different cross-linker
affinities'*™® as well as to explore the impact of molecular
interactions between polymers.'”'® Despite advancements in
understanding the viscoelastic properties of polymer networks,
their dynamic responses to compressive deformations, particu-
larly at timescales related to physiological contexts such as
solid tumor growth and collective cell migration, remain poorly
understood.®***° However, poroelastic effects, especially in
volume-changing deformations, likely modulate the rheological
behavior of these networks, contributing to the ECM’s stability
against compressive loads for instance. Models to describe
compressive deformations and fluid permeability are based on
the theory of poroelasticity,>">*> developed to apply to polymer
based soft materials®® and to account for non-linear deforma-
tions, which are physiologically relevant.** Meanwhile, conven-
tional experimental techniques, including those reliant on

This journal is © The Royal Society of Chemistry 2025
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microfluidic devices, encounter challenges in accurately asses-
sing the permeability of adhesive biopolymers, or cannot
capture fluid flow properties under dynamic compressions.?®
This limitation impedes a comprehensive understanding of
both their permeability and poromechanical behavior. Combining
compression rheology with theoretical modeling offers new
insights into the coupling of fluid flow and elasticity in biopo-
lymer networks during compression, but current models rely
on model assumptions to determine system parameters.®
To address this experimental challenge, our study employs a
novel poroelastic hybrid approach, integrating rheometer-
based compression rheology with camera-facilitated sample
shape detection. This setup enables direct measurement of
fluid flux and network permeability under rate-controlled com-
pressive strains, providing unprecedented insights into the
coupling between network stress and fluid pressure dynamics.

We investigated the permeabilities of fibrous polymer gels
under stepwise increasing compressive strains. Accompanying
the experimental investigations, we employed a continuum
theory implemented using the finite element method (FEM)***”
to interpret our findings. While this approach qualitatively
reproduced experimental results regarding trends in Poisson
ratios and volume change for both investigated systems, it
showed large deviations with regard to stress relaxation, which
appeared more pronounced in the experiment particularly
for compressive strains in the intermediate strain regime. We
attribute this discrepancy to the assumption of the continuum
theory, which is based on a homogeneous network with a
uniform permeability. Introducing an analytical model instead,
which accounts for heterogeneity of deformations,®® we dis-
closed fluid flow properties in gels under increasing compres-
sive strains. The experimental data on fluid permeation under
compressive conditions aligns well with our model, which
postulates the coexistence of two compartments within the
gel in a distinct compression regime. This compartmentaliza-
tion has been observed for collagen®® as well as for fibrin gels.””
We show the emergence as well as the disappearance of a
rarefied (slightly denser than uncompressed state) and a den-
sified phase (much denser than uncompressed state) within
these gels in a distinct compression regime. The densification
assumed by the theory and confirmed experimentally extends
from the top part of the gel, where the displacement is applied,
to the bottom with increasing compressive strain, revealing
structural transformations under mechanical stress with
implications for fluid flow behavior. The mechanical properties
of fibrin and collagen networks, crucial components of
blood clots and the ECM, are of particular interest due to their
pivotal role in structural integrity of the extracellular space,*®
hemostasis®™** and thrombosis.*> While their response to
shear deformation has been extensively studied, the behavior
under compression presents new complexities, including phase
transitions and foam-like behavior.?®?” Through experimental
investigations and theoretical modeling, our study discloses
the intricate interplay between mechanical forces, fluid flow
and structural properties in soft fluid-enclosing biopolymer
networks.

This journal is © The Royal Society of Chemistry 2025
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2 Results

Conventional compression rheology has been used in previous
studies to compute®** the normal stress relaxation behavior of
biopolymer networks. Flow defining parameters were calculated
by employing theoretical models as they were experimentally
difficult to access. To address this experimental challenge, we
designed and manufactured a measurement setup to monitor
the entire parameter space necessary to determine the fluid flux
as a result of applied compressive strains on liquid enclosing
gels. The setup specifically designed to investigate poromecha-
nics for small volume samples, illustrated in Fig. 1, consists of a
glass plate sitting on top of a camera, which replaces the bottom
plate in a conventional rheometer setup. A gel sample, placed
between a 20 mm plate and the glass surface, is exposed to
compressive strains by lowering the gap size in a strain rate-
controlled manner. The normal force during and after compres-
sion is monitored as a function of gap size. Assuming a cylind-
rical sample geometry, the volume can be calculated for every
point in time over the entire experiment from the cross-section
area, detected by the camera below the glass plate and the gap
size, measured by the rheometer.

2.1 Compression rheology

Fibrin gels were polymerized between a stationary bottom
glass plate and a movable upper plate at a concentration of
15 mg ml~ . The fibrin gels were stabilized by the addition of
10 mM CacCl, to activate factor XIII crosslinking and minimize
potential contributions such as viscoelastic relaxation due to
non-covalent crosslink unbinding to the measured response to
compression deformation. The initial height of the gel was set
to 1 mm. Using volumes of 22.5 microliter the corresponding
initial gel radius was 2.68 mm, assuming a cylindrical volume.
To prevent evaporation and potential protein degradation at
the air-gel interface the gels were surrounded by 1x Tris buffer
after 10 minutes polymerization time. The gels were equili-
brated for another 10 minutes until the storage modulus G’
reached a stable value. Prior to the compression tests the
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Fig. 1 The experimental setup combines classic bulk compression rheo-
metry with a camera facilitated shape detection. A gel sample (red) is
placed between a transparent glass plate (a), sitting on a camera (b), and
the upper geometry plate of the rheometer. The camera monitors the
change in the gel droplet's cross-section area (c) during and after com-
pression. (d) The gap change during compression as well as normal force
during and after compression are measured with a HR 20 Rheometer
(TA Instruments).

Geldroplet 5 mm

(a) Glass plate
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sample’s average elastic storage modulus was G’ = 1130 (+130) Pa,
the average loss modulus G” = 93 (£20) Pa, and the corresponding
loss factor tan(®) = G"/G’ = 0.08 (£0.015).

Collagen gels were pre-polymerized and subsequently stabilized
with glutaraldehyde to a cylindrical shaped disk matching the
geometry of the fibrin gels at the same initial volume. After being
placed on the bottom glass plate the gels were immersed in 1x
PBS buffer and equilibrated for 10 minutes with the upper plate
being in contact with the samples at 1 mm gap height. Collagen
samples at a concentration of 10 mg ml™ ", crosslinked with
glutaraldehyde exhibited an average storage modulus of G’ =
5160 (+120) Pa, an average loss modulus G’ = 395 (+£200) Pa,
and a corresponding loss factor of tan(®) = 0.08 (+0.04). In order
to investigate the gels’ mechanical response to compression, gel
samples were exposed to stepwise compressive strains between
10% and 80% by lowering the upper plate with a rate of 10 um s~ .
During and after each compression the resulting normal force was
measured as a function of time. Representative measurements for
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Open Access Article. Published on 11 February 2025. Downloaded on 2/5/2026 10:22:40 AM.

(cc)

—— experiment  --- FE model

0.05

0.00

—-0.05

Poisson ratio v

-0.10

-0.15

10 20 30 40 50 60 70 80
Compression [%]

(c) Poisson’s ratio

View Article Online

Paper

fibrin and collagen samples respectively are shown in Fig. 2, where
the normal stress oy, calculated from the measured normal force
Fy and the time-dependent sample cross-section area S(f) accord-
ing to on(f) = Fn(t)/S(¢), are plotted over time. We interpret the
normal stress as the sum of a hydraulic pressure and an upward
directed normal stress resulting from network deformation that
builds up during the compression phase to reach a maximum and
subsequently decays. The first 10% strain step induced a max-
imum pressure of 1.38 (+£0.26) kPa for the fibrin gels and 1.05
(£0.25) kPa for collagen gels. The normal stress subsequently
relaxes with the values decreasing by half of the maximum stress
in less than 10 seconds. With increasing strain, the normal stress
response of the sample increases to values exceeding 50 kPa for
fibrin and 20 kPa for collagen.

2.2 Fluid flow and permeability

Synchronizing the data collected by the rheometer, particularly
the gap size values, with the cross-section area detected by the
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(b) Collagen: Volume change and normal stress.
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(d) Pore pressure gradients

Fig. 2 Fibrin (a) and collagen (b) gels are stepwise compressed at a rate of 10 pm s~ to strains between 10% and 80%. The normal stress builds up during
compression and subsequently relaxes after the strain step at a constant gap width. Synchronizing rheometer data with image acquisition gives the
parameters necessary to calculate the sample volume over time V(t) =m-r(t)?-g(t). (c) The Poisson ratio is calculated according to eqn (15) and plotted as a
function of compressive strain for collagen gels. The FEM simulation predicts the same trend as in experiment suggesting that our choice of constitutive
parameters is adequate. (d) The pore pressure (chemical potential) shown in this figure corresponds to near the end of the relaxation step when the fluxes
are measured to determine the Darcy constant in our experiments. The profile can be approximated as linear in the radial coordinate except near the
central region. A plot of the non-uniform void ratio at this stage of the relaxation process is given in the (ESI¥).
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camera we calculate the volume by assuming a cylindrical
sample geometry V = n-r>(t)-g(£), where g(£) is the gap size and
r(¢) the sample radius at time ¢. This allows for the monitoring
of the samples’ volume during compression as well as relaxa-
tion as shown in Fig. 3.

Fluid dynamics through confined spaces within soft mate-
rial is determined by the material’s permeability and quantified
via the volumetric flux g. The volumetric flux is a measure of
flow rate per unit area and is mathematically expressed as

q= %, where Q denotes the volumetric flow rate in units m® s—*

and A the cross-section area, which represents the effective area
available for fluid flow. We assume a cylindrical geometry with
A = 2-1-r(t)-g(t), where the sample height equals the gap size g(t)
and the sample radius is denoted as r(¢). The volumetric flow
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(a) Fibrin: Flux versus Normal stress.
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(c) Fibrin: Darcy permeability as a function of compression. Two-phase model
versus experimental data.

Fig. 3 Flux and permeability. The volumetric flux, calculated as g = Q/A, with the volumetric flow rate Q (unit: m” s
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rate is determined by monitoring the change in volume of the
gel as a function of time. In calculating the outward liquid flux
in this way we tacitly assume that the liquid phase and solid
phase material in the gel are incompressible**” so the volume
change of the gel is equal to the volume of liquid leaving
the gel.

Permeability is a defining attribute that characterizes porous
or permeable material regarding its ability to allow a fluid to
pass through. The foundational principle, which establishes a
relation between volumetric flux g and pressure difference Ap is

KAp

given by Darcy’s law ¢ = L with the viscosity of the

permeating fluid # and L, the distance over which the pressure
difference Ap is effective and consequently where fluid flow
appears. The proportionality constant K, also called the Darcy
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(d) Collagen: Darcy permeability as a function of compression. Two-phase model
versus experimental data.

3 57%) and the cross-section area A = 27

rt)-g(t) (unit: m?), the surface area of a cylinder where g(t) is the gap size and r(t) the gel radius at time t plotted over normal stress for fibrin (a) and

collagen (b). Fitting a linear function to the curves, which correspond to the volumetric flux close to where the volume change is negligible, yields the
KA

slope o = k/(nL), considering Darcy's law, ¢ = _Tp' with the viscosity of water 5. The calculated Darcy constants K, divided by K3, the permeability for the
n

first compression step exhibits nonlinear behavior in the intermediate compression strain regime and shows good agreement with the two-phase model

shown in red (c) and (d). The dependence of the permeability according to Wufsus et al. which assumes uniform density of the gel is shown by the dashed

black curve.®® Plots of the Darcy constant as a function of average concentration appears in the ESI+ for fibrin and collagen gels.

This journal is © The Royal Society of Chemistry 2025 Soft Matter, 2025, 21, 2400-2412 | 2403
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constant, expressed in units of m> characterizes the perme-
ability of the material. Previous studies investigated fluid flow
at various pressure gradients in setups relying on hydrostatics.
Instead, here we apply finite deformations at a fast strain rate
and read the materials’ resistance to these compressive strains
as an effective pressure. We calculated the flux curves for each
compression step as outlined above. For the determination of
the Darcy permeability, we consider the part of the curves
which represent the relaxation phase after the compression.
Representative curves showing the flux over normal stress
during compression and relaxation for fibrin and collagen are
presented in the ESL Fitting a linear function to the curve
yields the slope o, and considering the equation for the Darcy

K
permeability we determine K according to o = T In the
n

above we take L ~ r(t) so that the pore pressure gradient is
approximated as % where ¢ is the average normal Cauchy
stress on the top plate. In doing so we follow®® who give a
simple expression for fluid flow through compressed open cell
foams in terms of the measured compressive stress and dimen-
sions of the foam. We chose the fitting boundaries to capture
the last linear part of the curve at the low flux regime for each
compression strain step because near the end of the relaxation step
the pore pressure gradient in the radial direction can be approxi-
mated as linear in agreement with our assumption above. Finite
element calculations in Fig. 2 reveal that the order of magni-
tude of the pore pressure gradient at this stage of relaxation is
the same as o/r for various values of the applied strain.
Evaluating the first compression and relaxation we obtained a
Darcy constant Ky p = —2.59 x 10 ** (£ 7.6 x 10~ ") m” for
fibrin and K; ¢ = —1.7 x 10" (£ 5.4 x 10 "*) m? for collagen
respectively. These values correspond to the range of perme-
abilities reported in previous studies.”>*°*! The derived Darcy
permeabilities show a decrease for increasing compressive
strain. Assuming a general increase in protein concentration
as a result of fluid outflow explains the apparent decrease in
permeability. Previous studies reported a Darcy permeability
for small-pored fibrin gels, scaling inverse squared with protein
concentration.® Interestingly, our data shows permeabilities K
that match this scaling behavior for 10% compressive strain as
well as for compressions exceeding 60% strain for fibrin and
50% strain for collagen, but are distinctly lower for the respec-
tive intermediate strain regime (see Fig. 3). This observation
highlights the complexity inherent in fluid flow through perme-
able soft polymer gels such as fibrin and collagen, where
changes in structural integrity and pore geometry intricately
influence the permeation dynamics. The experimental results
align with the analytical model described in Section 2.4. The
essential idea of this model is a non-uniform densification of a
gel that is subjected to a rapid compressive deformation.

2.3 Finite element method

2.3.1 Kinematics. Microscopically, collagen and fibrin gels
are not homogeneous since the topology of the fibers and the
concentration of other solutes in the liquid is not the same

2404 | Soft Matter, 2025, 21, 2400-2412
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everywhere. However, since our interest is in length scales that
are much larger than that of the gel micro-structure, we will
treat the gel as a homogeneous material. Letting x(X,¢) and X
denote the current and initial positions of a specific material
point, respectively, we can define the deformation gradient
tensor and its determinant as:

ox i
ox;

Fy= J = det(F). (1)
In the treatment that follows the initial (reference) configu-
ration is the swollen state that the fibrous network forms with
water at equilibrium. We assume that the network material
(dry polymer) and the interstitial liquid are both incompressible
and that the volume change of the gel is caused purely by the
movement of liquid. Let C(X,f) denote the volume fraction of
liquid (in the reference state), then:

C(th) :] - ¢;ef’ (2)
ref

where ¢~ denotes the volume fraction of the fibrous polymer
in the reference configuration. Now, if we consider a volume V
with a normal N(X) and surface S(X) in the reference configu-
ration, then mass balance in the absence of any liquid source
can be written as:

ocC

J p—dV—i—J pQ-NdS =0, (3)
v Ot s

where Q denotes the liquid flux per unit reference area and p

denotes the density of the liquid. Utilizing the divergence

theorem, we can rewrite this equation in localized form as:

oC .

— +Div(Q) =0. (4)
ot

If we consider the loading to be quasi-static, which means that
the load is applied slowly, we can write our momentum balance
equation expressed in the reference configuration as:

Div(P) = 0, (5)

where P is the first Piola-Kirchhoff stress tensor. Note that this is
a statement of mechanical equilibrium for a representative
volume element of the gel that contains both solid and liquid.
It is assumed to be valid even when there is relative motion
between the solid and fluid in the chemo-elastic formulation®*?”
used here. The theory of porous media separately considers the
equilibrium and mass balance of the solid and liquid parts of the
gel (including the body forces exerted by the solid and liquid on
each other), but it has been shown to be equivalent to the chemo-
elastic formulation used here by Stracuzzi et al.** for incompres-
sible fluid and solid material.

2.3.2 Constitutive laws. Experimental results presented
in Section 1 indicate that the viscous effects are negligible in
both collagen and fibrin gels. Consequently, both materials are
modeled as purely poroelastic. Based on Flory-Rehner theory,*?
the total Helmholtz free energy per reference volume of a fibrous
network and solvent mixture can be written as a summation of
the free energy density due to the deformation of the network

This journal is © The Royal Society of Chemistry 2025
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¥ ,.e(F), and the free energy density of (hydrophilic) interaction
of two phases ¥in(C):

T(F’C) = anet(F) + 'Pint(c)' (6)

Utilizing Legendre transformation, we define a new free
energy density as:

¥ = Y(F,C) — uC. 7)

oY . . . . .
Here p=sc s the chemical potential of the interstitial

liquid.*” Here the units of the chemical potential are ] m™>,

same as the units of stress. This is different from the units of
chemical potential in standard thermodynamics because in
addition to taking the derivative of a free energy with respect
to the number of moles of a species (liquid) we are also dividing
by the molar volume of the incompressible liquid. Based on
standard continuum mechanical derivations that use the dis-
sipation inequality, it can be shown that:

oY oV
— =P, —=0°C. 8
F-T o (8)
The free energy ¥,..(F) and ¥;,(C) used in this work is
based on:***44%
(G - G, -
aal) = 61 (G401 =3+ 20 - 3740 1)
i B )
¥ To (1 — ¢s 1) ]

'Pint(c) = lPim(l/) =

ﬁl —1 (Jiqb;ef)ﬁl*l'

Notice that C in eqn (9) is replaced by J according to eqn (2).
Here G, and G, are two constants. G; the shear modulus for
small strain of the dry polymer, while G, is related to the shear
modulus at large strain of the dry polymer. A two-term poly-
nomial hyper-elastic model is used to characterize the strain-
stiffening behaviors of both fibrin and collagen under compres-
sion. Such strain stiffening was demonstrated for fibrin net-
works in Kim et al.>° and for collagen networks in Novak et al.*®
A In(j) term is included in the expression for the free energy
density following standard texts in nonlinear elasticity (e.g.,
Ogden,*® Holzapfel’”) and biophysics (e.g., Boal*®). The In(})
term is phenomenological in our description, and it could be
replaced by another term such as (J — 1), but we use it because
of analytical convenience (e.g. in computing a4, see below). I is
the modified invariant of the left Cauchy-Green tensor B. The
isochoric part of I; is chosen to account for the incompressi-
bility of both liquid and solid phases. =, is the initial osmotic
pressure, and the value of o, is chosen such that the reference
state is stress free. f}; is a power law coefficient, which is slightly
larger than 1 in the current formulation. The form of the
mixing free energy used here was given by Ehret et al.*® for
collagen gels and shown to agree well with experiments in
uniaxial and bi-axial tension. It was also adopted in Garyfallo-
giannis et al.*® for fibrin gels and shown to result in excellent
agreement of the tensile stress—strain curve and the volumetric
shrinkage of cracked specimens. FE computations using free

This journal is © The Royal Society of Chemistry 2025
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energy density with the usual invariants was also performed,
but the relaxation results did not match with experiment well,
compared with the free energy density with isochoric invar-
iants. In particular, a higher stress drop during relaxation was
observed with isochoric invariants compared to normal invar-
iants I; although the stiffness during compression was the
same for both choices. This is why isochoric invariants are
adopted in the remainder of this work. Utilizing eqn (9), the
Cauchy stress can be calculated as:

s )
ay(F, 1) = ¢™'J73(GiBy + G2(I) — 3)By)

1 S _
- gf;eff 3L(Gy + Ga(11 = 3))d; (10)
Otld’ff

T

5,‘,‘ — (TC + u)é,-,—.

In order to set the value of o4, we require ¢(I,0) = 0 at ¢ = 0,
so that:

T 11
(l);ef ( )
By setting the value of o, in this way we have worked differently
from the standard Flory-Rehner model. In that model the
constitutive properties of the dry polymer would be known;
similarly, change in free energy due to mixing of polymer and
liquid (which determines the osmotic pressure) would also be
known. Then, the minimization of the total free energy by

o =

dv
setting o 0 (which leads the requirement of a stress free

reference state) would determine the swelling ratio, or o=t in
terms of the known constitutive parameters in the free energy
densities ¥ and ¥, However, in our experiments the fibrin
and collagen gel are naturally in a wet (or swollen) state with
known ¢ and it is not clear how to make a dry network whose
mechanical behavior can be characterized. Similarly, it is hard
to measure and characterize the mixing behavior of the fibrin
and collagen with liquid. For these reasons we assume a simple
form for the network free energy density and determine the
constants (e.g., G1, G,, etc.) in it by matching to experiments.
In particular, the phenomenological parameter «; is deter-
mined from the fact that ¢, or the swelling ratio, in the
stress-free reference state is known.

Now imagine a representative volume element (a unit cube)
of this gel and apply a small shear strain of magnitude y on it.
A shear is a volume preserving deformation, and we assume the
effect of liquid diffusion is negligible so J = 1 everywhere in the
gel. Therefore, we can calculate the shear stress using eqn (10)
by substituting the corresponding deformation gradient F:

e = ¢y, (12)

where we have only kept terms up to linear order in 7. So the
small strain shear modulus of the gel is in fact Gge = G4 ref,
We have measured the small strain shear modulus of our fibrin
and collagen gels in rheometer experiments as discussed in a
previous section. Since we know the solid volume fraction of

our gels we can set the value of G; in our continuum model.
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2.3.3 Liquid flux. In this work, Darcy’s law is used for the
constitutive behavior of the liquid flux. Further, we assume the
material is isotropic so that this relation can be written as:

K ou

Qi: ;ax7

(13)
where 7 is the viscosity of the liquid and K is the permeability,
which is a decreasing function of the solid phase volume
fraction ¢s. We use a result mentioned by Wufsus et al.:*>

K 1

= fi(¢s) = m (14)

a2
where a is the average radius of the network fibers. When the value
of a increases, the pore size will increase if the solid volume
fraction is held fixed, which results in a larger permeability. In the
finite element simulations that follow the solid phase volume
fraction varies temporally and spatially within the gels.

2.3.4 FEM implementation and results. Cylindrical speci-
mens of height 1 mm and radius 2.68 mm are subjected to
displacement-controlled uniaxial compression up to an axial
compression of /, = 0.2, with the side surfaces traction free and
at zero chemical potential since they are exposed to a bath of pure
liquid. The displacement in the z direction of the bottom surface
is set to zero, and the top and bottom surfaces are impermeable.
Fibrin was polymerized between the plates and it was stuck to
both top and bottom plate, therefore, no slip boundary conditions
are applied for the fibrin gel at top and bottom surfaces. However,
collagen was pre-polymerized and put between the plates after-
wards, so there is no bond between gel and rheometer in the case
of collagen, and slip boundary conditions are applied. The
boundary value problem is solved using finite element software
ABAQUS using its soils module®® with the constitutive model
described above as a user-defined sub-routine.

3000
For the fibrin gel, we choose: ¢™f = 0.056, G| = 0,056 Pa, G, =
4000 Pa, 7, = 60 000 Pa, fi; = 1.08, then o, — % — 1.0714 x 10° Pa.
S
o 5300
For the collagen gel, we choose: ¢5 = 0.03, G| = 003 Pa, G, =
15000 Pa, m, = 30000 Pa, B, = 1.06, then o) = nref = 10 Pa. To

S
understand why G; is written as above, note that G; represents the

small strain shear modulus of the unswollen dry fiber network, but
we measure shear moduli of the swollen fibrin and collagen gels in
the reference state which is <[>§efG1. The value of a is chosen as
56 nm for fibrin and 58 nm for collagen.>

We first look at the Poisson ratio. We performed compres-
sion experiments on collagen gels that were not attached to the
top and bottom plates of the rheometer. This allowed for slip
between the surfaces of the gel and the plates which could
approximate a uniaxial state of stress. In our theoretical calcu-
lations we modeled the top and bottom surfaces of the collagen
gels as shear free so that g, = g, = 0. Then, we find the stretch
Jx = Ay in the lateral direction using eqn (10) with 1, specified.
We can compute the Poisson ratio according to

log ()

v log(:) (15)
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The results are shown in Fig. 2. The trends are in good
agreement with those seen in experiment indicating that our
choice of constitutive parameters is good. Similar experiments
could not be performed with fibrin gels because they were stuck
to the top and bottom plates, thus the surfaces could not be
modeled as shear free. As such the state of deformation in the
fibrin gels is non-uniform.

Next, we consider compression of the gel samples. As in
experiment, height changes ranging from /4, = 0.9 to 1, = 0.2 are
applied by compressing the fibrin gels stepwise at a rate of
10 um s~ ', and the results of engineering stress and volume
change are shown in Fig. 2. For fibrin the peak compressive
stress achieved after each stepwise increase in applied strain ¢ =
1 — /. agrees well with the experimental results in the ranges
¢ < 0.2 and ¢ > 0.6. The agreement of the experimental peak
stress and FE simulations for fibrin in the intermediate range
0.25 < ¢ < 0.6 is not so good. The FE model consistently
underestimates the volume decrease in the fibrin gels over
the whole range of applied strains ¢. The magnitude of the
relaxation in stress is also consistently smaller in the FE
simulations than in experiment both for fibrin and collagen
gels. For collagen the peak compressive stress achieved after
each stepwise increase in applied strain agrees well with
experiment only for smaller strains ¢ < 0.25. The FE model
does reasonably well in predicting the volume decrease for
¢ < 0.25, but it underestimates the volume decrease for larger
strains. In spite of these discrepancies, the qualitative trends in
the peak stress, volume decrease, and stress relaxations are
reasonably captured by the continuum model. Quantitatively,
the continuum model performs best for both fibrin and col-
lagen gels for ¢ < 0.25, and reasonably well for fibrin gels for
& > 0.6.

Could the magnitude of the stress relaxation and the volume
of fluid escaping the gel (both underestimated by FE simula-
tions) be related? Likely, yes, since if a large amount of fluid
escapes from the gel then the relaxation in stress will be larger
after each compression step; the quicker the fluid escapes the
quicker will be the relaxation. The motion of fluid in gels
depends on the pore size and the chemical potential gradient,
which in turn depends on the osmotic pressure gradient.
In order to examine the effect of pore size and osmotic pressure
on the stress drop during relaxation, we vary the value of a and
n, while keeping the other parameters fixed. The results are
8000

0.056
G, =15000 Pa, f#; = 1.1. Slip between the plates and the top and

bottom surfaces of the gels is allowed. The relaxation seen in
experiments is rapid suggesting that the pore-sizes are bigger
than what is obtained assuming a homogeneously deforming
gel. The equilibrium value of the stress after relaxation is lower
for a low value of m,. Lower values of m, imply a lower solid
volume fraction than that predicted by a homogeneously
deforming gel. In the next section we show that our gels do
not deform in a homogeneous manner under compression for
intermediate applied strains. Thus, there are regions in the
specimen where the pore size is larger and the solid volume

shown in Fig. 4. Here we choose ¢5f = 0.056, G| =

This journal is © The Royal Society of Chemistry 2025
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Fig. 4 Engineering stress of the gel as a function of time for various values
of fiber radius and initial osmotic pressure. The permeability affects the
peak value of the stress, whereas the initial osmotic pressure mainly affects
the value of stress at equilibrium.

fraction is lower which could help explain the discrepancies
between experiment and continuum (FE based) simulations for
intermediate strains. Good agreement between experiments
and FE simulations for small applied strains suggests that gels
do deform homogeneously for these strains.

2.4 Densification and compartmentalization

To examine the non-uniform densification in compressed gels
we suspended fluorescently labeled microspheres in the net-
works. With an average diameter of 4 pm the spheres are
distinctly larger than the networks’ mesh size, which we
estimate to be less than 0.5 pm for fibrin networks®® and less
than 1 um for collagen networks,”* hence not able to move
through the network under compressive stresses. Counting the
number of microspheres per slice in a z-stack with a step size of
10 pm we quantify the local gel density along the height of the
gel. The initial height was 0.5 mm for the fibrin gel and 1 mm
for collagen respectively. Compressive strains were applied in a
strain-rate controlled manner via a piezo driven plate geometry
mounted on a microscope to ensure the same conditions as in
the rheology experiments. A picture of the compression device
is presented in the ESI. The z-stack measurements were
performed after an equilibration phase of 10 minutes after
each compression step. Particle counts divided by the number
of particles per respective slice for the uncompressed control
measurement, plotted as a function of relative height, are
shown in Fig. 6. The relative particle count is visualized as a
heatmap for each compression step. The black lines indicate
the height of the gel, or the position of the compressing plate.
Compressing the gel to 10% and equilibrating results in little to
no deviation of the particle density of the control measurement.
For strains between 20% and 40%, the particle density
increases in the top layers of the gel, indicated by darker blue
shades near the top of the gel, while the bottom layers remain
at a similar particle density. Compressive strain steps exceeding

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 (a) Fluid outflow from the sample visualized by colored liquid.
A fibrin gel at a concentration of 15 mg ml™ was polymerized with a blue
stained buffer. After compression the colored fluid leaves the sample only
from the bottom over a period of minutes. (b) Schematic representation
of fluid flow in our compressed gel samples. The flow in the upper
layer (height hy) is directed downward, while the flow in the lower layer
(height h) is radial. The chemical potential at the middle of the top plate is
denoted by pop and that at the middle of the bottom plate . The lower
layer thickness h; is significantly smaller than the upper layer thickness h;
(h, < hy). These two layers are not to be confused with densified and
rarefied phases that are formed under compression.

40% of the initial height of the gel eventually lead to a general
increase of particles per slice. The densification reaches the
bottom of the gel for strains around 70% for fibrin and 50% for
collagen. We attribute the occurrence of finite values above the
actual height of the gel sample to errors due to reflections on
the plate. The densification reaches the bottom of the gel for
strains around 70% for fibrin and 50% for collagen.

It is evident from Fig. 6 that for small applied strains the
deformation of both fibrin and collagen gels is relatively small
and homogeneous everywhere, while for large applied strains
the gels are densified everywhere. This could be the reason why

Soft Matter, 2025, 21, 2400-2412 | 2407
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Fig. 6 Gel densification of fibrin (a) and collagen (b) upon compressive strains plotted as a heatmap. Counted particles, inserted into a gel by co-
polymerization, in vertical layers via z-stack imaging, reveal a non-uniform densification of fibrin and collagen gels upon successive compressions. The
particle counts are divided by the control measurement, taken after polymerization and in an uncompressed state. Compressive strains, applied at a strain
rate of 10 um s~ result in a gel densification in the upper layers of the gel, indicated by increased particle densities at the respective upper part of the gel
(near the top plate indicated by the black bar), while the lower layers, where the values do not deviate from the control measurement, stay unaffected.
An alternative representation for these data is shown in the (ESIf) Fig. 5. From these data we conclude the existence of two compartments on

compressed gels.

the continuum model performs well for low applied strains, in
addition to the fact that our choice of G, for both materials is
based on the experimentally measured small strain shear
modulus. For intermediate applied strains the FE simulation
predicts a smoothly varying strain, but experiment shows that
the strain profile is heterogeneous with both gels divided into
two compartments. The region adjacent to the top plate is
densified with a smaller pore size than the initial reference
state, while the region adjacent to the bottom plate is rarefied
with pore size close to that of the initial reference state. In
open cell foams such densification occurs due to progressive
buckling of struts leading to the collapse of pores and contact
between neighboring buckled struts in the densified phase.*®?®
Similar micro-buckling of fibrin fibers in compressed fibrin
gels was demonstrated using confocal microscopy in Kim
et al."® which shows that the same physics as in fluid-filled
foams is also applicable in fibrous gels. An interface separates
the densified and rarefied regions of the gels, and it moves
toward the bottom plate as more compression is applied. At the
end of each relaxation step when the gel is at equilibrium and
the compressive stress is uniform everywhere in the gel there
are two different micro-structural states of the fibrin or collagen
network that co-exist. The coexistence of phases and a moving
interface (or phase boundary) separating them is characteristic
of martensitic phase transitions.>* The 3D continuum model
described above cannot capture the co-existence of densified
and rarefied phases of the fiber network or the moving inter-
face seen in experiment which is why it performs poorly for
intermediate applied strains. However, a 1D continuum model
based on a multi-well free energy density captures many
features in the cyclic stress-strain response (including hyster-
esis) of fibrin gels as discussed in detail in Liang et al.”” and
Sun et al.>® In the following section we show that a model based

2408 | Soft Matter, 2025, 21, 2400-2412

on the co-existence of phases can also account for the depen-
dence of permeability on the applied compressive strain in
our gels.

2.5 Simple model for permeability of heterogeneous fibrous
gels under compression

To understand better the flow of fluid in our compressed gels
we performed experiments on gels in which the fluid was
infused with a blue dye (Fig. 5(a)). The sample was immersed
in clear fluid before compressive strain steps were applied so
that the blue fluid draining out of the gel could be clearly seen
after each strain step. Surprisingly, it was found that after each
compression step the blue fluid emerged from the gel through
the lateral surface very close to the bottom plate and not over
the full height of the cylindrical sample (see bottom panels in
Fig. 5(a)). This suggests that after each compression step fluid
flows from top to bottom in most of the cylindrical sample and
it turns outward and drains from the periphery only when it
reaches the impermeable bottom plate. A schematic figure
depicting this flow pattern is shown in Fig. 5(b). Fluid flow is
downward over current height 7, of the compressed sample,
while it is radial over a thin layer of current height h, of the
sample. The vertical fluid flux assumed constant all over the
circular cross-section can be approximated as:

_& :“top — Hbot

Qv = n hl 3

(16)

where we assume that the chemical potential is ¢, at the
center of the top plate and it is ppc at the center of the bottom
plate, that the chemical potential gradient is uniform along the
radial direction and K, is a Darcy constant for the vertical
direction. The radial outward flux of fluid through the thin

This journal is © The Royal Society of Chemistry 2025
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layer near the bottom plate can be approximated as:

_Kn oot
nor’

On = (17)

where we have assumed that the chemical potential on the
boundary is 0 and Kj, is the Darcy constant for radially outward
flow. By mass conservation all the fluid that is flowing down-

ward is draining out through the lateral surface so that Q,nr? =

dv
20nmrhy = T where V(¢) is the current volume of the com-

pressed sample. Then, mass conservation gives us the following
relation between K, and Kj:

I Hi )
Ky=K—|—2-1],
! 2hihy (ubm

Thus, the experimentally obtained Kj, is related to the vertical
permeability K, and both of them depend on the applied
compressive strain ¢. In what follows we compute K(¢); later
we will exploit the relation between the measured Kj, and the
computed K, to understand the permeability of compressed
fibrin and collagen gels.

We showed in the previous section that under compressive
loads the gel undergoes a phase transition that leads to the
formation of a rarefied and densified phase that co-exist at the
same stress. The rarefied phase consists of mostly straight
fibers with some contacts while the densified phase consists
of bent and buckled fibers with a large number of contacts. The
two phases are separated by a relatively sharp interface that
nucleates at the top plate and moves toward the bottom plate as
more strain is applied. This interface divides the gel into two
compartments with the densified phase on top and the rarefied
phase on the bottom. The pore size in the densified phase is
smaller than that in the rarefied phase. This should result in
different permeabilities, or Darcy constants, yet the previous
continuum theory could not account for this because the strain
varied smoothly from top to bottom in those calculations. The
rarefied-to-densified phase transition does not play a role in the
permeability expressions of Wufsus et al.,* either, since they
make fibrin gels of different solid volume fraction not by
applying compressive load but by changing the initial fibrino-
gen concentration. Our goal in this section is to present an
analytical model to account for the heterogeneity of deforma-
tion in our fibrous gel and its effect on the overall permeability.

We have assumed that the fluid flux in most of the gel,
especially in the neighborhood of the axis of the cylinder, is
downward. We know that the gel is divided into a densified
compartment of height #y near the top plate and a rarefied
compartment of height #, near the bottom plate. The compres-
sive stress in the gel is the same in the densified and rarefied
phases since the major part of the stress is relaxed after a
compression step when the flux measurements are made. In
the same way, the flux across the cylinder cross-section is the
same for the two compartments and is given by Darcy’s law.
Assuming that the chemical potential gradient in each of the

(18)
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two phases is constant:

K K
Q= (ut — tp) = — it — 1)
nhy

—an (19)

where (i, U, and up, are the liquid chemical potentials at the
center of top plate, bottom plate and at the rarefied-densified
interface, respectively. Here, K4 and K, are permeabilities in the
densified and rarefied phases, respectively. We can eliminate
Um between the two equations for Q and get

he )
\K &)
n

. (20)

0= My = [y)-

The above equation is in the form of Darcy’s law with an
effective permeability K¢ given by:
H - hd 11;

I

Kot Ki K

(1)

where H is the undeformed height of the specimen.

Kegr is nothing but K(e), so our goal is to find a simple
formula for K.¢(e) where ¢ is the applied strain. The constants
K4 and K, depend on the average fiber radius a and the solid
volume fraction as:

K = azf(d)r)’ Kq = azf(d)d)v

where f(¢) is known from the following expressions given in
Wufsus et al.>® For example, f(¢) could be f;(¢) from eqn (14).
We also use

(22)

3 (—log ¢ — 0.931).

Sr(d) =304

(23)

Other expressions for f(¢) given in Wufsus et al. also capture
the trend in permeability as a function of solid volume fraction
quite well. For the solid volume fractions in the densified and
rarefied phases, we take (to a first approximation)

) b0

S l—eg S l—g

bq

¢ (24)

where &4 and ¢, are the compressive strains in the densified and
rarefied phases, respectively and ¢, is the solid volume fraction
in the undeformed configuration of the gel. The expressions
above assume that the Poisson effect in the network is negli-
gible so that volume change is dominated by the axial com-
pressive strain. This is certainly true of the collagen gel in our
experiments. Assuming that rarefied phase occupies the region
0 < z < s in the undeformed gel and the densified state
occupies the region in s < z < H in the undeformed gel we
can write:

H(l — &) =R+ ha=s(1 — &)+ (H—s)(1 - ea), (25)

where ¢, and ¢q4 are strains in the rarefied and densified phase,
respectively, corresponding to a stress g, which is the Maxwell
stress for the phase transition from rarefied to densified phase
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of the fibrous network. Eqn (25) can be solved for s to give

&—&4

S:Har—sd' (26)
Using eqn (25) for 4, and A4 in eqn (21) we get
s s
w1 (5w ()
Kv (5) Ket‘f Kd I(r7

where s can be computed in terms ¢ and H using eqn (26). We
will take ¢, to be the strain at which the phase transition begins
and &4 is the strain at which it ends. In other words, the entire
fiber network is in the rarefied phase for ¢ < ¢, and the entire
network is in the densified phase for ¢ > &4. Typically, &; & 0.05
and &g & 0.6 for fibrin gels. For ¢ < ¢ and ¢ > ¢4 the effective
permeability is simply given by Keg(e) = a’f(¢) with ¢ = #.
Kh & —¢
together
Kn(0.1) 08

remembering that K,(0) =

In Fig. 3 we plot the experimentally obtained
K, (¢)
K(0)
K (0) due to isotropy. We have used both f;(¢) (eqn (14)) and f5(¢)
(eqn (23)) with very similar results. Remarkably, the two quan-

with the theoretically computed

. . 272 .
tities agree with each other suggesting that L(M“’p - l) in
o \ ot

eqn (18) does not vary much with applied strain.

3 Discussion

With an experimental setup specifically designed to investigate
poroelastic effects in soft biomaterials we revealed complex
structural behaviors exhibited by fibrin- and collagen-based
gels undergoing compressive deformations. The setup we
designed can be transferred to a theoretical model of large
deformation poroelasticity through the boundary conditions;
we perform finite element calculations based on this model to
capture qualitative trends in the stress, volume change and
relaxation behavior of the gels. Our setup integrates compression
rheology with camera-facilitated shape detection and provides
insights into the dynamic responses of fibrin gels to deformations
over a broad range of applied compressive strains. We observed a
nonlinear behavior of permeability for successively compressed
gels, indicative of flow properties governed by the morphology in
network structure. Theoretical modeling based on the finite
element method (FEM) showed that a homogeneous deformation
field captures some but not all observations in our experiments.
The deviation of the modeling from experimental data was
particularly clear in the intermediate compression regime. The
predictions from the finite element calculations agreed well with
experiments for strains below 0.25 for both fibrin and collagen
gels. For fibrin gels the predictions of peak stress after steps at
strains > 0.6 agreed well with experimental measurements. The
volume decrease and magnitude of stress relaxation was under-
predicted in finite element calculations over most of the applied
strains for both gels. This motivated us to assume a heteroge-
neous deformation field and the emergence and disappearance of
distinct densification regimes within the gel to capture the trends
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in permeability. We confirmed the model assumptions about the
coexistence of two phases that differ in density in the intermediate
compression regime by means of fluorescence microscopy.
Utilizing fluorescent microspheres as tracers, we unveiled densi-
fication along the height of the gel. This compartmentalization
underscores the heterogeneous nature of mechanical responses
within soft biopolymer networks, related to previous rheological
measurements of response to compression®*>> and potentially
influencing various physiological processes. This result also calls
for more sophisticated continuum energy densities and allied
computational methods which allow for the coexistence of multi-
ple phases. Unraveling the intricate interplay between mechanical
forces, structural properties, and fluid flow behavior in biopoly-
mer networks, particularly fibrin- and collagen-based gels, will
enable future experimental advancements to improve mass trans-
port through native and engineered biomaterials.

4 Materials and methods
4.1 Fibrin purification and preparation

Fibrinogen from individual cow plasma was prepared with
modifications to the Capet-Antonini method as described by
Mosher and Blout.’® Eight parts of cow blood, mixed with 1 part
of 0.1 M sodium-EDTA (pH 7.0), underwent two centrifugations
at 5000 x g for 20 minutes each to remove cells. Barium sulfate
(100 g 17") and &-ACA (6.5 g 17') were added, stirred for 1 hour,
and the supernatant collected by centrifugation. Solid ammo-
nium sulfate (129) g 17" was added at 4 °C, yielding a precipitate
collected by centrifugation, washed with 25% saturated ammo-
nium sulfate, and dissolved in 0.05 M sodium phosphate,
0.01 M sodium-EDTA (pH 6.6). A second ammonium sulfate
precipitation yielded a white precipitate, dissolved in 0.01 M
Tris, 0.1 M sodium chloride (pH 7.4), and dialyzed. After cooling
to 0-1 °C, &-ACA and ethanol were added to solutions of 0.1 M
and 7% respectively, and the resulting precipitate dissolved in
0.01 M Tris, 0.01 M sodium-EDTA, 0.1 M sodium chloride
(pH 7.4). To separate fibrinogen from fibronectin the solution
was applied to a column of Sepharose 4B equilibrated with
0.05 M Tris/HCL pH 7.5, containing 5 mM benzamidine and
0.02% (w/v) sodium azide. After eluting and equilibrating the
column with this buffer the gelatin-Sepharose was washed with
1000 ml of the equilibration buffer, 1000 ml of 1 M NaCl in the
same buffer and 400 ml, 0.2 M arginine buffered with 0.05 M Tris/
HCI, pH 7.5 in this order. The obtained fibrinogen solution was
aliquoted and frozen at —80 °C. Fibrinogen was polymerized to
fibrin gels by adding 6.4 units per ml thrombin and 10 mM CacCl,.

4.2 Collagen preparation

Collagen type 1 from calf skin was purchased from MP Bio-
medicals, USA. A stock solution of 15 mg ml~* was prepared by
dissolving lyophilized collagen in 0.02 M acetic acid on a rocker
at 4 °C for 48 hours. Collagen samples were prepared to total
volumes of 22.5 ul by neutralizing the pH with sodium hydro-
xide and adjust the buffer conditions to 1x PBS at pH 7.2.
Collagen samples were polymerized for 1 hour at 37 °C in a cut

This journal is © The Royal Society of Chemistry 2025
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syringe with a radius of 2.68 mm to match an initial height of
1 mm at a total sample volume of 22.5 pl. After polymerization,
collagen gels were crosslinked with glutaraldehyde by adding
50 ul of 0.5% glutaraldehyde on top of the gel in the syringe and
rested for at least 2 hours.

4.3 Rheology and camera-supported flow determination

Compression rheology measurements were performed with a
dynamic shear rheometer (Discovery HR20, TA Instruments,
USA) and a plate geometry with a diameter of 20 mm. The
bottom plate was replaced by a transparent glass surface to
enable camera detection as described in Section 2. The initial
gap size was set to 1 mm. Fibrin was polymerized between the
plates for 30 minutes at room temperature after initiating
polymerization by adding thrombin (at a stock concentration
of 80 units per ml) to a final concentration of 6 units per ml and
10 mM of CaCl,. Tris buffer was used to get to a final volume of
22.5 pl, which corresponds to an initial gel diameter of 2.68 mm
for the respective initial height of 1 mm. After 10 minutes of
polymerization, the fibrin gel was surrounded with 1x Tris
buffer to prevent interfacial elasticity artefact, prevent evapora-
tion and improve imaging. Polymerization was monitored with
a dynamic time sweep with one measurement point every
10 seconds at a frequency of 1 Hz and an applied shear strain
of y = 5%. After the sample was polymerized, a sequence of axial
compression strains was applied by lowering the upper plate
with a set strain rate of 10 um s~ " while measuring the normal
force response. Between compression steps, a stress relax test
was used to monitor the relaxation behavior of the normal
force. The relaxation after compression was monitored for
10 minutes after a 10% compression step and 5 minutes after
a 5% compression step. During and after compression the
sample’s cross-section was monitored using a Moticam S20
high resolution camera at a frame rate of ~5 fps. The change of
cross-section area was calculated by transferring the acquired
video to a series of binary images and counting the pixels for
each frame using Image] plugins. A self-written Python script
was used to synchronize and process both the data from the
rheometer as well as the camera data to determine permeability
defining parameters as well as mechanical properties.

4.4 Fluorescence microscopy

Fluorescence microscopy was used to determine the density of
microspheres along the vertical axis of the gel sample. Fibrin
was polymerized in presence of a 1/1000 solution of 4 um sized
fluorescent labeled sulfate microspheres (Invitrogen Fluo-
Spheres) between a Petri dish sitting on the microscope sample
holder and an 8 mm methyl methacrylate plate. To ensure
reproducibility and to enable a uniform particle distribution by
fast polymerization, the same preparation protocol was used as
for the rheology experiment. The plastic plate was mounted on
a piezo driven stage to enable rate controlled compressive
deformations (see ESIt). Compressive strains were applied in
10% steps at a strain rate of 10 um s~ " by lowering the piezo
stage in fast successive 20 nm steps. After compression and
prior to the z-stack measurement, the sample was equilibrated

This journal is © The Royal Society of Chemistry 2025
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for 10 minutes. A z-stack measurement with a vertical step size
of 10 nm was performed to capture the number of micro-
spheres per slice.
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