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Diffusive evaporation dynamics in polymer
solutions is ubiquitousf

a
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and Davide Marenduzzo (2 *@

Recent theory and experiments have shown how the buildup of a high-concentration polymer layer at a
one-dimensional solvent—air interface can lead to an evaporation rate that scales with time as t742 and
that is insensitive to the ambient humidity. Using phase field modelling we show that this scaling law
constitutes a naturally emerging robust regime, diffusion-limited evaporation (DLE). This regime
dominates the dynamical state diagram of the system, which also contains regions of constant and
arrested evaporation, confirming and extending understanding of recent experimental observations and
theoretical predictions. We provide a theoretical argument to show that the scaling observed in the DLE
regime occurs for a wide range of parameters, and our simulations predict that it can occur in two-
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1 Introduction

Solvent evaporation from concentrated solutions or suspen-
sions is an omnipresent phenomenon. The apparent simplicity
of this process is deceptive: it is in fact ridden with complica-
tions due to the interaction between multiple components and
the environment, leading to complex and fascinating dynamics.
Such dynamics can in turn fundamentally alter the evaporative
behaviour. Its understanding is therefore important for design-
ing or controlling any process that involves drying. For
instance, evaporative dynamics controls the application of
paints and inks, where the formation of a defect-free skin upon
drying is desired." It is also important in food preservation,
where moisture content reduction increases shelf-life, but may
also adversely affect flavour or texture.> Due to such practical
applications and fundamental interest in the dynamics of
multi-component complex systems, the physics of evaporating
polymer solutions and colloidal suspensions has inspired
numerous investigations.*”’

A number of these pertain to quasi-one-dimensional eva-
poration from the open end of a long capillary. In this geome-
try, the phase behaviour of aqueous lipid solutions can respond
to varying ambient water activity a. (equivalently, relative
humidity) in such a way as to render the evaporation rate
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dimensional geometries as well. Finally, we discuss possible extensions to more complex systems.

It is suggested that in this
~ t—1/2

practically independent of a..’
regime, the mass flux is diffusion-controlled, Jevap
A similar regime was predicted theoretically by Salmon et al.®
They argue that the evaporation-induced advective flux causes
the growth of a concentrated ‘polarization layer’ at the inter-
face, leading to mass loss increasing with the square root of
time, hereafter referred to as diffusion-limited evaporation
(DLE). However, the stability range of this DLE regime in
parameter space was not explored because current calculations
assume diffusional dynamics.

We have recently tested the predictions of Salmon et al., and
observed a regime of a. -independent evaporation in which the
rate decreases as t “2.°® We also found a transition from
constant evaporation rate at early times to this ¢t~ regime,
consistent with the building up of a polymeric ‘polarisation
layer’. The inclusion of elastic effects from the formation of a
very thin ‘gelled skin’ right at the air-solution interface®"’
improves the agreement between theory and experiments.

On general grounds, we expect that Jeyap ~ ¢t~ should only
be one of at least three dynamical regimes of mass loss in an
evaporating polymer solution. At very low polymer concen-
tration, we should approach pure solvent evaporation, where
the mass loss m(t) ~ ¢, giving a constant evaporation rate. In
the absence of any evaporative driving force, for instance when
the air is saturated with solvent, we expect m(f) ~ t°. So, we
expect that DLE, where Jevap ~ t 2 or m(t) ~ t'%, represents an
intermediate regime. Surprisingly, however, this is the only
behaviour observed experimentally to date at long times.>®"
Why this is so is currently a puzzle.

Here we set up and investigate a one-dimensional conti-
nuum phase-field model for evaporation of a polymer solution,
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where the evaporation is hindered by the polymer. We indeed
find three main evaporative regimes that transition into one
another, with predictions for the diffusive regime that agree
with other studies to date. Importantly, the DLE regime dom-
inates the predicted state diagram of the system. We character-
ise the generic nature of this regime and propose an argument
to explain why it is so pervasive. The physical picture that
emerges is a simple one. A polymer layer grows from the
interface into the bulk solution. When this layer becomes
concentrated enough to act as a ‘porous plug’, Darcy solvent
flow through this layer is the rate limiting step, so that the
evaporative dynamics becomes diffusive. Finally, we show how
the model can be extended to higher dimensions, or to study
more complex systems such as aerosol droplets, important in
respiratory virus transmission, or multilayered paints and
coatings.

2 Methods

2.1 A phase field model for evaporation

Our phenomenological model consists of two phases, inside
the drop and outside (= the atmosphere), connected through a
continuous interface, with periodic boundary conditions (see
ESIf for details). Two continuum fields are considered. The first
of these is the order parameter ¢. In phase field modelling, the
field ¢ is used to distinguish between two phases, for instance
indicating a change in orientational order."> In our model
¢ represents the total volume density of the droplet, that
differentiates the droplet phase with a higher value of ¢, from
the surrounding air, with a lower value of ¢. The second field, c,
represents the concentration of polymer, and is in practice non-
zero only in the droplet phase. Note that ¢ and c¢ have
dimensionless units. Inside the droplet ¢ ~ ¢4, and ¢ has
some finite value, with ¢ = ¢, < ¢, initially. We follow the phase
field convention that ¢; = 1 inside the drop, and note that
therefore our model is fundamentally different from a two-fluid
model, as ¢ + ¢ # 1. Outside the drop, there is no polymer
(¢ ~ 0), and the droplet phase field has some finite value
¢ ~ ¢o < ¢q: this phase represents ambient air, with ¢, the
equivalent of the relative humidity.

The dynamic evolution of these fields is governed by
chemical potential gradients around the interfaces, stemming
from a coupled free energy density f(¢,c). The two fields
themselves are coupled through a convective term v(¢,c). Each
phase field is described by a modified Cahn-Hilliard equation
with an additional evaporative term:**

¢

T (1a)

% T () =V [Me(0) Vi),

Y (1b)

where note that ¢ is not conserved, whereas ¢ is conserved
globally. This model requires that the total volume density
inside the droplet, where ¢ = ¢4, and outside the droplet, where
¢ = ¢y, are essentially constant, such that ¢ is only lost around
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the interface where V¢ # 0, Fig. 1b. A nearly constant value for
¢ in the bulk of different phases is common to phase field
modelling,’* and we suggest that this is also a reasonable
assumption to describe the physics in our model, as dissolved
polymers in solution have a comparable density to pure water,
while the volume density of the water in the (well-mixed)
ambient air is approximately constant and should only vary
in a small region right next to the interface of the evaporating
solution. The constant volume density inside the droplet ¢,
also means that the internal droplet dynamics are conserved.
Furthermore, in eqn (1) M, is the mobility of the phase field ¢,
which we take as a constant, while the polymer mobility is
My
1+ fe
constant polymer mobility leads to qualitatively similar eva-
poration dynamics, which was also observed in ref. 6.

The quantity v; is the interfacial velocity of the evaporating
droplet. Physically, the driving force for evaporation is the
interfacial water activity difference.'* In the absence of poly-
mer, it was suggested that this can be represented by a gradient
in ¢," leading to v; ~ V¢. In our model, as the water activity
inside the droplet reduces with increasing presence of polymer,
an increasing polymer concentration ¢ should reduce evapora-
tion. Therefore we take the phenomenological expression
v; = yV(¢ — (y'/y)c), with the parameters y determining the
relative importance of evaporation to the phase fields and y’ the
contribution of ¢ to reducing evaporation. In the droplet with
binary composition, V(¢ — (y'/y)c) is the effective solvent
gradient leading to evaporation. We note that this expression
is only valid for evaporation if ¢ > (y'/y)c, and that the
expression is similar to those used in other models in terms
of water activity® or partial pressure.> Using an alternative
expression, where the interface velocity also depends on the
local phase field as v; = ¢ x yV(¢ — ('/y)c), gives similar results
in the same parameter range, with a slight renormalization, as
we show in the ESL{ Finally, v = —v; in eqn (1b) is the water
velocity which advects the polymer towards the interface. Inside
the droplet V¢ # 0, so in eqn (1b) there exists a convective flux
of polymer towards the interface, which is the evaporating
solvent flux to the interface, compressing the polymer.'® This
is not the case in eqn (1a), as inside the droplet V¢ = 0, hence
the dynamics there is purely diffusive.

The term driving droplet evaporation is therefore v;V¢ at
the droplet-air interface, which leads to droplet shrinking.

concentration dependent, M;(c) = . We note that using a

Interestingly, in the absence of ¢, this has the form of a square
gradient term, similar to the key nonlinearity in the Kardar-
Parisi-Zhang (KPZ)'” equation, but with the opposite sign with
respect to the one normally considered for growing interfaces.

The local chemical potential u is derived from the free

OoF i
energy density f as u, = 5 = % -V % for the solvent
_OF _of of .
and . = Se a0 V. Ve for the polymer. We note that in

phase field modelling, it is common practice to use a free
energy landscape f(¢,c) of the phase fields ¢ and ¢ to generate
physically appropriate chemical potential terms that describe
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the evolution of the phase fields in eqn (1a) and (1b)."* This
definition of ¢ and c¢ as phase fields is different compared to
theoretical treatments such as Landau-Ginzburg theory, that
use thermodynamic density fields. We use a Landau-like free
energy density for the phase fields ¢ and ¢ as

S($,6) = G(d = b6~ ) + VP
+ V=T +e5E )
+ G(x)%(c — )+ %cz +[2 4

The first term ensures that the system separates into a
solvent-rich droplet ¢, with polymer (¢ > 0) and a surrounding
vapor phase ¢, that contains no polymer (¢ = 0), so that ¢,
represents the solvent concentration. k4 and x. determines the
bare surface tension of the droplet and polymer. The phenom-

. a, . .
enological term 770(1)262 is necessary to confine the polymer

into the droplet interior, and its form is chosen in analogy to
other types of phase field modelling;"® similar to those types of
models, we expect that different forms favouring polymer
confinement should lead to qualitatively similar results. The

term g(x)a—22c2 penalises the transfer of polymer across the

interface, where g(x) = @(qb(x) —@) is an indicator

function defined in terms of the Heaviside © such that g =0

i1 =% ¢° > ¢(x) and g = 1 otherwise. When c is high enough to

induce gelation, a permanent elastic stress develops, increasing
the osmotic pressure and thereby the chemical potential.’® We
approximate the bulk osmotic modulus contribution with

K
G(x)jg(c — ¢)*,'? where K, is a (constant) bulk osmotic mod-

ulus, ¢, is the gelation concentration of the polymer, and
G(x) = O(c(x) — ¢g) is another indicator function defined again
in terms of the Heaviside @. The remaining terms represent the
virial coefficient for polymer diffusion (b,) and excluded volume
effects of the polymer (b,). We note that eqn (2) should be
accordingly adjusted to be used for modelling other systems
than evaporating polymer-water droplets.

From eqn (2), the system spontaneously phase-separates
into a droplet phase and an environment phase, independent
of initial conditions. We tested this by initializing the system
with a sinusoidal variation of ¢ and ¢ with x, see ESL} and
found that this system quickly phase-separates and stabilizes
into the general profiles seen in Fig. 1b.

Finally, we note that another way to approach the evapora-
tion problem could be to have a two-field (or Landau-Ginzburg)
model, with one field for the interior of the droplet and another
for the exterior, which are joined by a moving boundary
condition. However, the implementation of such a model is
non-trivial. In our implementation of the single phase-field
model the moving boundary, i.e. the interface, is an emergent
feature from the underlying physics. A numerical drawback of
our implementation is that a fine-grained grid is required to

1510 | Soft Matter, 2025, 21,1508-1515
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resolve the interface structure. For one-dimensional and
radially symmetric problems this is not an issue, but such
limitations might become more relevant for systems with
increased spatial heterogeneity. Another numerical cost is the
need to construct a sufficiently elaborate phase-field model that
captures all the relevant physics, which leads to a relatively
large amount of numerical parameters in the governing equa-
tions. This is, however, expected to be similar compared to
moving boundary problems, where multiple numerical para-
meters are also likely to be required to correctly describe the
physics in the system. For our phase-field model, we have
thoroughly explored the relevant parameter spaces, for which

our findings are robust.

3 Results and discussion
3.1 Unidirectional drying in 1D

We solve a 1D version of our model with periodic boundary
conditions using the computational procedure provided in the
ESI,1 and defining the origin of the x coordinate to be in the
middle of the droplet. For the case of ¢; = 1, ¢y = 0.1, ¢ = 0.2
and y’/y = 1.50, Fig. 1a shows the polymer ¢(x,t) in the right half
(x > 0) of the droplet at a series of time points, while Fig. 1b
plots the profiles of ¢ and c in the full droplet at time ¢ = 1800.
These results agree qualitatively with previous work.” As the
drop shrinks, a peak in ¢(x,t) develops just within the interface -
a ‘polarisation layer’. When the peak height, H(¢), reaches c,,
the peak stops growing and flattens into a plateau of increasing
width, L(¢) (Fig. 1a inset), until the concentration in the droplet
is homogeneous and the droplet continues to shrink slowly. We
note that outside the droplet the polymer concentration is not
exactly ¢ = 0, indicating minor leakage of polymer into the
environment. Such minor leakage does not significantly affect
the overall evaporation dynamics.

To quantify evaporative dynamics, consider the position of
the interface x;, taken to be the position of the peak in ¢(x,t).
Fig. 1c shows a log-log plot of Ax,(¢) = x,(t) — x,(0) = m(¢) by mass
conservation if only solvent leaves the interface. For pure
solvent (¢, = 0), Ax; ~ t, so that J ~ d(Ax;)/dt is constant,
which is a well-known result."* A solvent-polymer mixture
(co = 0.5, with ¢y = 0.35 and 7'/y = 1.50) behaves differently.
After an initial linear regime, the evaporation slows down and
approaches a steady state where Ax; ~ "> and J ~ ¢t %2, as
found by experiments™® and theory.®

3.2 Stability of the DLE regime

To assess the relative stability of the Ax; ~ ¢ and ~t? regimes

and explore the possibility of other forms of scaling, we scan
two parameters. The first, y'/y, regulates the extent to which
¢ reduces the convective evaporation speed - recall
v;=7yV(¢ — (y'/y)c). The second is the phase field value outside
the droplet, ¢,, which is equivalent to relative humidity and
governs the evaporative driving force.

For the exponent « in m(t) ~ t*, the state diagram in Fig. 2a
displays three dynamical regimes separated by relatively sharp

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Dynamic evolution of a unidirectional drying polymer-solvent system in 1D. (a) Time evolution of polymer concentration profiles ¢ in a 1D
polymer-solvent slab during evaporation. The colorbar indicates the time corresponding to the concentration profiles. The x-coordinates are shifted
from the simulation coordinates such that the middle of the droplet is located at x = 0. Inset: Schematic of the initial concentration cq, gelation
concentration cg, width of the polymer layer L(t) (taken as the Full Width Half Maximum) and the peak height of the polymer layer H(t). (b) Snapshot of a
typical simulation profile for ¢ and ¢, at time t = 1800, which corresponds to the red profile of ¢ in panel (a). The x-coordinates are shifted so that the
middle of the droplet is located at x = 0. (c) Evolution of the interface Ax; plotted over time, comparing a system with added polymer to a system of pure
solvent. A log-log scaling is applied to highlight the different long time power-law behaviour. Simulation units (S.U.) for space Ax; and time t can be
converted to physical units by applying the scalings L = 2.5 x 107 mand T = 6.3 x 10~ s, respectively, as presented in the main manuscript.

boundaries, as indicated by the white contour lines. We identify
the pure solvent-like regime (« — 1) in the bottom left corner of
the state diagram and the arrested evaporation regime (o« — 0)
in the top right corner of the state diagram. The DLE regime
where o &~ 0.5 occupies the largest region in the state diagram,
and is therefore the most robust. This is consistent with the fact
that diffusive dynamics is the behaviour typically reported in
experiments to date.

To understand the stability of the Ax; ~ ¢ regime, note
that eqn (1) become diffusion equations in the limit v; — 0.°
The system cannot start in this regime, but can only approach it
asymptotically: having y'/y ~ V;¢/Vc to give v; - 0 (where
V, = gradient at the interface) means no evaporation in the first
place. We therefore need y'/y < V/Vc to confer a finite initial
evaporation rate, which then decreases with time as interfacial
polymer accumulates and the system approaches the diffusive
regime (x = 0.5) asymptotically, Fig. 3a. How fast this happens
depends on the effectiveness of interfacial polymer in reducing
evaporation, which is controlled by 7’.

As y'/y drops, this effectiveness decreases, requiring a larger
polarisation layer that takes longer to establish to approach the
diffusive regime. So, for finite system size and observation time,
there exists a (y'/y)min = ¢ below which the system will not cross
over to Ax; ~ t*? behaviour. We expect ¢ to increase with the
polymer mobility, M.: more mobile polymers require a longer

This journal is © The Royal Society of Chemistry 2025

time to build up a large enough polarisation layer to slow
evaporation. On the other hand, a stronger driving force for
evaporation due to lower external solvent concentration, ¢,
requires the polymer to be more effective in reducing evapora-
tion for diffusive behaviour to emerge; so, ¢ should decrease
with increasing ¢,, as observed, Fig. 2.

We establish that the scaling results from our modelling
approach are insensitive to the exact implementation of the poly-
mer free energy, by replacing the polymeric contribution from a
by
2
sity (eqn (2)) with the Flory-Huggins mean field expression fy(c) =
b1 — ¢n(1 — ¢) + y(1 — c¢), assuming a large degree of
polymerization N >» 1, see ESIf for more details. The resulting
state diagram for varying y'/y and ¢, in Fig. 2b is dominated by a
large region where m(f) ~ ¢>°, indicating DLE, and the transition of
long-times exponents from « =1 to & = 0.5 and « = 0 in m(f) ~ t*is
qualitatively similar between Fig. 2a and b upon increasing y’'/y and
¢o. We note that the boundaries between the evaporation regimes
in Fig. 2b are less well-defined, which is shown by comparing a line
in the state diagrams in the ESL{ We attribute this effect to the
divergence of the term ~1In(1 — ¢) in fry(c) for ¢ — 1, which leads to
increased spreading and therewith slight variations in the settling
interface concentration ¢; < 1, that are likely to depend on the
evaporation driving force, set by ¢,.

. b
Landau expansion fiadau(c) = —-c + Zlc“ to the free energy den-

Soft Matter, 2025, 21,1508-1515 | 1511
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Fig. 2 State diagrams of the « exponent in m(t) ~ t* with varying ¢¢ and
y'/y, in a system with cg = 0.5, using (a) a Landau expansion for the polymer
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free energy frandau(c) =7°c2 +Tlc4 and (b) a Flory—Huggins free energy

fen(c) = bo(l — An(l — ¢) +yc(l — ¢). Countour lines (white) are added to
highlight the transition between the different evaporation regimes.
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To understand the physics underpinning the late-stage,
diffusive regime, note that by this stage, the chemical potential
of the solvent (at partial pressure p) just inside the interface
(where the polarisation layer is at its most concentrated), u(p)|x,
has nearly equilibrated with that of the solvent vapour outside,
and so is nearly constant. At the same time, the solvent
chemical potential in the middle of the droplet, pu(p)|-o, is also
constant. So, there is a constant osmotic pressure difference
driving solvent flow through the polarisation layer towards the
interface, Ap = pl—pr=o < 0 (because u(p)|r, < wp)|x=0)-
Treating the growing polarisation of thickness L(t) as a porous
medium of Darcy permeability & implies the solvent flux
J= —HL—k([)Ap, with 7 the solvent viscosity. In the DLE regime
in steady state, this flux is exactly balanced by the evaporative
flux, which mass conservation requires to be dL/dt, so that we
have dr/dt ~ L%, or L(t) ~ t*?, as also found in a recent
theory®® as well in our numerics (see ESIf). Darcy’s law then
implies J ~ t~/2, consistent with our finding that Ax; ~ ¢/ at
long times (recall that J ~ d(Ax;)/dt), Fig. 1c.

For this physical argument to hold, we require that the rate
of advective polymer accumulation, giving rise to the (growing)
polarisation layer, dominates polymer diffusion which counter-

v;L(t)

acts this buildup, ie. the Péclet number Pezi7>> 1.

Equivalently, this means that the diffusion is slow compared
to the evaporation rate. While this is true at short times, it
seems at least at first sight that this condition will be broken as
late times where navely one might expect Pe — 0 as v; — 0.
However, in the DLE regime, our argument suggests v; ~ 7(t)

~ t 2 L(t) ~ t"2. So in fact at late times Pe ~ ¢°, provided that
M . . N
M. = ﬁ ~ constant. The latter is a fair approximation for
c

systems with f ~ 0.1-1.0 and ¢ ~ 0.1-1.0. Our physical
argument for the diffusive regime at long times is therefore
self consistent, because the balance between advection and

350
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Fig. 3 Diffusion-limited evaporation (DLE) after long times that is independent of the external driving force. (a) Evolution of the exponent o in
m(t) ~ t* over time steps 7 in a system with ¢o = 0.35 and y’/y = 1.5, settling on a time exponent « = 0.5.  is found through power law fitting of m(t) = Bt*
using « = d Inm(t)/d Int. (b) Evolution of Ax; over the square root of time /2, showing independence of the external driving force ¢o. Systems shown are
¢o = 0.7 withy'/y = 0.415, ¢pg = 0.5 with y'/y = 1.00, ¢po = 0.3 with y’/y = 1.85 and ¢ = 0.1 with y’'/y = 2.75. In (a) and (b) simulation units (S.U.) for space and
time are L = 25 x 107 mand T = 6.3 x 107 s, respectively. (c). Evolution of the interface in dimensional units, scaled to experimental data as
AX; = [XIAX;, with [X] = 4.5 x 107> m, and T = [T]t, with [T] = 9 x 10™* s. Simulation dataset is from a system with ¢o = 0.5 with y’/y = 1.00. Experimental
dataset at 50% relative humidity is reproduced from ref. 8.
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diffusion remains constant even as v; — 0. For a final check, we
find Pe ~ 10® > 1 for a typical system in the DLE regime (y'/y =
1.50, ¢ = 0.30), so that, indeed, advection near the interface
dominates over diffusion.

Considering the concentration dependence of our results,
we identify the limiting evaporation regimes of m(t) ~ ¢* for a
varying initial concentration c,. For a system where ¢, — 0, we
expect that DLE never occurs and the system evaporates at a
constant rate (x — 1). On the other hand, if ¢, is sufficiently
high that the system is already at thermodynamic equilibrium
with the environment, evaporation never occurs (¢« — 0). For
any other value of ¢,, we expect to observe the behaviour where
0 < a < 1, which approaches o — 0.5 as long as Pe » 1 and the
system is sufficiently large that a polarization layer can form at
the solution-air interface.

In the diffusive regime, it was previously predicted® that the
mass loss rate should be independent of the external driving
force. For water evaporation into air, the driving force is the
relative humidity a.,'* which for us is ‘tuned’ by ¢,. Plotting m
vs. t'? whilst varying ¢, and y'/y, Fig. 3b, shows that this is
indeed the case in our model.

This is a direct consequence of the fact that interfacial polymer
concentration has reached a constant value, c,, so that it is the
polymer concentration gradient in the polarisation layer rather
than the external humidity that drives water transport. In the theory
of Salmon et al.,° the same physics emerges due to the sharp fall in

water activity at high polymer concentrations, so that the late stage
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interfacial polymer concentration varies very little over a broad
range of external water activities. In both cases, the humidity
independence is necessarily correlated with the emergence of
DLE. However, such correlation is not logically necessary. In our
earlier experiments, the formation of a thin polymer skin at the
solution-air interface due to rapid adsorption also gives rise to
humidity-independent evaporation, but without a porous polarisa-
tion layer, the dynamics is not diffusive.®

3.3 Simulation units and comparison to experimental
systems

We find the simulation units in time (7) and space (L) of our
system, by comparing the simulation parameters in eqn (2) to
measured physical quantities of a water-PVA solution, for which
measurements have been performed in experiments where a
solution evaporates unidirectionally.® Using the units of
the simulation parameters from Table S1 in the ESI{ we
obtain a set of equations for (1) the surface tension
] = /8kpar /9 x E/L*" (2) the diffusion coefficient [D] =
Mob, x L*/T and (3) the osmotic pressure [r] = b, x E/L?, where
E is the unit of energy. Using [y] ~ 0.07, [D] ~ 10 ** (ref. 15)
and [r] ~ 107 Pa,”* we find L ~ 2.5 x 10 °m, T~ 6.3 x 10" ° s
and energy unit £ ~ 1.56 x 10~ 2° J. Finally, we calculate a
dimensional evaporation rate from the slope of a simula-
tion without polymer (¢, = 0.5, ¢, = 0) as Ve, & 2 x 10 °L/T
~ 0.8 um s~ !, which is comparable to measurements in ref. 8.

(b), 1.0
g 0.8
*o.6]
a

< 0.4

0 0.25

0.5

= | | co=0
F 0.2 B o2
o
0.0 :
0 500 1000
10° S.U.
(© 1, Tl ]
208 °,
(0] .
c .
o ’-
50.6—
[\ 2ty
0.4
0 250 500 750 1000

T[10° S.U.]

Fig. 4 Dynamic evolution of evaporating droplets in 2D. (a) Snapshots of the time evolution of polymer concentration c in a 2D evaporating droplet, with

co=0.2,¢g=035andy'/y =

0. (b) Evolution of the log-corrected area D? In[(L,/D) + 0.5]/G of the system in (a) plotted over time, comparing a system

with added polymer to a system of pure solvent. (c) Evolution of the exponent ¢ in D?In[(L,/D) + 0.5] ~ t over timesteps 7 in a system with ¢ = 0.35 and
y'/y = 3.0, settling on a time exponent ¢ = 0.5. { is found through power law fitting using ¢ = d In[1 — (D?)n[(L,/D) + 0.5]/Gl/d Int. In (b) and (c) simulation

units (S.U.) for space and time are L =25 x 107 mand T= 6.3 x 107°
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To establish that our simulations are representative of
experimental data, we map our results to the data from ref. 8
in Fig. 3c. We find excellent agreement between these two
systems by scaling our simulation data to dimensional units
as AX; = [X]Ax; in meters [m], where [X] = 4.5 x 10~> m, and
T =[T]t in seconds [s], where [T] =9 x 10~ * s. It should be noted
that these scalings are much higher than the simulation units
in the system, which can be attributed to the experimental
system being much larger than we can reasonably simulate, but
that the ratios L/T ~ 0.05 and [X]/[T] &~ 0.043 are consistent.

3.4 Extensions of the model to more complex systems

One of the major advantages of our phase field model is the
ease with which it can be adapted to more complex systems and
used to explore higher dimensions. Fig. 4a shows the evolution
of a 2D evaporating drop geometry for a system with ¢, = 0.2,
¢o = 0.35 and y'/y = 3.0. As in 1D, a concentrated polymer layer
forms at the droplet-air interface over time.

For 2D or 3D droplets of diameter D evaporating in an
unconfined environment, D* ~ t, so that the evaporation rate is
constant.”® However, solving the same problem in a confined
system with a constant solvent chemical potential imposed at
the system’s boundary leads to deviations from this ‘D> law’. If
viscous and buoyancy effects can be neglected, theory*® pre-
dicts that in a 2D finite system of this kind,

D*In[(L,/D) + 0.5]/G =1 — Ct, (3)

where L, is the size of one axis of the system, C is a constant and
G = D3In[(L,/Dy) + 0.5]. Over the course of the simulations that
give the results shown in Fig. 4, the value of ¢ at the (periodic)
boundaries increases by < 2%, so that we may expect eqn (3) to
hold to a good approximation.

Our data for the evaporation of a pure solvent droplet,
Fig. 4b, (blue; ¢, = 0) indeed agree with eqn (3), as apparent
from the approximately linear evolution of D* In[(L,/D) + 0.5]/G
with ¢. However, in a system with added polymer, deviations are
observed, Fig. 4b (green, ¢, = 0.2), which recall Fig. 1c. We
therefore fit these data to a power law with a running exponent
{, D*In[(L,/D) + 0.5] ~ ¢. The resulting {, Fig. 4c, clearly recalls
Fig. 3a for the 1D case.

So, while a full study of the 2D case is beyond our scope, it
seems reasonable to surmise that the state diagram in this case
should also display a robust diffusive regime, provided that Pe
is high enough. Previous experiments have demonstrated
ambient humidity independent evaporation of droplets con-
taining large glycoproteins,”® which is consistent with our
surmise.

4 Conclusions and outlook

In summary, we have applied a phase field modelling approach
to study the evaporative dynamics of a polymer-solvent mix-
ture. Whilst our approach is phenomenological, rather than
being derived from rigorously coarse-graining a microscopic
theory, we expect it to describe the system in a qualitatively

1514 | Soft Matter, 2025, 21, 1508-1515

View Article Online

Paper

accurate way, in line with previous work on phase fields. Our
key result is that the DLE regime, where evaporation rate decays
with time as ¢~/ is a robust dynamical regime found over a
range of parameter values. We rationalise this scaling with a
simple mathematical and physical argument, according to
which the —1/2 exponent is due to a diffusive growth of the
polymer layer, and a Darcy flow of the solvent due to the
ensuing pressure difference close to the droplet-air interface.
For this argument to be self-consistent, the Péclet number Pe
should remain high and nearly constant, to achieve a non-
equilibrium steady state where advection dominates over diffu-
sion at all times. We show that this requirement is, perhaps
surprisingly, indeed met.

Our model is in quantitative agreement with previous
theoretical and experimental results, including a near-
independence of evaporation rates on relative humidity in the
DLE regime. Such agreement gives confidence for applying this
phase field model to study solvent and solute transfer in more
complex systems and geometries. We have shown preliminary
results for the evaporation of a 2D droplet to demonstrate this
potential. Possible future applications include dissolution pro-
cesses (e.g., making instant coffee) and the drying of multi-
layers involving multiple solvents and solutes (e.g., oil
paintings®®). In the latter case, our approach has the added
advantage that no assumptions need to be made on the phase
of layers and/or the location of the interface over time.
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