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Rigidity transitions in anisotropic networks:
a crossover scaling analysis

William Y. Wang, *a Stephen J. Thornton, a Bulbul Chakraborty, b

Anna R. Barth, a Navneet Singh, a Japheth Omonira,a Jonathan A. Michel,c

Moumita Das, c James P. Sethna a and Itai Cohen ad

We study how the rigidity transition in a triangular lattice changes as a function of anisotropy by

preferentially filling bonds on the lattice in one direction. We discover that the onset of rigidity in

anisotropic spring networks on a regular triangular lattice arises in at least two steps, reminiscent of the

two-step melting transition in two dimensional crystals. In particular, our simulations demonstrate that

the percolation of stress-supporting bonds happens at different critical volume fractions along different

directions. By examining each independent component of the elasticity tensor, we determine universal

exponents and develop universal scaling functions to analyze isotropic rigidity percolation as a

multicritical point. Our crossover scaling approach is applicable to anisotropic biological materials (e.g.

cellular cytoskeletons, extracellular networks of tissues like tendons), and extensions to this analysis are

important for the strain stiffening of these materials.

1 Introduction

Rigidity percolation in central-force lattice models has emerged
as an important tool for modeling structural networks in cells
and cellular tissues.1–4 Such central-force lattices consist of
harmonic springs connecting nodes. The network is randomly
filled by introducing springs between nodes to achieve a
density p, which denotes the fraction of occupied bonds in
the network. At low bond occupation, the bond network does
not span the entire system. As p increases, the network under-
goes a percolation transition where a cluster of bonds can now
span the entire network. This tenuous cluster can only support
stresses if there are angular forces between bonds.5 In many
practical scenarios, such bond bending forces are small com-
pared with bond stretching. In such cases, the contribution to
rigidity from bond bending is ignored. In this scenario, the
network remains floppy until p reaches the so-called rigidity
percolation threshold where bond stretching is activated under
infinitesimal deformation of the network.

Rigidity percolation has been well studied in isotropic net-
works under different bending and stretching constraints.6–8

However, less is understood about anisotropic networks.

Anisotropic networks occur naturally in many biological tissues,
such as bone9,10 and tendon,11,12 both of which are composed of
collagen fibrils oriented strongly in some direction. Anisotropy is
expected to alter the onset of rigidity percolation, which is
known to be sensitive to details of the bond distributions. For
example, previous work has shown that including structural
correlation within isotropic networks can result in significant
changes in the critical bond occupation threshold for rigidity
percolation.13,14 Furthermore, studies have shown that straining
a percolated but floppy network, such as by shearing it in one
direction, can drive a rigidity transition.15 For example, straining
the network preferentially along the maximum extension axis
activates bond stretching, which rigidifies the network. Finally,
previous computational studies have also modeled anisotropic
networks through an anisotropically diluted triangular lattice
and found that the onset of rigidity agrees well with a simple
Maxwell constraint counting argument and that the system
can be approximated using an effective medium theory (see
Zhang et al.2). Missing from these analyses, however, are detailed
investigations of whether the critical exponents and scaling
functions characterizing the rigidity transitions depend on these
details of the bond distributions. Measuring the critical expo-
nents and how they depend on the bond distributions is critical
for determining whether such mechanical phase transitions
are in the same universality class, which informs the relevant
physics governing these transitions. Understanding this
physics is an important step for learning how to control these
transitions in materials ranging from biological tissues to syn-
thetic fiber networks.
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Here, we will examine the critical exponents and locations of
phase boundaries in anisotropic networks. Though our model is
quite similar to ones previously investigated,2 we find slightly
different critical exponents for the isotropic rigidity percolation
transition. Remarkably, we also discover that when we tune away
from isotropy, the network exhibits two rigidity transitions. The
first is associated with the component of the strain tensor for
stretching along the preferential filling direction. The second
rigidity transition is associated with the remaining components
of the strain tensor. As such we find that the isotropic rigidity
transition is a multi-critical point from which anisotropic rigidity
transitions emanate (Fig. 1). It is unclear whether this intermedi-
ate, infinite anisotropy elastic phase will be present for generic
lattices (see Section 4), but similar infinite anisotropy mechanical
responses should arise in strain-stiffened networks (see Fig. 4).

2 Methods
2.1 Model for anisotropic rigidity percolation

We generate triangular lattices (coordination number z = 6) of
L2 sites and periodic boundary conditions in both directions.
Bonds are diluted based on their orientation, where p denotes
the fraction of occupied bonds in the network. Anisotropy is
introduced during lattice generation by filling bonds preferen-
tially based on their orientation. We define the ratio r as the
probability of bond occupation along the horizontal direction
divided by the probability of bond occupation in the other two
independent directions. We then build lattices using methods
similar to those previously developed (see Appendix A for details)
and investigate the regime where r Z 1. Importantly, we are able
to adjust r without changing p, which allows us to shuffle bonds

and investigate how long-wavelength anisotropy affects the scal-
ing of moduli in equally dense networks. In these coordinates,
r = 1 represents a completely randomly diluted triangular lattice
and r = N a lattice which has bonds only in the horizontal
direction. Our choice of anisotropy for generic r results in four
independent long-wavelength components of the elasticity ten-
sor, {Cxxxx, Cyyyy, Cxyxy, Cxxyy}, each of which can be extracted for
the various lattices.

2.2 Simulation details

We measure the components of the elasticity tensor for each
random lattice realization at different values of filling fraction
p, anisotropy r, and linear system size L. To measure these
components, we first apply a small external strain eij of magni-
tude 10�3 to ensure we probe the linear response. In the regime
of linear elasticity, the energetic cost of such a deformation is
quadratic in the strain:

E ¼ 1

2
eijCijklekl : (1)

We apply strains exx, eyy, and exy to measure the elastic
coefficients Cxxxx, Cyyyy, and Cxyxy directly. To measure Cxxyy,
we perform a bulk compression and subtract out the energetic
contributions from the independently measured Cxxxx and Cyyyy

moduli. We introduce strains to the lattice by applying the
proper transformation matrix to the positions of each of the
nodes. For example, to stretch the network in the horizontal
direction (to apply strain exx), the following matrix is applied:

T ¼
1þ g 0

0 1

" #
; (2)

where we set g to 10�3. Since we implement periodic boundary
conditions in both directions, all nodes are transformed in the
same manner.

In order to measure the energetic costs of our imposed
strains in the disordered lattices, we minimize the central-force
energy functional over the positions of the nodes. To capture
the linear response, we truncate to leading order in the dis-
placement of vertices:

E ¼ 1

2

X
ijh i

kij uij � r̂ij
� �2 (3)

where uij is the difference between the displacement vectors for
vertices i and j, and r̂ij is defined as the unit vector between
vertices i and j in the initial configuration. The spring constant
kij connecting sites i and j is either 0 or 1, according to the
random number seed, p, and r. For each type of imposed fixed-
amplitude strain, we minimize eqn (3) and use the resulting
energy and eqn (1) to extract the values of the independent
moduli. To improve convergence rates, a Cholesky factorization
is computed16 and used as a preconditioner for a conjugate
gradient method17 (see Appendix B for details). It is worth
noting that eqn (3) is valid only in the regime of linear
response, which may be violated at higher strains. We verify
that our choice of strain, 10�3, is sufficiently small by

Fig. 1 Rigidity percolation phase diagram and rigid clusters. The location
of the phase boundaries are found in the thermodynamic limit using a
finite-size scaling analysis. The insets show an anisotropic network close to
its rigidity percolation point for the Cxxxx modulus (left) and Cijkl a Cxxxx

moduli (right). The shading corresponds to the energy contributed by each
bond after a strain in the x direction (gray indicating little to no stress and
brighter indicating higher stress).
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computing the full untruncated energy for a network size of
50 � 50 with p = 0.645 and r = 1.5. These parameters place this
network near both rigidity transitions (see Fig. 1) and therefore
this network would be most strongly expected to violate linear
response. We find that this lattice obeys linear response, with
an energy scaling quadratically in strain, up to strains of 10�2.
This indicates that nonlinearities in strain are negligible and
eqn (3) is valid in the parameter space we explore here.

We then individually perform scaling analyses for each
independent component of the elasticity tensor. Starting with a
rigid network, we repeatedly remove bonds and minimize the
energy for each strain until the network becomes sufficiently
‘‘floppy’’ in all directions; here, a network is considered floppy in
a particular direction if the corresponding modulus falls below a
threshold of Gmin� 10�8, which is the simulation tolerance. The
moduli as a function of p were averaged for each system size and
orientation strength pair (L,r), sampled over 102–104 random
seeds. This procedure allows us to perform a scaling analysis of
each component of the elasticity tensor separately.

3 Results
3.1 Isotropic networks

We begin by focusing on the long-wavelength isotropic case, where
bonds are removed without regard to their orientation (r = 1).
We determine the value of p where each lattice becomes able to
support a stress, defined to be pc. To extrapolate our results to
infinite lattices, we conduct a finite-size scaling analysis
(Appendix C). For a given system size, we find the rigidity threshold
for many different lattices and create a histogram of these pc

values. We find that for increasing lattice sizes, L, the width of the
histogram for the threshold values pc decreases as L�1/n. We also
find that the mean value of the histogram, hpciL, approaches
a value pNc , the threshold in the infinite system, with the same
power law:

hpciL � pN

c B L�1/n. (4)

Our analysis determines that pN

c = 0.645 � 0.002, depicted
by the black dot along the horizontal axis of Fig. 1, and n = 1.3�
0.2. The location of the threshold at pNc indicates a small
deviation from the naı̈ve Maxwell constraint counting, which
states that the 2D triangular lattice to have 2 constraints per
site, p = 2/3 of the lattice must be occupied. The deviation from
this prediction in our measured value of pN

c is similar to what is
found in other works.6 Importantly, we find that in the iso-
tropic system (r = 1) all the moduli share the same threshold
value pNc .

Next, we perform a finite-size scaling analysis of each
component of the elasticity tensor, which admits a scaling

Cijklðp;LÞ ¼ L
�f iso

ijkl
=nCisoijklðXÞ

X � ðdpÞL1=n ;

(5)

where dp� p� pNc . Thus, in principle each modulus component

could have a different scaling exponent, f iso
ijkl, and shape, Cisoijkl.

The universal function CisoxxxxðXÞ is plotted along with the appro-
priately rescaled data for Cxxxx in Fig. 2. We find excellent scaling
for the different system sizes. In the inset of Fig. 2, we plot the
collapsed data against the equivalent scaling variable |X|�n,
which is a more common choice of variables in the literature,
but leads to two branches of the scaling function. We find
similarly excellent collapses for all the modulus data (see
Fig. 9 for the collapse of other components of the elasticity
tensor). For all of these analyses we use the threshold pNc = 0.646,
the critical exponent n = 1.3, and obtain f iso

ijkl = f iso = 2.2 � 0.3.
Thus, every independent component of the linear elasticity

tensor appears to vanish as |dp|f iso

(see Appendix D).

3.2 Anisotropic networks

We extend our analysis in the previous section to lattices with
long-wavelength anisotropy (r 4 1), where we preferentially fill
bonds in the x direction. We begin with the determination of
the phase boundary. For each value of r, we perform a finite-
size scaling analysis similar to the one we conducted for the
isotropic case: we create histograms of the values of p where
Cijkl vanishes, pijkl

c (r), and determine how their mean values
extrapolate to the infinite system. For each value of r we find
that the mean location of the critical point is well described by:

hpijkl
c (r)iL � pN,ijkl

c (r) B L�1/n0 (6)

Remarkably, we find that for r 4 1, the transition for the
Cxxxx modulus is distinct from the threshold values for
the other components of the elasticity tensor. We find that
the phase boundary for Cxxxx bends towards lower values of p
with increasing r (Fig. 1). The transition curves for the other

Fig. 2 Universal scaling function for the Cxxxx component of the elasticity
tensor at isotropy (r = 1). All data for this component of the elasticity tensor
collapse onto a single curve Cisoxxxx when plotted against the finite-size
scaling variable X � (dp)L1/n. The inset shows the same collapse against the
scaling variable (|dp|nL)�1 (on a log–log scale). See Appendix D for a similar
analysis of the other components of the elasticity tensor. We use pN

c =
0.646, n = 1.3, and fiso = 2.2 to obtain excellent collapse for all the
components of the elasticity tensor.
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moduli appear nearly identical for each system size and bend
towards higher values of p with increasing r. This separation
indicates a region for which the network is only rigid when
strained along the preferred bond orientation direction. We
verify these phase boundaries are the same at isotropy but
distinct for r 4 1 by measuring the separations between the
histograms of pc values for different components of the elasti-
city tensor as a function of system size (see Appendix E). Thus,
the transition from a floppy to a rigid phase occurs in two
stages when the system is anisotropic.

We note that for finite system sizes, Cijkl never truly vanishes
on average because if there are enough bonds remaining to
create a rigid system-spanning truss p4Oð1=LÞð Þ, this configu-
ration occurs with finite probability. However, we still expect that
in the intermediate regime between hpxxxx

c (r)iL and hpijkl
c (r)iL,

finite systems will have an elasticity tensor with a principal axis
in the x-direction due to our formulation of anisotropy.

Next, we test the scaling behavior of the elasticity tensor
components near the critical points. In principle, including
anisotropy could introduce corrections to scaling that bend the
phase boundary in a trivial way, leaving all critical exponents
the same as in the isotropic system. We tested this scenario, by
fixing r 4 1 and attempting to collapse the data near the
relevant pc(r) values for each component of the elasticity tensor,
keeping f aniso = f iso and n0 = n, but found very poor collapse.
This poor collapse suggests that the anisotropic phase transi-
tion is in an entirely different universality class, with different
values for the critical exponents. We thus conjecture that the
vicinity of r = 1 should be analyzed as a crossover scaling
between two distinct critical points.

Inspired by renormalization group approaches, we analyze
our data using crossover scaling functions expected to be valid
in the vicinity of the isotropic critical point:

Cijklðp; r;LÞ ¼ L�f
iso=nCijklðX ;YÞ

X � ðdpÞL1=n ; Y � r� rcð ÞLz=n
(7)

with rc � 1. Note that CijklðX ; 0Þ is equal to the previously

defined CisoijklðXÞ in eqn (5). Based on the form of this crossover

scaling function, we expect that the moduli depend upon the
anisotropy r only through a second scaling variable, Y; that is,
we expect a scaling collapse of all of our data when plotted
against X and Y with a single undetermined exponent z 4 0.

We first estimate z by examining the shape of the phase
boundaries in the infinite system away from isotropy. Specifically,
as shown in Appendix F, because the arguments of the uni-
versal scaling function are invariant scaling combinations, this
phase boundary must occur at a fixed value of X/Y1/z =
dp/(r � rc)1/z (with corrections to scaling), so that the separation
between the two phase boundaries in Fig. 1 scales as (r � rc)1/z.
From this estimate based on the shape of the phase bound-
aries, we find z = 0.25 � 0.1.

Many other quantities share this crossover scaling ansatz
and allow for independent estimates of z. The widths of the
histograms of pc values as we tune away from isotropy are also

amenable to a crossover scaling analysis, with the variable Y
collapsing these widths (Appendix F). From this scaling col-
lapse, we similarly estimate z = 0.25 � 0.1 and find nice collapse
(Fig. 13).

This estimate for z and the scaling ansatz in eqn (7) can be
used to collapse the elasticity tensor components for 250 000
simulations consisting of anisotropy values ranging between
1.0 r r r 2.0, bond occupation values ranging between 0.6 r
p r 0.68, and system sizes L ranging between 30 r L r 500.
We show a two variable scaling collapse for the Cxxxx and Cyyyy

moduli in Fig. 3. We find excellent collapse of each indepen-
dent modulus onto a two dimensional sheet. The overlaid data
points consist of a portion of the data used to produce the sheet
and indicate various slices of constant Y: Y = 0, Y = 0.66, and Y =
1.65. The Y = 0 curve (black) shows the finite-size scaling
for isotropic systems and is identical to that shown in Fig. 2.
We observe similarly excellent collapse at the two higher values
of Y (Fig. 15 and 16). For ease of visualization, we also include
height contours projected onto the X–Y plane. The height

Fig. 3 Crossover scaling of anisotropic rigidity percolation. Each inde-
pendent elastic modulus, a function of the variables (p,r,L), collapses onto a
two dimensional sheet when plotted against scaling variables X � (dp)L1/n

and Y � (r � rc)Lz/n. (left) The scaling function CxxxxðX;YÞ and (right) the
scaling function CyyyyðX ;YÞ. The isotropic data (Y = 0, Fig. 2) is scattered in

black, and constant values of Y = 0.66 and Y = 1.65 are scattered in gray
(Fig. 15–18). The height contours are projected onto the X–Y plane.

Fig. 4 Generic, isotropic triangular lattice strained in the horizontal direc-
tion until it becomes rigid, forming straight lines of bonds important for
rigidity. The bonds are shaded corresponding to the energy contributed.
Preliminary results suggest that one of the four tangent moduli (Cxyxy)
remains zero for a range of strains above the strain stiffening threshold,
with Cxxxx being the dominant modulus.
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contours for Cxxxx curve toward lower values of X as the scaling
variable Y increases, reflecting the fact that the corresponding
phase transition curves toward lower values of p as r increases.
The other moduli, such as Cyyyy, show the opposite systematic
behavior, tending towards higher values of X for increasing Y.

The critical exponents determined thus far, including z, are
properties of the isotropic rigidity percolation critical point. We
are also interested in the anisotropic critical exponents, such as
the critical exponent with which each modulus vanishes with p
in an infinite anisotropic system (f aniso

ijkl ). The universal scaling
function CijklðX ;YÞ for the crossover between the isotropic and
anisotropic critical points in principle contains all of these
anisotropic critical exponents in its singularities in various
asymptotic regimes. However, it is quite difficult to get reliable
high-precision fits to generic two-variable scaling functions
that include precise information about their singularities. We
instead independently estimate f aniso

ijkl by examining the largest
system sizes of simulations performed at r = 1.2, 1.5. In
addition, we analyze the data for Y = 0.66, 1.65.

We find that the critical exponents for Cxxxx are distinct from
those found for the isotropic system while those for the other
elasticity tensor components cannot be distinguished from
those found for the isotropic system:

f anisoxxxx af isoxxxx

f anisoijkl � f isoijkl ðijklaxxxxÞ
(8)

with f aniso
xxxx = 4.0 � 1.0, compared to our estimate of f iso = 2.2 �

0.3. As usual in crossover scaling, the multicritical point
governs short length scales and regions far from the critical
lines emanating from it. We thus expect to find a crossover
from f aniso

xxxx to f iso
xxxx as networks move away from the anisotropic

critical point, as demonstrated in Fig. 14. We also attempt to
independently estimate naniso, the finite-size scaling exponent
away from isotropy, using the collapse plots shown in Fig. 13
(Appendix F), but our estimates span a wide range of values 1.2–
3.2. Our estimates for all scaling exponents are shown in
Table 1.

4 Conclusions

We find that rigidity percolation in our model anisotropic
system occurs in at least two steps, with the modulus in the
direction of alignment becoming nonzero at lower volume
fractions. Our estimate of at least one of the critical exponents
of the anisotropic transition, f aniso

xxxx , appears distinct from the

corresponding exponent for the isotropic transition f iso, which
suggests that these anisotropically diluted networks feature two
distinct universality classes.

It was a surprise to us that the rigidity percolation transition
for the isotropic lattice broke up into several transitions when it
became anisotropic. First, obtaining multiple transitions is
contrary to the naı̈ve usage of Maxwell counting to determine
the location of the rigidity transition. As shown in the insets of
Fig. 1, the rigid modes become anisotropic, and span horizon-
tally before they span vertically.

Second, our results are fundamentally different from con-
nectivity percolation, where regardless of the value of r there
can only be one transition. The left inset in Fig. 1 shows several
horizontal stress-supporting chains spanning the network. The
critical point at which Cxxxx first becomes non-zero presumably
separates a phase where there are no stress-supporting chains
from one where there are a finite density of such chains. In
regular percolation, two such paths connecting the system
horizontally that are separated by any finite distance will have
a finite probability per unit length of being connected by bonds
extending in the vertical direction. Hence, for ordinary percola-
tion, as soon as one crosses the horizontal percolation point in
an anisotropic system, it must percolate in the other directions
as well. This argument suggests that lattices with bending
stiffnesses and angular springs, which are believed to become
rigid at the connectivity percolation threshold,5 lack this inter-
mediate phase. However, in typical situations where bending
stiffnesses are much weaker than stretching stiffnesses, a
remnant of this intermediate phase should be measurable even
when bending is included.

In retrospect, we should have expected separate transitions
in central force rigidity percolation on regular lattices. Maxwell
counting tells us when the number of zero modes can vanish in
the absence of states of self stress, but does not tell us whether
the zero modes couple to a given mode of deformation.18,19

Straight lines of bonds supporting stress in a large system,
when connected vertically, may only contain contributions to
the stress that grow quadratically (i.e. non-linearly) in the
strain: the length of a beam connecting (x,y) to (x0,y + e) grows
as e2, suggesting the corresponding linear elastic modulus is 0.
A similar nonlinear response to infinitesimal strains is found to
stabilize hypostatic jammed packings of ellipsoidal particles,20

in violation of simple constraint-counting arguments. The per-
fect square lattice has no Cxyxy shear modulus, and the perfect
hexagonal lattice has no non-zero moduli except the bulk
modulus – why should anisotropic random lattices not possess
separate transitions?

Since generic lattices have no straight lines of bonds, it is
not clear to us whether they will have intermediate phases with
infinite anisotropy in linear response. (Indeed, a non-generic
lattice which supports horizontal strain under tension has
straight lines of bonds that buckle under compression making
the effective modulus under compression still zero). Even in
this case, we expect crossover scaling to be an important
component of the analysis of anisotropic generic lattice net-
works. Our analysis suggests that the scaling of anisotropic

Table 1 Numerical estimates of critical exponents

Exponent Estimate

n 1.3 � 0.2
fiso 2.2 � 0.3
z 0.25 � 0.1
naniso 1.2–3.2
faniso
xxxx 4.0 � 1.0

faniso
ijkl (ijkl a xxxx) 2.2 � 1.0
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generic networks could exhibit a crossover between distinct
rigidity transition universality classes.

The difference between generic and non-generic lattices is
no longer crucial after finite deformations; under tension a
node connecting only two bonds will naturally straighten out to
1801 and not support perpendicular stresses to linear order.
Along these lines it might be interesting to investigate whether
separate rigidity transitions arise in floppy isotropic random lattices
under finite deformation. Preliminary results suggest strain stiffen-
ing leads to rigidity along the extension axis without rigidity under
some of the other modes of deformation (see Fig. 4).

What kind of rigidity critical points do we expect? The Cxxxx

transition where horizontal stress-bearing chains first arise
could be self-similar (with a single diverging correlation
length), but could also be self-affine (with the vertical spacing
between chains diverging with a different power on the stress-
supporting side than the rigid cluster lengths diverge on the
floppy side, akin to directed percolation, where connectedness
lengths are controlled by different critical exponents parallel
and perpendicular to the preferred direction21–23). Whether the
three other moduli become non-zero simultaneously or sepa-
rately in this model is not numerically resolved yet, but one
expects that more complicated anisotropies (say a 3D model
with brick-like symmetry) will allow for separate transitions for
those moduli as well.

Finally, it would be interesting to consider whether the
results presented here have any bearing on biological networks.
Many biological tissues, including bone, tendon, muscle, and
blood vessels, have an extracellular matrix that exhibits prefer-
ential alignment, giving rise to anisotropic elastic moduli. It
may be possible to understand the extracellular matrices of
these tissues as anisotropic networks which have crossed the
rigidity percolation transition in the stiff direction, but not the
other directions. A quantitative description of these tissues may
require analyzing the effects of second-order constraints, chan-
ging the contact number distribution, and exploring the cross-
over between this pair of zero-bending stiffness transitions and
a bending-dominated regime. Moreover, cells are able to con-
trol how matrix elements are generated. Cells may generate
networks with many different rigidity transitions to tune
between, where the particular way matrix elements are laid
down biases the thresholds of the different components of the
elasticity tensor. As such, the results presented here could have
profound implications for understanding more complicated
networks in many biological systems.

Data availability

The data used in this study are available at doi.org/10.5281/
zenodo.13910625. The code for the network simulations can be
found at doi.org/10.5281/zenodo.13894006.
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Appendices
A: Bond filling protocol

One method for filling the lattice is to choose some number of
bonds n to randomly occupy, and set p = n/N, where N is the
total number of possible bonds. This has the disadvantage that
changes in p can only be measured to a sensitivity 1/N. To
characterize the behavior very close to the critical point, we
instead fill our lattice in a way that is statistically equivalent,
but allows measurements at continuous values of p. In the
isotropic case, the algorithm is as follows: first, a random
number si taken uniformly between 0 and 1 is assigned to each
bond i. At a filling parameter value p, all bonds i with assigned
random numbers si o p are filled, and the independent
components of the linear elasticity tensor are measured
through applied shears. For different random number seeds,
the ‘‘jumps’’ in the linear moduli associated with the addition
of single stress-supporting bonds to the rigid backbone occur at
different values of p (which are not multiples of 1/N). When the
measurements are averaged over several random number
seeds, we find that the measurements of moduli quickly con-
verge to a smooth function of p at a given system size L, except
at the smallest values of p. This algorithm is modified to
include our anisotropy parameter r in a straightforward way.

We start by picking a random number seed, and then
assigning a (uniformly chosen) random number si between 0
and 1 to each bond. The bonds are assigned and then sorted
based on a key, ki, which corresponds to the value of bond
occupation fraction p for which the bond would be added based
on the anisotropy parameter r:

kxi ¼
ð2þ rÞsxi

3r
; k

y
i ¼
ð2þ rÞsyi

3
; (9)

where sx
i are assigned to bonds in the horizontal direction and

sy
i are assigned to the other bonds. The bonds are then removed

according to their keys, highest to lowest. Note that this
formulation allows for finding the bond configuration while
continuously varying both p and r.

B: Numerical methods

We minimize the energy given in eqn (1), which can be
equivalently written as

E ¼ 1

2
~uTH~u; Hij ¼

@2E

@ui@uj
; (10)

where H is the Hessian matrix and -
u is a length N � d vector

containing the displacements from the initial node position.
To handle periodic boundary conditions, we split the Hes-

sian into two parts: Hpbc, which is computed using only the
bonds that span across the network, and Hin with bonds which
do not. The energy is therefore computed as:

E ¼ 1

2
~uTHin~uþ

1

2
ð~uþ~cÞTHpbcð~uþ~cÞ; (11)

in which -
c ‘‘corrects’’ the displacements for nodes that are

connected across the network and depends on the particular
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strain. The energy is then minimized by finding a zero-force
configuration, solving the following linear system:

(Hin + Hpbc)-urelaxed = �Hpbc
-
c (12)

An affine displacement is used as an initial guess. The
sparsity structure allows matrices to be stored in compressed
sparse row format, reducing memory usage and improving the
speed of operations. A Cholesky factorization for (Hin + Hpbc) is
computed16 and used as a preconditioner. For large system
sizes, we use GPUs to accelerate numerical computations, such
as matrix factorizations and matrix-vector products.

We note that for systems that have under-constrained nodes,
the null space of (Hin + Hpbc) has a non-zero dimension; as such
we do not consider the non-affinity parameter (which sums the
squared displacements from an affine transformation) as a
method of analysis or for extracting critical exponents.

C: Details of finite-size effects

To obtain a consistent estimate of pNc and n, we consider the
distribution of the rigidity percolation threshold for each
modulus at isotropy (r = 1). We take pijkl

c to be the smallest
value of p at which Cijkl is rigid. For a given system size L, the
value of pijkl

c is sampled from an underlying distribution:

pijkl
c (L) B rijkl

L , rijkl
L A D[0,1]. (13)

Histograms of pijkl
c are plotted in Fig. 5. As the system size

increases, the distributions become increasingly sharp and the
means shift systematically. In the limit of infinite system size,
we assume that each distribution converges to a delta function
about pNc .

For each system size, we compute both the means hpijkl
c iL and

standard deviations sijkl
L of each distribution. We expect sys-

tematic shifts in the means and standard deviations (i.e., the

first and second moments) to scale as a power law with respect
to L governed by a single critical exponent n:

pijklc

� �
L
�p1c � L�1=n

sijklL � L�1=n
(14)

We perform a joint non-linear least squares fit,24 with pN

c

and n the same for all curves (we assume they are equal for each
modulus at isotropy). Fig. 6 depicts hpijkl

c iL (left) and sijkl
L (right)

as a function of L. The fits give an estimate of pNc = 0.645 �
0.002 and n = 1.3 � 0.2.

Furthermore, we find a universal scaling function for the
distributions rijkl

L with respect to our previously defined scaling
variable X � (dp)L1/n:

rijklL ðpÞ � L1=nRijklðXÞ: (15)

We find that X collapses the density functions, with the
resulting histograms shown in Fig. 7.

Fig. 5 Histograms of rigidity percolation threshold pc as a function of
system size L at isotropy. The estimated density functions for each
independent elastic modulus are plotted. Each distribution becomes
increasingly sharp with larger system size.

Fig. 6 (left) Mean of pc and (right) standard deviations of the pc

distribution at isotropy as a function of system size. The fitted curves
match those in eqn (14) and the fitted lines on the right figure have
slope �1/n.

Fig. 7 Universal scaling of rigidity distributions at isotropy for each
independent modulus. The histograms all collapse when plotted against
the scaling variable X.
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D: Details of modulus scaling collapse

At isotropy, each modulus grows as a power law above rigidity
percolation threshold Cijkl B (dp)f iso

. Fig. 8 depicts the uncol-
lapsed finite-size scaling data at isotropy; the systematic devia-
tions are clear.

We find the exponent f iso by considering the largest avail-
able system size (L = 500) and performing a least-squares fit of
the modulus, finding a range of f iso as we vary pc slightly. With
f iso = 2.2, pNc = 0.646, and n = 1.3, we plot the data against the

proposed scaling variables and find a nice collapse for all
independent moduli, shown in Fig. 9. The number of samples
we average over ranges from 104–102 for system sizes L A
[30,200] and 20 samples of L = 500.

Using the value of f iso = 1.4 � 0.1 and n = 1.4 � 0.2 quoted in
Broedersz et al.,6 we find best collapse with pNc = 0.65 shown in
Fig. 10, which gives good collapse for lower values of system
size, but does not collapse the modulus for our largest system.

E: Separation of phase transitions

Here we present our numerical evidence for the separation of
the two phase transitions (one for Cxxxx, and at least one
additional for Cijkl with ijkl a xxxx) as L - N. We do this by
analyzing the systematic dependence on L of the distributions
of pc for each modulus away from isotropy, i.e., we perform
large numbers of simulations at various system sizes for fixed
r = 1.5 (away from isotropy) and examine how these distribu-
tions depend upon L. An example of these distributions can be
seen in Fig. 11, where at L = 75 (first column) the distributions
of pc for the Cxxxx and the Cyyyy moduli have significant overlap,
but when we look at L = 200 (second column) the distributions
are beginning to separate for r 4 1.

Sample-to-sample, there are lattices that can support rigidity
in some shear directions but not others. There are two basic
scenarios. (1) In the case where including anisotropy ends up
simply giving analytic corrections to scaling that bend a single
phase boundary, all moduli will vanish at the same location
at L = N, but the amplitudes of the finite-size effects may be
different. Singling out the Cyyyy modulus for the sake of
comparison, this means that

hpijkl
c iL � hpyyyy

c iL B L�1/n. (16)

Fig. 8 Unscaled modulus data across various system sizes at isotropy
(r = 1). The smaller system sizes have a higher probability of becoming rigid
at lower values of p.

Fig. 9 Universal scaling function of all independent elastic moduli at
isotropy (r = 1). The independent components of the elasticity tensor each
collapse onto a single curve Cisoijkl when plotted against the finite-size
scaling variable X � (dp)L1/n. In this isotropic case, there are only two
independent moduli in the long-wavelength elasticity tensor (B and G, for
instance).

Fig. 10 Universal scaling function of all independent elastic modulus
using previously reported exponents.6 The data for the range L A
[30,200] comparable to the earlier work does give a good collapse. Having
the larger system size (L = 500) explains why we find different exponents.
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This is the same as the asymptotic scaling for the spreads of
these distributions, sijkl

L B L�1/n, as all distributions are con-
trolled by the exponents of the isotropic critical point in this
supposition. If we measure the separation between the means
as a function of system size in terms of the number of standard
deviations of the distribution at that system size, using the
more democratic sL

2 = (sijkl
L )2 + (syyyy

L )2, then, we should find

pijklc

� �
L
� pyyyyc

� �
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sijklL

� �2
þ syyyyL

� �2r � cijkl ; (17)

for some constant cijkl, which is flat as a function of system size.
(2) In the case where including anisotropy leads to genuinely

new critical phenomena and a pair of phase transitions, the
finite-size effects of the mean and standard deviation are
controlled by the finite-size scaling exponent of each anisotro-
pic rigidity transition naniso. If we split into a pair of phase
transitions, then the spreads sijkl of each distribution will
narrow with increasing L, but the separation of the means is
asymptotically constant as L - N. This would make

pijklc

� �
L
� pyyyyc

� �
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sijklL

� �2
þ syyyyL

� �2r � L1=naniso ; (18)

where naniso is the largest of the (potentially different) finite-
size scaling exponents associated with the new, anisotropic
transition.

We begin by performing this measurement of the separa-
tions between the distributions of pc for all moduli at the
isotropic transition, where all moduli vanish at the same
location in p as L - N (Fig. 12 (left)).

As expected, this measure of the separation in the means is
flat for the isotropic case as a function of system size, confirm-
ing that these moduli vanish at the same asymptotic location

and that the finite-size effects controlling the mean and the
standard deviation have the same systematic dependence on L.

When we perform the same analysis for the anisotropic case
(r = 1.5), we see systematic growth in this measure as a function
of system size (Fig. 12 (right, blue)), suggesting that the loca-
tions of pc for different moduli are genuinely different in the
thermodynamic limit. This is moderately strong quantitative
evidence for the information that can roughly be seen by eye in
Fig. 11.

F: Estimate of anisotropic scaling exponents

At infinite system size, the phase diagram curves in Fig. 1
contain important information about the critical exponent z
near the isotropic transition. We find z by fitting the differences
between the Cxxxx curves and the Cijkl curves (where ijkl a xxxx)
to a power law, resulting in a value of z = 0.25 � 0.1. The
individual phase boundaries have an important linear correc-
tion to scaling, as the unstable eigenvector is not along the r-
axis, but has a slope m. Hence the two phase boundaries are of
the form dp = m(r � rc) + W(r � rc)1/z, with a fixed value of W
defining a curve along which the invariant scaling combination
is constant. Because z is small, this correction cannot be
neglected. By fitting the differences between the phase bound-
aries, we bypass this linear correction to scaling.

Furthermore, we can consider the standard deviations of the
rigidity percolation threshold distributions (as in Appendix C)
for r 4 1 and consider a scaling function with respect to our
scaling variable Y = (r � 1)Lz/n

sijklðL; rÞ � L�1=nSijkl ðr� 1ÞLz=n
� �

(19)

We find that standard deviation is best collapsed with z =
0.25 � 0.1, shown in Fig. 13. The determined value of the
exponent z appears to collapse sL1/n for all moduli except for
Cxxxx at larger values of the scaling variable. We also note the
nice overlap of data performed at different values of (r,L) but
the same value of the scaling variable Y.

We can in principle use information from these collapse
plots to make a prediction for the value of the finite-size scaling
exponent close to the anisotropic phase transition naniso. First,
we note that if we fix r 4 1 and send L - N, the spread in the
distributions of pc will narrow as s B L�1/naniso

, as the finite-size

Fig. 11 Histograms of rigidity percolation threshold pc for Cxxxx (blue) and
Cyyyy (green) for the same system size. The means are consistent at
isotropy (r = 1) and distinct from each other at higher anisotropy (r = 1.5).

Fig. 12 Separation of rigidity percolation threshold mean hpci from that of
the Cyyyy modulus as a function of system size at isotropy (left) and
anisotropy (right).
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effects are (at large enough system sizes) controlled by the
critical exponents of the anisotropic critical point. In the scaling
function for the distributional spreads of pc, this corresponds to
the asymptotic limit Y - N. Forcing the asymptotics of the
numerically determined crossover scaling function to agree with
the asymptotics expected at the anisotropic critical point will
give us a prediction for naniso.

Suppose this scaling function has asymptotic behavior
SijklðYÞ � Ya at large Y. Then in the limit L - N with r 4
1 fixed,

sL1/n B Ya B Lza/n and s B L�1/naniso

(20)

together give

naniso ¼ n
1� za

; (21)

where n is the value of the finite-size scaling exponent at the
isotropic fixed point. With a = 1.0 � 0.5, this gives a prediction
of naniso = 1.7, but values between 1.2–3.2 are consistent with
our error bars reported in Table 1. This is ultimately due to the
poor numerical determination of z and a. These could also in
principle be different for the different ijkl; this would be
detected through different values of a for each modulus since
both n and z are properties of the isotropic fixed point.

We estimate the exponent with which each modulus
vanishes at their corresponding anisotropic phase transition

Fig. 13 Universal scaling of rigidity distributions near isotropy for each
independent modulus. The widths of the histograms all collapse onto a
single curve when plotted against the finite-size scaling variable Y. There
appear to be deviations in the collapse of the Cxxxx modulus at higher
values of Y.

Fig. 14 Estimate of anisotropic scaling exponent of each modulus from
our largest system size. The behavior of the Cxxxx modulus suggests a
crossover between the anisotropic and isotropic scaling exponents,
whereas for the other moduli, the behavior appears to be governed by
the same isotropic exponent.

Fig. 15 Scaling collapse of all the moduli at constant Y = 0.66. The
estimate of Wc is shown with the dashed black line.

Fig. 16 Scaling collapse of all the moduli at a constant Y = 1.65. The
estimate of Wc is shown with the dashed black line.
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(f aniso
ijkl ) by considering our largest system size at two values of r

away from isotropy (r = 1.2 and r = 1.5). The location of the
phase transition is determined by averaging the value of p with
which each modulus for each lattice becomes rigid.

To search for which value of z best collapses the two variable
scaling function, we obtain simulations of constant Y across
various system sizes. We test a value of z by first fixing our
largest system size and then solving for the value of r as a
function of system size that results in the same value of Y. Fig.
15 and 16 show a scaling collapse of all the moduli with z = 0.25
and with a constant value of Y = 0.66 and Y = 1.65, respectively.
The scaling function for each modulus vanishes at a given value
of W, which we denote as Wijkl

c (Y), as it is dependent on the
value of Y. We note that further away from isotropy (Y = 0),

there are additional corrections to scaling, resulting in a worse
collapse at higher values of Y.

We again obtain an estimate of the scaling exponents in
Fig. 17 and 18 by plotting the rescaled moduli as a function of
distance from Wc. The plots suggest crossover for the Cxxxx

modulus, with f aniso
xxxx governing the behavior for lower values of

W � Wc and f iso for the high W � Wc regime. Furthermore, the
other three moduli appear to vanish with a critical exponent
indistinguishable from f iso within our estimated error bars.
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constant Y = 1.65. The simulation data is the same as found in Fig. 16.
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