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Optimizing gelation time for cell shape control
through active learning†

Yuxin Luo, a Juan Chen, a Mengyang Gu b and Yimin Luo *a

Hydrogels are popular platforms for cell encapsulation in biomedicine and tissue engineering due to their

soft, porous structures, high water content, and excellent tunability. Recent studies highlight that the timing

of network formation can be just as important as mechanical properties in influencing cell morphologies.

Conventionally, time-dependent properties can be achieved through multi-step processes. In contrast, one-

pot synthesis can improve both the efficiency and uniformity of cell encapsulation. Reaction kinetics are

sensitive to temperatures and pH conditions, thus, monitoring gelation time across different conditions is

essential for formulation. In this work, we choose tetra-poly(ethylene glycol) (TPEG) macromers as a model

system to examine the relationship between the rate of polymer network formation and cell morphology.

Previous studies of this system focused on reactions at neutral pH and room temperature, leaving much of

the formulation space underexplored. We use Gaussian process regression (GPR) to minimize response

surface errors by strategically selecting additional investigation points based on prior knowledge. Then we

extend the knowledge from pre-trained data at neutral pH to a new surface at physiological pH. We find

that the gelation time surface can effectively predict the aspect ratio of the encapsulated cells. Additionally,

through focal adhesion kinase inhibition, we show that cell shape is influenced by the properties of the

forming network in the initial hours as cells develop connections with the matrix. We demonstrate the utility

of a high-throughput microrheology approach in enhancing fabrications of synthetic extracellular matrix and

cell assemblies.

1 Introduction

Hydrogels are 3D, hydrophilic polymer networks with mechanical
properties resembling the extracellular matrix.1,2 Hence, they are
commonly used as reduced model systems to emulate various
aspects of cellular microenvironments. Cells are highly responsive
to the viscoelastic characteristics of their surroundings.3,4 For
instance, matrix stiffness can impact cell spreading,5 migration,6

proliferation,7 differentiation,8 and phenotype.9 Nonetheless, the
majority of the studies to date focus on static networks, even
though dynamic tissue mechanics underlie many physiological
and pathological processes, including morphogenesis,10

fibrosis,11 and tumor progression.12 Thus, there is a growing
interest in developing networks with time-dependent mechanical
properties.13,14 Among these, double networks, comprised of a
collagen primary network and a synthetic secondary network, are
a popular choice because they combine the biocompatibility of

collagen with enhanced mechanical properties from the secondary
network,15,16 which can be independently tuned.

In addition to mechanical properties, the timing of network
formation can significantly impact cell morphologies.14,17,18 Typi-
cally, cells are first encapsulated in collagen, which is subsequently
infiltrated with either alginate17 or photoactive precursors,18,19 and
then crosslinked with calcium ions or ultraviolet (UV) illumination.
This process forms secondary networks that stiffen the collagen.
Cells in networks that are stiffened immediately tend to adopt
a more rounded shape compared to those in networks where
stiffening is delayed, in which case cells are first allowed to spread
in the collagen network.17,18 Cells with different spreading states
show distinct responses to biochemical cues, even when they are
encapsulated in networks with the same final properties.17

These observations highlight that cells are sensitive to mechanical
properties during the first few hours of cell encapsulation, when
they must develop focal adhesions and degrade the matrix to
effectively spread and migrate. However, most studies to date
require additional steps to infiltrate and crosslink the secondary
network, after the primary collagen network has formed. Thus, it is
desirable to understand how to formulate the hydrogel in a ‘‘one-
pot synthesis’’ to achieve various cell shapes.

A wide array of biocompatible systems undergo gelation.20–22

In principle, these gelling formulations may serve as a natural
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testbed for how cells respond to continuously transforming
viscoelasticity. In practice, a significant challenge is the high
cost of accurately mapping the gelation time across various
temperatures and concentration conditions. Gelation kinetics
are often characterized at neutral pH,23–25 in an ion-free environ-
ment. However, such hypotonic conditions are unsuitable for
encapsulation, as they can cause cells to swell from the fluid
influx. Recent studies note the effect of pH on hydrogel
crosslinking,26–30 further complicating the picture for predicting
the gelation time. Hence, there is a considerable need for tools to
rapidly screen formulation conditions, and bridge the gap
between gelation studies under neutral conditions and those
optimized for cell encapsulation.

In this regard, microrheology is an attractive alternative to bulk
rheometry in characterizing evolving soft matter systems22,30 due
to its minimal sample volume, non-destructive nature, and high-
throughput capabilities.31 In passive microrheology, one analyzes
the thermally-driven motion of particles embedded in a material
to infer its mechanical properties32,33 (Fig. 1a). As gelation occurs,
the particle motion slows down, as quantified by the mean-
squared displacement (MSD, Fig. 1b), which can be obtained
either by multiple particle tracking (MPT)34,35 or differential
dynamic microscopy (DDM).36 Afterward, by manually shifting
each time-dependent MSD to collapse them onto master curves,
one may determine gelation time and critical scaling exponents.20

More recently, we have developed a framework to extract gelation
time that does not require user intervention for manually super-
posing MSD curves or specifying a suitable range of Fourier
basis,37 which further automates the analysis.

To illustrate the need for in situ, high-throughput methods
to assess gelation times affected by formulation conditions,
we choose two complementary tetra-poly(ethylene glycol)

(TPEG, Fig. 1c) as our model system. TPEGs are four-armed PEG
precursors that form highly regular networks.38,39 We explore the
gelation between TPEG-SG, which has reactive succinimidyl glu-
tarate groups that can bind to the nucleophilic primary amine
groups on the TPEG-NH2. The two undergo a highly specific,
spontaneous, sol–gel reaction without UV light, eliminating issues
related to phototoxicity and variation in UV dosage. Prior work23,37

indicates that the gelation time of this system is highly sensitive to
small changes in concentration. Additionally, the hydrolysis of the
NHS ester group in TPEG-SG accelerates with increasing pH,40

and can lead to network heterogeneity.41 Excessive hydrolysis
can prevent gelation and result in failed encapsulation. For this
system and many others, the complexity of multicomponent
systems and potential side reactions complicate efficient phase
space sampling. To address these concerns, we adopt an active
learning approach, which adaptively selects the most informative
data point as the next testing point.

In this work, we integrate active learning with high-
throughput microrheology screening to explore how predicted
gelation response surface can be used to control cell shapes.
Using Gaussian process regression (GPR), we sample gelation
time at neutral pH = 7, and then apply this knowledge to
improve the phase diagram prediction at pH = 7.4, which is
necessary for cell encapsulation but is not available in the
literature. GPR provides an accurate map from formulation
conditions to gelation time based on a small number of data.
Furthermore, the assessed uncertainty from the GPR model,
expressed as predictive intervals, can inform whether addi-
tional experiments are needed at a particular input region,
and thereby reduce the total number of experiments required to
achieve a satisfying level of accuracy in prediction. We begin by
examining cell morphologies on 2D substrates. Afterward, we

Fig. 1 Process flow diagram of our active learning approach. (a) The solution is mixed with particles, drawn up in a capillary, and imaged to quantify the
mean-squared displacement. (b) An example of the mean-squared displacement as gelation occurs. (c) The chemical structures of the two TPEGs used in
this study. They are mixed in a 1 : 1 stoichiometric ratio. (d) Schematics of the cell encapsulation experiments where the matrix is composed of collagen
and TPEGs. (e) Representative micrographs of encapsulated cells at two reaction conditions. The scale bars are 50 mm.
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synthesize the collagen-TPEG double networks in a single step
and use them for cell encapsulation (Fig. 1d). We find that the
predicted gelation time surface has high predictive power for the
cell shape, with a Pearson correlation coefficient of around 0.8,
thus explaining most of the variability in the shape of encapsu-
lated cells (Fig. 1e) by the controlled formulation and experi-
mental reaction condition. Finally, we verify that the timing of
the mechanical stimuli plays a crucial role in the cell spreading
state. This work has broad implications for biofabrication, and
the design of dynamic extracellular matrix mimics.

2 Materials and methods
2.1 Materials

TPEGs (MW = 20k g mol�1), terminated with primary amide
(NH2) and succinimidyl glutarate (SG) groups were purchased
from JenKem Technology USA (Plano, TX). Ultra-pure water
(resistance = 18.2 MO cm) was used to disperse the polymers.
Dimethylsulfoxide (DMSO) and phosphate-buffered saline (PBS)
tablets were sourced from Sigma-Aldrich (St. Louis, MO). Green
fluorescent beads (diameter 2a = 1 mm) were purchased from Fisher
Scientific (Hampton, NH). Sterilized PBS (1�), 0.25 wt% Trpsin–
EDTA (1�), Dulbecco’s modified Eagle medium (DMEM, 1�), Pen
Strep (100�), phosphate-buffered saline (PBS), paraformaldehyde
(PFA, 16% w/v), trypan blue, CellTracker DeepRed (C34565),
Hoechst 33342 was purchased from Thermo Fisher Scientific
(Waltham, MA). High-concentration rat tail type I collagen was
purchased from Corning, Inc. (Corning, NY). Calf serum (CS)
was purchased from the American Type Culture Collection
(Manassas, VA). Complete media was made with 90 vol% DMEM,
10 vol% CS, and 1� Pen Strep, and used within one week. FAK
inhibitor 14 (item no. 14485) was purchased from Cayman
Chemical (Ann Arbor, MI). NIH3T3 cells were acquired from the
Yale Cancer Center cell line repository in a frozen aliquot at an early
passage (P o 5). Passages P5–20 were used in this study. No
significant difference in cell behaviors between passages was noted.

2.2 Experimental methods

2.2.1 TPEG hydrogel preparation. Stock solutions of TPEG-
SG and TPEG-NH2 were prepared on the day of the experiment
at a concentration of 100 mg mL�1 in DMSO and water,
respectively. TPEG-SG stock solution was prepared in DMSO
to minimize hydrolysis. Afterward, the two were mixed together
where the molar ratio of the SG group and NH2 group was 1 : 1,
and additional water was added to reach the desired final
concentration. The total concentration is reported as the final
concentration of both TPEGs, ranging from 20 to 40 mg mL�1.
Microrheology was also carried out at pH = 7.4 by dispersing the
TPEGs in 1� PBS, immediately before the experiments.

2.2.2 Microrheology. Trace amount (f = 0.02 vol%) of
fluorescent beads were homogeneously dispersed into the
solution, either in water or PBS, acting as probes. Each sample
was prepared to have a final volume of 10 mL. The temperature
during gelation (25 1C to 40 1C) was controlled by a ZEISS
incubation system, which was equilibrated before experiments.

After TPEGs were mixed in an Eppendorf vial, the solution was
introduced into a square capillary (0.10 mm � 1.0 mm �
0.09 mm, Friedrich & Dimmock Inc, Millville, NJ), sealed on
two ends, and secured onto a glass slide with UV curable glue
(Norland Optical Adhesive, Jamesburg, NJ), to minimize con-
vection due to leaking and evaporation. The samples were
imaged with an inverted Zeiss Axio Observer 7 microscope in
fluorescence mode, standard GFP filter sets, and a 20� objec-
tive. Each image has a resolution of 512 � 512 pixels, with a
pixel size of 0.29 mm per pixel. Each video includes 500 time
steps with a step size of 0.0309 seconds. For each reaction
conditions, a typical set of video is taken at a time interval of
6 minutes, 3 minutes, or 1.5 minutes using an automated,
preprogrammed acquisition flow. We tracked the time elapsed
between mixing the two components and the start of image
acquisition, to ensure the reported time points represent the
time since mixing, and were consistent across all experiments.
The acquisition time (15 seconds) was short compared to the
time interval between measurements, so particle displacements
were averaged during this window to represent a specific time
point t since the reaction began.

2.2.3 Cell culturing and encapsulation. NIH3T3 cells were
maintained in complete media, at 37 1C and 5% CO2, and
subcultured every 2–3 days at around 70–80% confluency.
A total of 50 mL solution consisting of 1 part 10� PBS, 4 parts
DI water mixed with PEGs, and 5 parts collagen (concentration =
10.35 mg mL�1) were mixed thoroughly on ice, and then pipetted
into a 4-chamber glass bottom dish (D35C4-20-1.5-N, Cellvis,
Mountain View, CA). TPEG-SG and TPEG-NH2 were first dispersed
in DI water, resulting in a final concentration of TPEGs at 0
(control), 20, 25, 30, 35, and 40 mg mL�1. Cells were resuspended
in complete media at a density of B2 � 106 cells per mL. 5 mL of
the cell suspension were added to the neutralized collagen,
resulting in a seeding density of B2 � 105 cells per mL. The
sample was allowed to gel spontaneously at the desired tempera-
tures (25, 30, and 37 1C). Upon the completion of gelation of all
samples (B3 hours), more complete media was added to the dish
and the samples were incubated at 37 1C and 5% CO2.

2.2.4 Cell treatments, fixing and staining. To understand
cell spreading in the presence of focal adhesion kinase inhi-
bitor (FAKi). FAKi stock solution was prepared in DI water at
250 mM, diluted 100 times to 2.5 mM, and combined with
collagen and 10� PBS to result in a final FAKi concentration
of 1 mM. After gelation, the hydrogel was rinsed three times
with complete media to remove FAKi, and then more media
was added.

Twenty-four hours after initial encapsulation, cells were
fixed using 4 wt% PFA in 1� PBS for 15 minutes at room
temperature, and then rinsed three times with 1� PBS. Cells
were stained with Hoechst 33342 (nuclei, blue, 1 mg mL�1) and
CellTracker (cytoplasm, red, 1 mM) in 1� PBS for subsequent
visualization by microscopy and cell shape analysis.

2.2.5 Bulk rheometry. The moduli of both collagen-TPEG
double networks and TPEG-only networks were characterized using
bulk rheometry as gelation occurs. Double-networks: the samples
were prepared using the same procedure and composition as in the
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cell encapsulation experiments, with total TPEG concentrations of
0, 25, 30, and 40 mg mL�1. Neutralized collagen solutions, with or
without TPEGs, were thoroughly mixed on ice just before measure-
ments. Samples were loaded at 25 1C. Prior to measurements, the
solution was pre-conditioned 30 1C for 3 minutes. TPEG-only
networks: the two TPEGs were mixed at room temperature, and
measured as soon as the stage temperature was equilibrated. In
both cases, the solutions were loaded onto a TA Discovery HR
30 rheometer (New Castle, DE), and measured using a 20 mm
parallel plate geometry and a 20 mm sand-blasted bottom plate, on
a temperature-controlled Peltier system. Oscillatory time sweeps
were carried out at 30 1C, at a fixed frequency of 1 Hz, a fixed strain
rate of 0.1%, and a fixed gap size of 650 mm. A solvent trap was used
to prevent evaporation.

2.3 Computational methods

2.3.1 Multiple particle tracking. Particles were tracked
using an open-source multiple particle tracking (MPT)
algorithm32,34,42 that identifies the centroid position of each
particle in every frame. Thereafter, particle positions were
linked across frames to generate trajectories of individual
particles as a function of time. The mean squared displacement
(MSD) for each lag time Dt is calculated as the average of the
squared 2D displacements for all particles i and time t:

hDr2(Dt)i = h(x1(t + Dt)) � x1(t))2 + (x2(t + Dt)) � x2(t))2i
(1)

where x1 and x2 are the coordinates of the image. The time and
length scales accessible by passive microrheology are limited by
microscope acquisition frame rate and resolution limits. In
general, stiff materials (41 Pa) are challenging to characterize
due to small probe displacements, using mm-sized probe par-
ticles. In addition, towards the end of gelation, local concen-
tration fluctuations can lead to convective probe displacement.
These are difficult to avoid. Instead, we carry out a procedure to
mitigate the effect of the convective term on MSD as outlined in
Note S1 in the ESI.†

2.3.2 Automated determination of gelation time. To
validate the accuracy of MSD curve shifting for determining
the gelation time, we also analyzed these videos based on the
ab initio uncertainty quantification (AIUQ) framework, an auto-
mated, Fourier-based analysis tool,37 using the open-sourced
software package.43 A main advantage lies in its ability to
optimally average the information at each Fourier basis, or
wavevector. Therefore, the analysis removes the need for select-
ing a range of Fourier bases to fit the image structure function
in differential dynamic microscopy.36 More details can be
found in Note S2 in ESI.† The algorithm is implemented by
calling the AIUQ package in R Software using the SAM function
for scattering analysis of microscopy, with the intensity matrix,
lag time Dt, and pixel size as inputs. We follow ref. 37 and set
the model to be an Ornstein–Uhlenbeck (O–U) process due to
its capacity to separate MSD curves into two master branches.
The O–U process has MSD of the form:

hDr2(Dt)i = ss
2(1 � rDt) (2)

consists of two parameters ss and r. The MSD can be related to
the intermediate scattering function in scattering analysis of
microscopy,44,45 and these parameters are estimated by max-
imum marginal likelihood estimator in AIUQ that weighs all
wavevectors, for each t corresponding to a certain time point
after mixing the two TPEGs. In particular, r quantifies the
curvature of the mean squared displacement (MSD) transition-
ing from Brownian diffusion to the Ornstein–Uhlenbeck process,
a smaller r means the system deviates more from the diffusive
process. Thereafter, the estimated parameter r from the AIUQ
package at any time t is fit to a generalized logistic curve:

rðtÞ ¼
exp �b t� tgel

� �� �

1þ exp �b t� tgel
� �� � (3)

where b is a fitting constant, tgel is the gelation time. Compared
to MPT, which requires manual shifting, obtaining gelation time
by AIUQ is free from subjectivity.

2.3.3 Gaussian process regression. Gaussian process regres-
sion (GPR),46 is a non-parametric approach, well-suited for pre-
dicting a nonlinear map by a small number of data points, on the
order of 10 s of input dimensions, to predict gelation time and cell
aspect ratio (AR) in this case, which can be challenging for other
machine learning models. GPR provides a flexible way for captur-
ing nonlinear maps by modeling the distance between any inputs,
here the formulations and experimental conditions, through a
covariance function. The outcome gelation time between two
inputs will be more similar if these two inputs are close to each
other. Compared to conventional spatial interpolation techniques,
GPR provides a posterior credible interval at any input for asses-
sing the uncertainty of the prediction. We use the RobustGaSP
package in R Software to implement GPR.47 The pH, reaction
temperature, and concentration are set to be the input vectors,
while gelation time and cell AR are the outputs. We predict
around 104 data points on equally spaced inputs for temperature
from 25 to 40 1C and concentration from 20 to 32 mg mL�1. The
GPR model is invoked with a command, rgasp, to call the robust
marginal posterior mode estimation48 for estimating the para-
meters, appropriate for a small number of data points; and
another command, predict, to compute the predictive mean,
variance and posterior credible interval at any given input vector
or matrix.

3 Results and discussion
3.1 Defining the constraints

We first define the formulation space for this problem. The
gelation temperature is varied between 25 to 40 1C. It has been
reported that TPEG-SG, TPEG-NH2 binary system gels at 4 wt%
(40 mg mL�1) at room temperature in less than 2 minutes.23

For samples gelling faster than 5 minutes, it is difficult to mix
all components uniformly. Beyond 90 minutes, TPEG-SG under-
goes significant hydrolysis. Hence, we focus on gelation time
between 5–90 minutes. The temperature and concentration
vary in increments of 0.5 1C and 0.5 mg mL�1, respectively,
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which determine the precision of the probed gelation
conditions.

3.2 Tracking the evolution of probe displacement and
extracting gelation times

We present the color-coded plots of MSD to show how particle
dynamics evolve with reaction time since mixing the two TPEGs
(Fig. 2). At earlier times, particles exhibit diffusive behavior where
hDr2(Dt)iB Dt (Fig. 2a and b). Gradually, the overall magnitude of
hDr2(Dt)i decreases. The gelling solution begins to show more
solid-like characteristics, accompanied by a decrease of the

log slope a ¼
@ log Dr2ðDtÞ

� �

@ logDt
, and the motion becomes more

subdiffusive.49 Then we determine gelation time by time-cure
superposition of the MSD curves, introduced by Larsen and
Furst.20 Using this method, gelation kinetics are analyzed by
empirically shifting the hDr2(Dt)i curves at various time points
to superimpose onto a master pregel curve and a master postgel
curve (Fig. 2c and d). The shifting was carried out by multiplying
the MSD and Dt by coefficients a and b, so that each dataset
exhibits some overlap with the subsequent one. The shift factors a
and b diverge as they approach gelation (Fig. 2e and f).

Using the above procedures, we determine the gelation time to
be 40.5 minutes for 23 mg mL�1 TPEG at 28 1C (Fig. 2e), and 13.8
minutes for 32 mg mL�1 TPEG at 30 1C (Fig. 2f), consistent with
more rapid development of the gel network at higher concentra-
tions and temperatures, and in line with earlier study of this
system.23 Upon identifying the gelation time, we collapse the shift

factors based on their distance to the gelation point e ¼ t� tcj j
tc

, as

shown in Fig. 2g and h where a B ey and b B ez. At the gelation
point, the MSD exhibits critical, power-law dependence,50,51 with an

exponent of n ¼ z

y
. For the two cases investigated in Fig. 2, we

obtain n = 0.74 and 0.77. Similarly, we apply this procedure to MSD
curves for each condition to determine the gelation time and
power-law exponents, which are tabulated in Table S1 (ESI†). All
cases appear to yield a n of around 0.75, independent of tempera-
ture and concentration. This suggests that the microstructure of
the critical gel appears to be similar within the concentration range
and reaction conditions tested. In summary, MPT provides a
detailed analysis of kinetics around crucial gelation points30 and
can reveal gel heterogeneity by tracking individual probe particle
movements.

On the other hand, Fourier-based analysis offers a user-
friendly approach to high-throughput material characterization,
as it minimizes the need for user intervention.52–54 This class of
methods calculates image differences and connects image dec-
orrelation to system dynamics, which reflect the contribution of
all particles in the field of view, without particle-level informa-
tion. Thus, this approach is especially useful when processing
large amounts of data to identify average quantities, such as the
MSD. Previously, we have also demonstrated AIUQ’s ability to
obtain gelation time automatically for a system of curves.37 This
is achieved by fitting the model parameter r(t) to time t (eqn (3)).
Here, we apply AIUQ to this extensive dataset of curves (4100
total MSDs, 450 GB video microscopy data). We confirm that
AIUQ yields gelation times that agree with those obtained by
shifting the MPT curves manually, as shown in Fig. 2i and j.
Additional results are presented in Table S1 (ESI†).

3.3 Deriving the response surface using sequential design

Collecting data at fine resolution across the entire formulation
space remains largely infeasible, even with AIUQ’s automated

Fig. 2 Illustration of MSD shifting procedure at different temperature and concentration conditions. (a) and (b) Families of MSD curves, each
representing a different time point during gelation for (a) 23 mg mL�1 TPEG at 28 1C, and (b) 32 mg mL�1 TPEG at 30 1C. The shifted MSD is shown
in (c) and (d), and the shifting constant plotted against time is shown in (e) and (f). (g) and (h) Shift factors a (red open and filled circles) and b (blue open
and filled triangles) are plotted versus the distance from the gel point, e, y and z denote the scaling exponents, a B ey, b B ez, pregel and postgel. (i) and (j)
The same sets of experiments were analyzed by AIUQ, which estimates r, error bars denote the 95% confidence interval of the estimated r from the AIUQ
package. AIUQ produces similar gelation times. Solid lines denote fits to the logistical curve in eqn (3).
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analysis. To address this challenge, we use Gaussian process
regression (GPR) to model the response surface based on input
conditions for unsampled data. This approach is especially
effective for small sample sizes, as it provides not only an
estimate but also a predictive interval for quantifying the
uncertainty of the prediction at any given input.

To efficiently sample the parameter space in constructing
this surface, we adopt an active learning approach, by placing
the next test point at the condition with the highest uncertainty
interval prior to its placement. We illustrate this first with the
gelation time obtained through microrheology at pH = 7, as this
condition is commonly tested in literature.23 As more data
points are incorporated into training the model, the average
95% predictive interval length, which are calculated from the
difference between the upper and lower bounds of the esti-
mated parameters, gradually decreases. This is illustrated
graphically in Fig. S2 (ESI†). Upon increasing observation from
4 points to 10 points, the confidence interval for the entire map
is reduced by 85%.

Next, we use the same microrheology procedure to obtain 16
gelation time data points at pH = 7.4. We compare the perfor-
mance by fitting the gelation response surface using both linear
regression and GPR (Fig. 3a and b). Both models generate
gelation surfaces that align with expectations, that higher
concentrations and temperatures will lead to shorter gelation
times (Fig. 3a and c). Intuitively, increasing TPEG concentration
leads to more collisions between reactive groups, while higher
temperatures accelerate reaction kinetics.

Using linear regression, the gelation time response surface
and uncertainty map predicted from these observations are
presented in Fig. 3a. This approach produces a linearly varying
response surface across all temperatures and concentrations.
However, based on the filled circles, which are color-coded with
the same color map to represent the observed gelation time, the
predicted surface obtained by linear regression deviates from
the observation at multiple points (Fig. 3a).

For comparison, we use the same set of observed data to
predict the surface and uncertainty interval using GPR, which
can capture non-linear responses, as shown in Fig. 3b. First, we
confirm that the GPR-predicted surface captures the variability
of observed values more accurately than linear regression.
Furthermore, both methods also yield an uncertainty map
based on 95% confidence intervals (Fig. 3c and d) which
decrease with more data points. We find that the average
interval length across all grid points is reduced significantly
using GPR, with the same 16 data points. The average interval
length associated with GPR predictions is significantly smaller
than that of the linear regression model (Fig. 3e), by 71%.

To assess the accuracy of the GPR model’s predictions, we also
perform leave-one-out, out-of-sample validation, which is briefly
described here. We start with the first five observations. Among
those, we randomly designate four points as training data and
withhold one as test data. The model is trained on these four
points to learn the relationships between the input variables
(temperatures and compositions) and the output variable (gela-
tion time). After training, the model predicts gelation time for the
test point, which is not used in training. We then compare these
predictions to the observed gelation time to assess the model’s
performance on unsampled data. This process is repeated for all
five points, and prediction accuracy is quantified using root mean
squared error (RMSE). We sequentially repeat the above process
with more data points, from 6 to 16 points. As more data points
are added, the out-of-sample RMSE decreases, indicating that the
GPR model’s ability to predict new data improves with additional
training points (Fig. 3f). In contrast, the RMSE decreased much
more slowly for the linear model. Overall, GPR consistently out-
performs linear regression in this scenario. Ultimately, the RMSE
can be reduced to around 10 minutes using GPR, which is around
47% lower than the RMSE using linear regression with the same
data. The remaining uncertainty may be inherent to the system
and arises due to sample preparation, time resolution of the
acquisition, estimates of the MSDs, and variation in shifting
the MSDs.

The same comparison between linear and GPR is also
performed for pH = 7 (Fig. S3, ESI†). Even though GPR also

Fig. 3 (a) and (b) Predicted gelation time surface at pH = 7.4 based on
compositions and temperatures using 16 observed points using (a) linear
regression and (b) Gaussian process regression fit. Filled circles represent
experimentally measured gelation time, and their colors denote observed
values. (c) and (d) Comparison of 95% predictive interval length for these
same input data points using (c) linear regression and (d) Gaussian process
regression fit. (e) and (f) Comparison of (e) average 95% predictive interval
length across the entire response surface and (f) out-of-sample RMSE
between linear (blue circles) and Gaussian process (magenta triangles)
regressions, by leaving one out and using the rest to predict.
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produces a smaller confidence interval (Fig. S3c, ESI†), we find
that in this case, GPR does not offer a similar reduction of RMSE
compared to linear regression (Fig. S3d, ESI†). High-throughput
microrheology measurements produce gelation time datasets that
facilitate testing statistically meaningful scaling relationships. To
understand the difference between two pHs, we fit a linear
regression model for gelation time against both temperature
and concentration as variables (Table 1). For pH = 7, the linear
coefficients of both concentration and temperature significantly
differ from zero. The analysis therefore indicates that the relation-
ship of response surface of gelation time is close to linear for
both temperature and concentration at neutral pH conditions.
However, at pH = 7.4, the coefficient of concentration is not
significant, indicating that the relation between concentration
and gelation time may not be linear. In summary, under neutral
pH conditions, the variability of both variables is effectively
captured by the linear model, resulting in a similar out-of-
sample RMSE compared to GPR.

3.4 Improving gelation time prediction at cell encapsulation
pH with prior knowledge at neutral pH

As the gelation time is typically reported at neutral pH condi-
tions, we test whether this information can be used to extra-
polate gelation time and boost the performance of GPR. To do
so, pH is treated as the third independent variable to generate
the prediction. The out-of-sample RMSE calculated using only
pH = 7.4 data is replotted here for comparison.

We find that, initially, with fewer than 11 data points at pH =
7.4, the out-of-sample RMSE is much smaller when the surface
is learned jointly, indicating that including the data points at
pH = 7 helps reduce the predictive error when pH = 7.4. After
the 12th point, adding data from pH = 7 does not improve the
predictions at pH = 7.4, as shown in Fig. 4a. This is attributed to
variations in the kinetics of the secondary reaction at these two
pHs, where TPEG hydrolysis occurs much faster at pH above 7
than at neutral pH, as confirmed by UV-vis measurement (Fig.
S4, ESI†). These differences limit the accuracy of predictions at
pH = 7.4 using the prior knowledge from pH = 7 when more
instances of gelation time are observed at pH = 7.4. In both

cases, the RMSEs approach a similar value after all 16 data
points at pH = 7.4 are used. The response surfaces are displayed
as 3D plots in Fig. 4b and c, with the training data points shown
as black filled circles. There is a good agreement between the
observed values and the learned 3D response surface in both
cases. Due to increased hydrolysis, gelation time tends to be
longer at pH = 7.4. Taken together, these results suggest that
prior knowledge of the response surface at pH = 7 can signifi-
cantly reduce uncertainty and error in predicting the response
surface at pH = 7.4, facilitating experimental design, when
additional data at pH = 7.4 is unavailable or inaccessible.

3.5 Characterizing cell morphologies on 2D substrates

To explore the TPEG-collagen double network as a potential
material for cell scaffolds, we first prepare 2D substrates made
with different TPEG concentrations (25, 30, and 40 mg mL�1).
Prior to seeding the cells, we ensure that the networks are
completely crosslinked. After seeding and culturing them on
the 2D substrates for 24 hours, the cells are fixed and stained,
as illustrated in the representative images (Fig. 5a–c).
While networks prepared with a higher concentration of TPEG
(40 mg mL�1, Fig. 5a) are slightly stiffer (Fig. S5, ESI†), cells
cultured on these substrates exhibit more rounded morpholo-
gies than those cultured on softer substrates, prepared with
lower TPEG concentrations (25 mg mL�1, Fig. 5c). As demon-
strated by ref. 55 and 56, cell spreading on 2D depends on not
only the stiffness of the substrate but also the density and the
type of the adhesion ligands. The gelation rate of both collagen
and TPEG appears to affect the density of adhesive ligands on
the surface of the double networks, thereby influencing cell
morphology in 2D. Given these observations, we pose the
question: could we similarly expect different cell morphologies
in 3D? In 3D, network formation takes place simultaneously
with the development of cell focal adhesions, so gelation
kinetics could have a greater impact on cell morphologies.

Table 1 Linear regression model for gelation time. tgel B A1C + A2T where
tgel represents the gelation time, T represents temperature, C represents
concentration. The t-statistics for testing whether the linear regression
coefficients A1, A2 are zero, their p-value and significance levels are given
in columns 5–7. A small p-value indicates the corresponding linear
coefficient is significantly different from zero

Parameter Coefficient Std. error t-Value p-Value
Sig.
level

pH = 7 (Intercept) 134 23.4 5.73 7.14 � 10�4 ***
C (conc.) �1.88 0.970 0.485 6.08 � 10�3 **
T (temp.) �2.14 0.456 0.500 3.67 � 10�3 **

pH = 7.4 (Intercept) 130 30.2 4.29 8.76 � 10�4 ***
C (conc.) �1.36 0.485 0.970 0.185
T (temp.) �1.77 0.500 0.456 1.94 � 10�3 **

Sig. codes: ‘***’ = 0–0.001, ‘**’ = 0.001–0.01, ‘*’ = 0.01–0.05, no symbol =
0.1–1.0.

Fig. 4 (a) Out-of-sample RMSE computed for surfaces learned from
observations at pH = 7.4 (blue cirlces) and from observations at pH = 7
and pH = 7.4 jointly (magenta triangles). (b) and (c) The response surfaces
are plotted in 3D for (b) pH = 7 and (c) pH = 7.4. Observed data are plotted
as filled circles.
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Furthermore, cells must also break down the surrounding
matrix to spread and migrate. Therefore, we next investigate
the relationship between gelation time and cell shape in 3D.

3.6 Characterizing cell morphologies in 3D double networks

We synthesize double networks in a one-pot reaction to exam-
ine the morphology of encapsulated cells. Cells, neutralized
collagen, and TPEGs are mixed together in PBS and incubated
at 25, 30, and 37 1C, allowing the formulation to gel. After
24 hours, cells are fixed and stained for imaging. Representa-
tive snapshots are shown in Fig. 6a. As in the 2D case, we find
that cells encapsulated in hydrogel formed at higher TPEG
concentration and temperature tend to have a more rounded
morphology, compared to those in slow-gelling formulations
that have a more elongated morphology. Cell encapsulation in
pure collagen (0 mg mL�1 TPEG) serves as a control at all three
temperatures to rule out temperature as a factor affecting cell
morphologies. These results suggest that the fast development
of the secondary TPEG network also inhibits cell spreading.

Introducing non-degradable TPEG into the matrix strength-
ens the matrix, but also creates regions within the matrix that
cells cannot access or modify. Previously, such a network was
found to resist collagen contraction.15 We hypothesize that
when the TPEG networks gel rapidly (for instance, at higher
temperature or higher PEG concentration), cells are trapped

before they have time to develop focal adhesion, and thus
exhibit rounded morphology (Fig. 6b). Using microrheology,
we find that the reaction rate between the SG and NH2 groups is
highly sensitive to temperature and concentrations (Fig. 4c).
Likewise, the trend of microrheology is echoed by bulk rheology
measurements of the double networks (Fig. 6c). At 30 1C, the
network forms much faster at 40 mg mL�1 TPEG than at 25 or
30 mg mL�1 TPEG. Our findings are consistent with earlier
studies showing that cell shapes are influenced by the timing of
mechanical stimuli.14,17,18 While bulk rheology reveals that the
secondary network formation accelerates with increasing TPEG
addition, its rate is obscured by the dominating mechanical
property of the collagen network, which gels shortly after
mixing, where storage modulus is always greater than the loss
modulus (Fig. S6, ESI†). Thus, it is challenging to establish a
metric for the rate of secondary network formation to under-
stand cell shape.

As an additional verification, we perform bulk rheometry for
the TPEG-only formulation (Fig. S7, ESI†), and determine the
gelation time by the crossover between G0 and G00. We find that,
using this criterion, most of the formulation gels in a matter of
minutes, compares to 10 s of minutes using time-cure super-
position. The different gelation times observed with these methods
likely stem from the distinct length scales of macroscopic rhe-
ometer geometry (D = 20 mm) compared to the size of the probe
(2a = 1 mm). Similar to ref. 23, we conclude that the solid-like
network initially detected by the rheometer may be relatively open,
allowing the probe particles to move freely within those open
spaces. For 2D substrates and 3D encapsulation, microrheology
seems to probe structure formation at a length scale more relevant
to the evolving cell morphology. As shown in Fig. S7 and Table S2
(ESI†), all formulations examined at 30 1C gel immediately. How-
ever, when cells are seeded on these networks (Fig. 5) or encapsu-
lated within them (Fig. 6a), we observe distinct cell morphologies.

Our work establishes microrheology as a valuable tool for
probing secondary network formation whereas bulk rheology

Fig. 5 Cells cultured on double-network hydrogels with TPEG concen-
tration of (a) 25 mg mL�1, (b) 30 mg mL�1, and (c) 40 mg mL�1. The scale
bars are 50 mm.

Fig. 6 (a) Cell shape characterization by fluorescent microscopy. Red and blue channels denote the cytoplasm and nucleus, respectively. An example of
the best-fit ellipse is shown as an inset, where l, w are the major and minor axes of the ellipse, as shown. The scale bar is 20 mm. (b) The hydrogel is
crosslinked at different temperatures, resulting in different rates of crosslinking and cell morphologies. (c) Time-dependent bulk rheometry measure-
ments for gels crosslinked at 30 1C are measured from pure collagen plus TPEG at concentrations 0, 25, 30, and 40 mg mL�1.
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can be painstaking. During bulk rheology measurements, care is
taken to avoid shear break-up, and minimize loading history,
evaporation, and slipping. Each experiment uses about 0.5 mL of
sample, but reloading is often necessary, meaning preparation,
loading, measurement, and cleanup can take several hours for each
condition. In contrast, microrheology offers advantages that include
automated analysis, rapid temperature equilibration, and small
sample volumes (B10 mL). Crucially, microrheology yields a key
differentiating metric, the gelation time, that highly correlates with
the rate of network formation of the secondary network on the
length scale of cells. Overall, microrheology is well-suited for map-
ping various input conditions to construct a response surface for
gelation time. Here, such mapping aids in optimizing formulation
and processing conditions to promote cell spreading while enhan-
cing the mechanical properties of pure collagen networks. This
study offers additional insights into the behavior of cells encapsu-
lated in a continuously varying matrix and presents a method for
formulation control of cell shapes without UV activation.

3.7 Predicting cell shapes by gelation time

To demonstrate that gelation time can predict average final cell
morphologies, we first extract cell shapes by thresholding and
binarizing the images. Next, we fit an ellipse to the cytoplasm
channel (Fig. S8, ESI†) through an automated batch process
using a custom FIJI plug-in developed in our previous work.57

We find the average AR of the projection of the encapsulated
cells. It is approximated by fitting an ellipse to the cytoplasm
channel of the image, where l and w are the major and minor

axis of the cell, respectively, and aspect ratio AR ¼ l

w
, averaged

for all cells. The histograms of AR distribution for all condi-
tions are shown in Fig. S9 (ESI†). Approximately 100–200 cells
are analyzed for each temperature and concentration condi-
tion. In addition, we have compared (AR) by fitting an ellipse to
several other metrics to quantify the cell shape: by computing
the eigenvalues of the gyration tensor, whose square roots
represent the radii that characterize the major axes of the
ellipsoid describing the cell shape, or by computing the cell
area. As shown in Fig. S10 in ESI,† all three metrics are highly
correlated with each other. Therefore, we will report the aspect
ratio based on the ellipse fitting to the cytoplasm channel in
subsequent analyses. In both 2D and 3D scenarios, we find that
cell aspect ratio follows similar trends with varying concentra-
tions of TPEG (Fig. S11, ESI†). To create a phase diagram, we
generate a surface similar to gelation time to predict cell aspect
ratios under various preparation conditions (Fig. 7a).

From the phase diagram in Fig. 7a, we predict the cell shape
based on the input conditions used to generate the gelation
plot (open circles), where the gelation time is observed (Fig. 7b).
The predicted cell shape is plotted against the observed gela-
tion time in Fig. 7c. Then we compute the Pearson correlation
coefficient, which is a common way of measuring linear corre-
lation:

r ¼ Covðgeltime; ARÞ
sgeltimesAR

(4)

where Cov(�,�) denotes the covariance between the two inputs,
and s stands for the standard deviation of that input. There is
intrinsic variation in cell shapes (Fig. S12, ESI†). Hence, we
compute both the Pearson correlation coefficient and its
weighted version (Note S3, ESI†). Their differences are small,
and the unweighted results are reported here. We found a
correlation coefficient r = 0.797 when predicting cell shape
based on known gelation time. Generally, r 4 0.5 indicates a
moderately positive correlation. Due to a high correlation
between the two surfaces, the predicted gelation time can
similarly explain the observed cell shape. We carry out a similar
test with the observed cell shape (colored circles, Fig. 7d), with
the corresponding gelation time precited from the gelation
time plot, learned jointly with data from pH = 7 and pH = 7.4
(open circles, Fig. 7e). A correlation coefficient r = 0.845 is
obtained (Fig. 7f) when the observed cell aspect ratio is
accounted for by a known gelation time phase diagram.

Cell shape regulates transcriptional signals and gene
expressions.58 Here, we demonstrate a method for controlling
cell shape through the gelation time. These results indicate that

Fig. 7 Measuring the strength of the correlation between gelation time and
cell shape. Panels (a) and (e) show the predicted phase diagrams of AR and
gelation time, respectively. Panel (b) and (d) show the color-coded,
observed gelation time and AR. Panels (c) and (f) show the correlation
analysis between the predicted and observed quantities. The 95% predictive
intervals from GPR data are plotted as grey error bars. Solid red lines denote
the least squared linear fit between the observed and predicted quantities.
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fibroblast morphology is responsive to dynamic matrix viscoelas-
ticity, echoing earlier results that cell shape depends most criti-
cally on the total time spent in fast-relaxing (more liquid-like)
conditions.14 For the first time, we use a combination of experi-
mental techniques and machine learning to quantitatively assess
how gelation time impacts cell morphology.

3.8 Examining the timing of matrix formation and focal
adhesion development on cell spreading

The primary factor influencing differences in cell spreading state
appears to be the mechanical history, particularly the gelation
time, rather than the final mechanical properties of the matrix.
As the matrix gels over time, cells can sense and respond to these
changes through focal adhesions, which connect them to the
extracellular matrix. Focal adhesions convey information such as
matrix moduli and degradability, allowing cells to adjust the
stiffness of their actin cytoskeleton accordingly. These actions
are mediated through focal adhesion kinase (FAK), which plays a
central role in cell adhesion59 and cell morphology.60

To determine if a difference in response of cell spreading is
due to focal adhesion formation, we perform control encapsu-
lation experiments in the presence of FAK inhibitor (FAKi),61

during the initial stage of network formation of the hydrogels.
We encapsulate cells in a slow-gelling double network (TPEGs =
30 mg mL�1, crosslinked at 30 1C, tgel E 45 minutes) contain-
ing 1 mM of FAKi. After gelation, the hydrogel is washed and
replenished with complete media. Twenty-four hours after
initial encapsulation, cells are fixed and stained for imaging.
Altogether, cells are exposed to FAKi for the first 3 hours. They
are compared to cells that have never been exposed to FAKi
(Fig. 8). As a control, we perform the same experiments with
cells encapsulated in a collagen matrix without TPEGs. We
observe no statistical difference in aspect ratios of the cells,
with or without the FAKi treatment, when they are encapsulated

in pure collagen (Fig. 8), based on pairwise comparison using
one-way analysis of variance (ANOVA). This indicates that
NIH3T3 cells can recover and elongate in a collagen matrix
once the FAKi is removed. In contrast, cells in the double
network cannot elongate if the TPEG network forms before
FAKi is removed. In this case, we find that the aspect ratio of
cells in the double network differs significantly depending on
whether or not they are exposed to FAKi during the formation
of the network. In the presence or absence of FAKi, the double
network undergoes the same preparation and therefore has
similar nanoscale mesh structures and mechanical properties.
These results indicate that the timing of mechanical stimuli
plays a crucial role in cell spreading, and the process is FAK-
dependent. Furthermore, we note that within each group –
whether untreated or treated with FAKi – the cell aspect ratios
are also different, illustrating cells’ sensitivity to both the
magnitude and timing of the mechanical stimuli.

4 Conclusion

Double networks are frequently employed to impart desirable
responses to collagen-based hydrogels.15,16 By infiltrating a
collagen network with synthetic polymers and then crosslink-
ing these polymers using external stimuli, it is possible to
achieve time-dependent network properties.14 One-pot synth-
esis largely simplifies these multi-step procedures, but requires
an understanding of how gelation time affects cell morphology,
which can, in turn, profoundly influence their collective forces.
Therefore, phase diagrams mapping input conditions to cell
shape and matrix properties can guide the design of cell
assemblies, but constructing them often requires significant
human and material costs.

We combine high-throughput microrheology and data-
driven analysis to address this problem. Data-driven methods
optimize soft matter formulations, while microrheology probes
evolving systems in situ. We achieve an efficient sampling of the
formulation space by combining automated microscopy acqui-
sition and streamlining image analysis. The large data set
yields gelation times at different conditions, which serve as
inputs to learn the gelation response surface. Using Gaussian
process regression, we construct the gelation response surface,
which proves more flexible and accurate than linear regression.
Additionally, we introduce an active learning procedure that
uses intervals computed by Gaussian process regression to
systematically reduce the uncertainty of the response surface.

Our study highlights that a fast-relaxing environment is
critical for cell spreading within the first few hours after
encapsulation, and for achieving elongated cell shapes, even
when controlling for the final mechanical properties of the
hydrogel. For spreading to occur, cells must first establish focal
adhesions before the formation of non-degradable networks.
Thus, we show that managing gelation time is a powerful
method for altering cell morphology. Our findings could also
improve techniques such as 3D printing,62 which depend
on precise control of the viscoelastic properties of bio-inks.

Fig. 8 Aspect ratios are depicted for collagen-only matrix (black circles)
and collagen + TPEGs double networks (red triangles). Statistical quantities
are shown in a box plot, where the open symbols denote outliers, outside
of 1.5 standard deviations. All data are used in the one-way ANOVA
analysis. Significance levels are denoted as: ‘***’ = 0–0.001, ‘**’ =
0.001–0.01, ‘*’ = 0.01–0.05, n.s. = 0.1–1.0.
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The experimental and analytical capabilities described here could
also enhance the design of time-dependent synthetic extracellular
matrix mimics,63 facilitate the creation of anisotropic cell
assemblies,64 and improve the study of cell–extracellular matrix
interactions65 at both microscopic and macroscopic scales.

Author contributions

Yimin L designed the project. Yuxin L and JC performed
experiments. Yuxin L, Yimin L and MG performed numerical
modeling and analysis. All authors have contributed to the
writing of the manuscript and given approval to the final
version of the manuscript.

Data availability

The data collected and the analysis codes generated for this
study is available through a permanent DOI on Dryad: https://
doi.org/10.5061/dryad.8w9ghx3xn.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors would like to thank the Yale Cancer Center for
providing the NIH3T3 cell line, Juliet Gottfried for assistance
with subculturing and maintenance of the cell line, and Xinyi
Fang for discussion on the cell shape analysis code. We
acknowledge the use of UV-vis spectrophotometer at the Yale
Chemical and Biophysical Instrumentation Center, and rhe-
ometer at the Yale Mechanical and Thermal Analysis Instru-
mentation Core. This work is partially supported by the
National Science Foundation under Grants OAC-2411043 and
OAC-2411044.

References

1 N. A. Peppas and A. S. Hoffman, Biomaterials science, Else-
vier, 2020, pp. 153–166.

2 S. R. Caliari and J. A. Burdick, Nat. Methods, 2016, 13,
405–414.

3 C.-M. Lo, H.-B. Wang, M. Dembo and Y.-L. Wang, Biophys. J.,
2000, 79, 144–152.

4 P. Chaudhuri, L. Berthier and W. Kob, Phys. Rev. Lett., 2007,
99, 060604.

5 A. S. Rowlands, P. A. George and J. J. Cooper-White, Am.
J. Physiol.: Cell Physiol., 2008, 295, C1037–C1044.

6 R. Sunyer, V. Conte, J. Escribano, A. Elosegui-Artola,
A. Labernadie, L. Valon, D. Navajas, J. M. Garca-Aznar,
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