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Banded phases in topological flocks
Charles R. Packard and Daniel M. Sussman (= *

Flocking phase transitions arise in many aligning active soft matter systems, and an interesting question
concerns the role of “topological” vs. “metric” interactions on these transitions. While recent theoretical
work suggests that the order—disorder transition in these polar aligning models is universally first order,
numerical studies have suggested that topological models may instead have a continuous transition.
Some recent simulations have found that some variations of topologically interacting flocking agents
have a discontinuous transition, but unambiguous observations of phase coexistence using common
Voronoi-based alignment remains elusive. In this work, we use a custom GPU-accelerated simulation
package to perform million-particle-scale simulations of a Voronoi—Vicsek model in which alignment
interactions stem from an XY-like Hamiltonian. By accessing such large systems on appropriately long
time scales and in the time-continuous limit, we are able to show a regime of stable phase coexistence
between the ordered and disordered phases, confirming the discontinuous nature of this transition in

rsc.li/soft-matter-journal the thermodynamic limit.

1 Introduction

The spontaneous self-organization of synthetic or biological
self-propelled agents into a state of ordered collective motion is
observed in nature from microscopic’ to macroscopic>™* length
scales. Despite the complexity of their constituent components,
many of the emergent large-scale dynamics in these experi-
mental systems can be understood from highly coarse-grained
agent-based models.">® The Vicsek model” - a foundational
model in the study of active matter — describes ““flocks” of polar
aligning agents. A substantial body of research has focused on
understanding the nature of the phase transition between the
ordered and disordered states of this model (and its many
variants),®” as well as the hydrodynamic properties of systems
with the same symmetries."’

In its original formulation, agents in the Vicsek model align
with all agents within a characteristic length scale."* This
“metric” flavor of the model is particularly well-suited for
flocks such as active colloids,'? microtubules,” and bacteria,’
in which aligning interactions between agents occur via colli-
sions. In macroscopic flocks though (e.g,, some insects,"
fish,'* and bird flocks,'® or even pedestrian traffic'®), alignment
interactions may be vision-based or otherwise “metric-free”"”
or “topological”. That is, the network of neighbor interactions
stems not directly from a pairwise distance, but from some
other criteria (for instance, k-nearest-neighbors'®*>! or from a
Voronoi tessellation'”**7** of space). The question of whether
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or not metric and topological flocks have order-disorder transi-
tions in the same universality class remains an active source of
discussion.”>™”

In metric flocks, the transition to collective motion is
discontinuous,'* with phase coexistence at the phase boundary
that is understood as a non-equilibrium analogue of the liquid-
gas transition.”® This phase behavior has been studied using
Boltzmann-style coarse-graining methods that allow the
dynamics of flocks to be treated at the level of interacting
fields.**° The resulting hydrodynamics reveal that the micro-
scopic length scale of aligning interactions in metric flocks
leads to a coupling between the coarse-grained density and
polarization fields, which subsequently produces a linear
instability of the homogeneous ordered phase in the vicinity
of the order-disorder phase boundary and gives rise to phase
coexistence.® This phase coexistence is characterized by the
presence of high-density, highly ordered “bands” of particles
propagating through a low-density, disordered background of
particles.**>* This phase transition is well-known in metric
Vicsek models and is reminiscent of propagating bands that
have been experimentally observed in both synthetic'®> and
biological flocks."

A field-theoretic analysis of topological flocks suggested that
the absence of a microscopic length scale correspondingly
results in the absence of coupling between the density and
polarization fields*>*® - this would rationalize the continuous
order-disorder transition previously reported for the Voronoi-
Vicsek model."” Recently, though, theoretical work has emerged
suggesting that correlated fluctuations in the coarse-grained den-
sity and velocity fields of a topological flock lead to renormalized
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hydrodynamics that make the phase transition discontinuous.*®
At present, this fluctuation-induced first-order transition scenario®”
is demonstrated in agent-based simulations of both the topological
k-nearest neighbor Vicsek model (VM)*® and active Ising model
(AIM) - a lattice flocking model with discrete symmetry. Prelimin-
ary evidence suggests that the same discontinuous transition
characterizes the Voronoi variant of the AIM,>” albeit at the very
edge of system size that the computational methods employed in
that work could resolve. These studies on topological AIM flocks
are further complicated by the fact that their active orientational
dynamics have a discrete &, symmetry, in contrast to the
continuous rotational symmetry of both Vicsek and natural
flocks. Recent work has found that such differences can have
profound effects on the macroscopic phase behavior of the
ordered states.*® In addition to the unclear theoretical scenario,
this highlights a tension in the numerical literature between the
recent AIM models and previous simulations of Vicsek-style
Voronoi flocks which, as mentioned before, found no signature
of phase coexistence in a thorough finite-size scaling analysis.'”

In this paper, we conduct large-scale numerical simulations
to resolve this tension. We first show that the discrepancy
between earlier'” and more recent’” work vanishes when one
considers sufficiently large systems and takes into account the
time-continuous limit of a Voronoi-Vicsek model. Standard
Vicsek model simulations use discrete-time dynamics (in which
positions and orientations are updated with a time-step size of
At = 1), in which arbitrarily large changes in particle orientation
are permitted.” We adopt a time-continuous formulation®”
in which the equations of motion are expressed as coupled
differential equations (and for which angular updates are
controlled by a conservative potential), allowing us to indepen-
dently vary particle speeds and the discretization of time in our
simulations. We perform a finite-size analysis to demonstrate
that the order-disorder transition in Voronoi flocks is discon-
tinuous. We furthermore expand on the results of ref. 27 by
explicitly demonstrating coexisting phases with a bimodal
distribution of densities, and we directly measure a non-
vanishing coupling between density and polarization fields.

In the remainder of this manuscript, we first describe the
model and our numerical methods in more detail. We then
report coarse-grained field statistics for our large-scale simula-
tions, discussing the structure of the coexisting phases and
comparing the traditional discrete-time version of the model
with a time-continuous implementation. We finally close with a
discussion and outlook on questions of flocking in metric and
topologically interacting systems.

2 Models and methods

The original Vicsek model considered discrete-time updates of
particle positions and orientations, and furthermore used an
angular update whose action cannot be expressed as the
derivative of a potential.** We adopt a model which is more
amenable to studying time-continuous dynamics, and in which
the particle torques are governed by a classical XY-model

This journal is © The Royal Society of Chemistry 2025

View Article Online

Soft Matter

Hamiltonian.*" Our simulations are of N particles in a 2D
square box of linear size L with periodic boundary conditions.
The linear size of the simulation domain reflects of our unit of
length, and without loss of generality we fix the particle density
at po = N/L* = 1.0. The positions and orientations of the particles
evolve in time according to

dr; () 0.(1)
=[] .
d%Y):§%J1+ﬂQU) ©

Here, v, is the self-propulsion speed, and the energy of particle i
is given by

HI{0:(0)}] = = Y cos[6;(r) — 6:(1)]. (3)

JEN (1)

The parameter o« sets the interaction strength of the polar
alignment. This model is sometimes known as a ‘velocity
aligning Active Brownian Particle” model.**

In the standard Vicsek model, 47;() (the set of neighbors of
particle 7) is set by distance-based criteria, while here it is the
instantaneous set of Voronoi neighbors of particle i at time
t.7** We work with the fixed value « = 1/6. We note that in a
periodic domain a generic tessellation will have, on average, six
neighbors per particle, meaning that even in the presence of
giant number fluctuations this fact gives us an extensive
Hamiltonian. Finally, # is the strength of the Gaussian white
noise {;. Unless specified otherwise, we simulate N = 1.28 x 10°
particles with v = 2.0 and conduct simulations at a time-step
size of dt = 0.005. We note that the precise value of the phase
boundary is sensitive to the time-step size, which will be of note
when we compare with d¢ = 1 simulations in Section 5. We
further note that some works on topological Vicsek-like models
adopt a convention® of fixing v, and varying p - since there is
no natural length scale set by the particle interaction range
these conventions are equivalent, but since we are adopting a
time-continuous model we find it more convenient to fix the
density. In order to explore these system sizes in a computa-
tionally accessible manner, we adapt GPU-accelerated code
from the cellGPU package** to the model studied here.

To probe the nature of the phase transition in the above
model, we focus much of our attention on the Binder cumu-

lant.*”*>” For an arbitrary random variable fthis is defined by
A
=1- 4
v 32 @

where (f?) and (f*) denote the second and fourth moments of
f, respectively. Typically, the Binder cumulant of the global
polar order parameter,

) (5)

is studied, and the averages in eqn (4) are done over time."""’

For a continuous transition, G, monotonically increases
below the critical point as the mean of ¢ increases, while for
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discontinuous transitions G, will be non-monotonic in the
vicinity of the phase transition (indicating a bimodal distribu-
tion of ¢). In the context of these flocking models, the statis-
tical expectation is that sampling ¢(r, ¢) in disordered states is
equivalent to sampling the norm of a collection of random unit
vectors in 2D, which consequently yields G4 = 1/3. In ordered
states, the mean of ¢(r, t) is a non-zero mean and one finds that
Gy = 2/3.%

In our work, we use systems that are large enough to allow
us to directly (spatially) coarse-grain the order parameter field
of our system rather than looking at time series statistics of
¢(¢). Following ref. 49, we define

S w03l — (1)
b(r,1) =" . (6)
S~ ofr - ri(0)

i=1

This is related to the global order parameter via ¢(1) = [d’ré(r, 7).
We define coarse-grained fields by averaging over square sub-
volumes of side length / (chosen so that the sub-volumes partition
the unit cell an integer number of times), and we then compute
statistics on these coarse-grained fields. By sampling within sub-
volumes of our system containing a sufficiently large number of
particles, the statistics of ¢(r, t) will be the same as those generated
by ¢(t). We note, though, that especially close to a critical point
(when spatial correlation lengths may be large) analyzing the
coarse-grained fields sometimes requires a delicate choice of the
scale over which spatial averaging is done.”*”" Fig. 1 shows
representative coarse-graining scales applied to the same configu-
ration of a ~ two-million particle configuration close to the order—
disorder transition. Readily apparent is that large averaging win-
dows are needed to see some characteristic features. This fact will
be further reflected in our analysis of the actual statistics and
correlations of the resulting fields.

We also consider the statistics of the coarse-grained
density field

pr,0) = dlr— (1), )

i=1

as was done in ref. 52. In this case, the expectation is G, = 2/3 in
both the ordered and disordered phases, since density fluctua-
tions about a homogeneous steady-state will be normally dis-
tributed about p,. If an inhomogeneous state exists, which here
we expect to involve the presence of propagating flocks in high-
density bands, then both p(r, ¢) and ¢(r, ¢) should be bimodal.
Consequently, G, and G, should exhibit minima in the vicinity
of the transition,"! if the transition is discontinuous.

We will find it convenient to work in coordinates that reflect
the direction of the global polar order. When the polar order
parameter is non-zero, we define r; and r, to be the direction
parallel and transverse to the mean flocking direction, respec-
tively. With that convention, we follow ref. 11 and quantify the
presence of transverse propagating bands by considering the
longitudinal profile of a field f averaged along r |,

Pf(rH7 t) = <f(l‘, t))rl- (8)
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Fig. 1 Coarse-grained field snapshots. Instantaneous order parameter
(left) and density (right) field configurations for simulations of N = 2.56 x
10° particles. The noise strength is set to 5 = 0.4880. Fields are constructed
by coarse-graining with boxes of size / = 12.5 (top), / = 25.0 (middle), and
¢ =50.0 (bottom). The coordinate system is chosen such that the x-axis is
parallel to the mean flocking direction.

From here, a “banding order parameter” is defined as

Br(t) = (Pry, 0 — (PAry, O)r)r ©)

This order parameter vanishes in both the disordered phase
(for which we take r and 7, to be any orthogonal frame) and in
the homogeneous polar flocking state.

3 Coarse-grained field statistics

We first discuss the statistics of our model (eqn (1)-(3)) in the
time continuous limit. We varied the time-step size in our
simulations between dt = 10™* and d¢ = 1.0 and established
that our choice of dt = 5 x 1072 leads to convergence of all
quantities of interest (see Appendix for details). These flocking
models are notorious for being extremely sensitive to finite-size
effects, and to be sure that we are simulating sufficiently large
systems, we focus on the time-continuous limit of simulations
with ((10°) particles (see the Appendix for an analysis of
eqn (9) for systems with between N = 10* and N = 1.28 x 10°).
Unfortunately, the extremely long length and time scales asso-
ciated with flocking on such large scales make long time
measurements of the global polar order parameter (eqn (5))
infeasible, so we collect model statistics by sampling sub-
volume regions, as previously described.

In Fig. 2, the probability density functions (PDFs) obtained
from measurements of the distribution of local values of
¢(r, ©) and p(r, ¢) are shown. Starting in the disordered phase

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Coarse-grained field statistics at different state points. Figures
(a)=(f) show the PDFs of local values of the order parameter and density
field measured at different noise strengths and with coarse-graining length
scales 7 which increase from light to dark, as shown in the inset of (a).
Figures (a) and (b) show data in the disordered phase (3 = 0.5500), figures
(c) and (d) in the banding phase (3 = 0.4890) and figures (e) and (f) in the
polar flocking phase (3 = 0.4850). The bottom row plots the Binder
cumulant of the order parameter (g) and density field (h) measured in
coarse-graining boxes of size / as a function of noise strength. The inset of
(g) zooms in on Gyln) near the critical point. The inset of (h) shows how
G,l) — G,lnc) converges as 7 is increased.

(Fig. 2a and b), the density field is symmetrically distributed
about p,, while the order parameter field distribution has a
mean that vanishes as the coarse-graining length scale is
increased. Decreasing the noise strength so that the system is
in the vicinity of the phase boundary (Fig. 2c and d), we find
that the distributions of density and order parameter values
become non-Gaussian: they are skewed at small coarse-graining
length scales and clearly bimodal at large length scales. This is
a key signature of phase separation in flocking models where
low-density regions of space remain disordered, while high-
density regions become ordered. On further decreasing the
noise strength, Gaussian statistics of ¢(r, ¢) and p(r, ¢) are
restored as the system enters a homogeneous flocking state
(Fig. 2e and f).

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 Coupling between polarization and density fields. The average
local value of the order parameter field as a function of local density is
shown in the disordered phase (7 = 0.55, panel (a)) and in the vicinity of the

order—disorder transition (4 = 0.4902, panel (b)). Colors correspond to the
same coarse-graining bin sizes as in Fig. 2.

The deviations from Gaussian statistics in the vicinity of the
phase boundary are quantified by the Binder cumulants G4 and
G, (defined by eqn (4)), as shown in Fig. 2g and h. In Fig. 2g, G,
varies from 1/3 (in the disordered phase) to 2/3 (in the ordered
phase) - as found in the earlier work on the Voronoi-Vicsek
model™"” - but does exhibit a very small dip below 1/3 near the
phase boundary, characteristic of a discontinuous transition.
This signal is significantly stronger in G,, which exhibits a clear
range of noise strengths for which the density field statistics are
non-Gaussian. From these results, we conclude that the order-
disorder transition of the spatially and temporally continuous
Voronoi flocking model is indeed discontinuous.

Having found phase coexistence between the homogeneous
disordered and ordered phases in the time-continuous limit
of our topological model, we next investigate correlations
between the order parameter and density fields. It is this
feature in the theoretically predicted fluctuation-induced first-
order-transition scenario that renders homogeneous states
near the phase boundary unstable. In the disordered phase of
our model, we find that the order parameter and density field
are independent (Fig. 3a), as expected for a system of topolo-
gically interacting agents.*® Note that as the coarse-graining
length-scale is increased, the magnitude of local density fluc-
tuations away from p, = 1.0 decreases, as the system is globally
homogeneous; additionally, local order parameter fluctuations
diminish with increasing ¢/ as more randomly orientated par-
ticles are incorporated into the average. In the vicinity of the
phase boundary, although we measure a positive correlation
between the local order and local density, which increases in
strength with the coarse-graining bin size (Fig. 3b) - again
emphasizing the need for the extremely large simulations
employed in this work. This observation confirms that the
theoretically predicted hydrodynamic mechanism for produ-
cing banded states®® is indeed present in our simulations.

4 Structure of the inhomogeneous
phase

We next characterize the spatial structure of the observed states
in the phase coexistence regime. In Fig. 4a and b, we show that
highly dense and ordered, transversely extended bands exist in
the vicinity of the phase boundary for the continuous time
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Fig. 4 Traveling band statistics in the phase coexistence regime. The
time-averaged value of the banding order parameter (egn (9)) for the
order parameter (a) and density fields (b) are shown for dt = 0.005 (black)
and dt = 1.000 (light blue). The time-average shape of the density field's
profile in the vicinity of the phase boundary is shown for dt = 0.005and v =
2.0 in (c) and dt = 0.010 and v = 0.5 in (d). Solid red lines in (c) and (d),
respectively, denote fits to hyperbolic tangent and exponential functional
forms for traveling bands that were analytically derived in ref. 31.

version of our model, whereas no coherent structures seem to
form in the discrete time limit. The precise structure of these
bands is found by averaging data across many snapshots,
translating the peak of the local transversely averaged density
field to the center of the box. As shown in Fig. 4c, these bands
indeed have a phase separated profile predicted by field
theory,®" with approximately half the system having p(r, ) <
po and the other half having p(r, ) > p,. In Fig. 4d, we show
that in different regions of phase space phase coexistence can
take the form of asymmetric traveling bands, as is also per-
mitted by the field theory®’ and observed in metric flocks."
We note that in all of our simulations we have only ever
observed a single stable band, rather than the multiple bands
that extremely large metric Vicsek systems can support. Even in
rectangular geometries where we double the system size in the
direction of band propagation, our simulation still evolve to a
single-band state (see the Appendix for details). We speculate
that the intrinsic lack of a spatial length scale of interactions
may result in only the longest-wavelength bands being stable.

As another demonstration that the phase coexistence we see
in our simulations is consistent with the known ordered and
disordered states, we study the statistics of the density field
within sub-volumes inside and outside of the bands (we define
these sub-volumes to be regions of width L/5 centered about the
longitudinal (r;) axis of the minimum and the maximum
density/polar order). The theoretical work predicts that the
standard deviation of the number of particles within a region
of space should scale as An oc (n)”, where (n) is the expected
number of particles from the mean density of the system. The
exponent o has the value 0.5 in the disordered (gaseous) phase
and 0.8 in the ordered (liquid) phase where “giant number
fluctuations” are present'® - this is one of the key signatures of

2650 | Soft Matter, 2025, 21, 2646-2653
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Fig. 5 Giant number fluctuations. (a) Number fluctuations for a system in
the disordered phase (3 = 0.550), the banded phase (5 = 0.487), and the
ordered phase (7 = 0.450). Solid lines denote power law fits Anoc (n)*
where o = 0.5, 0.9, and 0.8, respectively. (b) A snapshot of a system in the
banded phase, with superimposed blue rectangles denoting sub-volume
regions of space in the disordered (gaseous) phase and the ordered (liquid)
phase. (c) Scaling of the number fluctuations with the sub-volume regions
indicated in (b). Solid lines denoting power law fits with exponents « = 0.80
in the liquid region and o« = 0.67 in the gaseous region.

the polar flocking phase. In Fig. 5a we show that our simula-
tions reproduce these statistics, while also exhibiting an appar-
ent third scaling regime in the inhomogeneous banded phase
with an exponent close to « = 0.9. As depicted in Fig. 5b though,
this additional regime goes away when carefully considering
number fluctuations within and outside of the band. When
measured only in these spatial regions, we instead find that the
banded phase has a scaling exponent of 0.8 inside the band and
an exponent of ~0.67 in the disordered ‘“‘gas” outside the band
(Fig. 5¢). The former is consistent with the value measured in
the homogeneous ordered phase, while the latter is identical to
the value we measure for systems still in the disordered phase
but very close to the phase transition.

5 Discrete time limit

As previously mentioned, and shown in Fig. 4a and b, we are
not able to observe propagating high-density bands in the
discrete time limit (d¢ = 1) in which Vicsek models are tradi-
tionally simulated. We further probe the apparent discrepancy
between the finite-size scaling analysis from ref. 17 (which
found no signature of a first-order transition), and our results
in Section 3. One difference noted above is our use of a model
with time-continuous dynamics (eqn (1)-(3)) as opposed to the
discrete-time orientational dynamics of the Voronoi-Vicsek
model studied in ref. 17. As shown in Fig. 6, we then compute
the Binder cumulant of our model in the limit d¢ = 1.0 just as

This journal is © The Royal Society of Chemistry 2025
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Fig. 6 Binder cumulant analysis in the discrete time limit. The Binder
cumulant of the order parameter (a) and density field (b) measured in
coarse-graining boxes of size / is shown for simulations with dt = 1.000.
The y-axis range in (b) has been made the same as in Fig. 2h for easier
comparison.

was done in Fig. 2g and h. In this case, we obtain the same
result as in ref. 17, with G, varying smoothly and monotonically
from 1/3 to 2/3. For G, the dip previously observed in Fig. 2h is
significantly diminished, becoming almost indistinguish-
able for large coarse-graining sizes. This indicates that in this
parameter regime the large-scale density fluctuations in the
system remain Gaussian even near the phase boundary.

We also investigate how the discrete-time limit affects our
observation of the fluctuation-induced coupling between the
order parameter and density fields predicted by ref. 26.
As shown by the lightest curves in Fig. 7, when measuring the
local polarization as a function of local density with approxi-
mately the same (¢ = 16) coarse-graining bin size used in ref. 17,
we find no correlations between the two fields in the vicinity
of the phase boundary or in the homogeneous ordered phase.
As the coarse-graining bin size is increased though, we measure
a strong and positive correlation near the phase boundary
(while the fields remain largely independent in the homoge-
neous ordered phase). We conclude that the fluctuation-
induced coupling is sensitive to both finite-size effects and
the noise strength in the system. The fact that a coupling of the
two fields is indeed measured near the phase boundary (Fig. 7a)
suggests the hydrodynamic mechanism required to produce a
linear instability and propagating bands are satisfied even in
the discrete time limit. In the ordered phase we find a modest
decrease in the average value of the order parameter field with
increasing coarse-graining length scale, consistent with the
expectations from ref. 17. Although no discontinuity in the
phase transition is observed in Fig. 6 at the system size we
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Fig. 7 Polarization-density coupling in the discrete-time limit. The aver-
age local value of the coarse-grained order parameter field as a function of
local density is shown for dt = 1.000 (a) in the vicinity of the phase
boundary with n = 0.4312 and (b) firmly in the homogeneous ordered
phase with n = 0.4200.
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employ here, in the standard metric Vicsek model decreasing dt¢
is understood to greatly increase the system-size scale needed
to observe the true discontinuous character of the transition.""
We speculate, then, that it is likely that the phase transition is
discontinuous in the thermodynamic limit even in the discrete-
time models of polar flocking.

6 Discussion and outlook

We have shown that the phase transition to collective motion in
a Voronoi-Viecsek model with time-continuous orientational
dynamics is discontinuous. It displays clear phase coexistence
between disordered and polar flocking states in a narrow but
well-defined regime of parameter space, and further shows the
coupling between density and order-parameter fields which is
predicted to be a natural mechanism that leads to a discontin-
uous transition.>® We have further shown that the structure of
the inhomogeneous banded states we observe is consistent
with other field-theoretic predictions.*"

By investigating the stability of the banded states as a
function of the discretization of time, we provide a potential
explanation for why previous finite-size analyses found only
continuous transitions in Voronoi-Vicsek models.’”” Our work
also suggests that anomalous results obtained in other numer-
ical studies of flocking models - such as metric variants of the
model considered here having a continuous transition*® - may
also be due to a coarse discretization of time. This warrants
further work, as to the best of our knowledge there has not yet
been a systematic study of how phase boundaries and the
formation of mesoscopic structures in flocking systems depend
on the size of the microscopic update time-step.

An open question in these topological models concerns the
allowed spatial structure of the inhomogeneous phase. As
mentioned above, unlike in metric models we have only ever
observed a single stable traveling band. Is it possible for these
topological models to support multiple bands traveling in the
same direction? What about the stability of even more exotic
phases, such as the ‘“cross-sea phase” observed in metric
flocking models, which have a pattern characterized by two
non-parallel wavevectors®*? At present there does not exist a
hydrodynamic theory for understanding the instability that
leads to the cross-sea phase, and further numerical work is
required to probe the full extent of pattern formation in
topological flocking models.

Data availability

Data for this article, including representative simulation con-
figurations and hydrodynamic fields used to generate the
figures, are available at zenodo.org[zenodo reference to be
inserted] The code used to run GPU-accelerated Voronoi-Vicsek
simulations can be found at https://github.com/sussmanLab/topo
logicalFlocking the sussmanLab github repository.>
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Appendix

In the main text, we discuss the behavior of our model (eqn (1)-
(3)) in the limit of a discrete (d¢ = 1.0) and continuous (d¢ — 0)
time-step size. In Fig. 8, we show additional data for how the
location of the order-disorder critical point (5.) - indicated by
the peaks in the susceptibility curves — changes as a function of
dt. Initially decreasing dt by a factor of two from d¢ = 1.0 to d¢ =
0.5 produces a substantial change in .. However, decreasing d¢
by an order of magnitude from d¢=5 x 10 >todt=5 x 1073
barely shifts #.. Therefore, we take dt =5 x 10~ to be the value at
which our simulations have reached the time-continuous limit.

After taking the time-continuous limit, we increase our
system size until we observe propagating bands. Fig. 9 shows
the results of analyzing the banding order parameter as a
function of system size across the order-disorder transition.
Initially, increasing the system size from N = 10" particles leads
to greater homogeneity in the order parameter field along the
flocking direction. Continuing to increase the number of
particles in the system by several orders of magnitude though
reveals a peak in the banding order parameter near the
critical point.

Throughout the main text, we report results for simulations
performed in periodic, square (L x L) domains. In such
systems, we only ever observe a single propagating band for
all computationally accessible system sizes (L). In the metric
Vicsek model though, the banded phase is characterized by
micro-phase separation (with periodically arranged propagat-
ing bands) rather than macro-phase separation (with bulk
phase separation into a single liquid and gas domain).>® Being
unable to investigate which case our topological model belongs
to by further increasing the number of particles we use in our
simulations, we instead perform simulations in periodic,
rectangular (L, x L,) domains, as is commonly done in compu-
tational studies of banded phases.*®*® Given that we observe a
single band in a square geometry system with linear size L ~ 1100
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Fig. 8 Time-step size convergence. The variance of the polar order

parameter, defined by eqn (5), for varying time-step sizes at a fixed system
size N = 10* and self-propulsion speed vg = 2.0.
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Fig. 9 Finite-size analysis of the banding order parameter. The banding
order parameter (egn (9)) of the coarse-grained polar order parameter
field (egn (6)) for increasingly large system sizes at fixed dt = 0.005 and
self-propulsion speed vo = 2.0.
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Fig. 10 Rectangular geometry snapshot. (a) Snapshot of the density field
of a simulation performed in a rectangular domain with L, = 200 and
L, = 16L, with parameters being identical to those in Fig. 1, but with N =
640 000. (b) Time-series of the longitudinal density field profiles for the
same simulation as in (a).

in Fig. 1, we perform rectangular geometry simulations with a
linear size L, = 3200 in Fig. 10 so that there is sufficient space to
accommodate at least one additional band. Although there is a
transient two-band state, we ultimately observe that the system
evolves into a single-band state. These results suggest that the
topological model we study here does not exhibit the same micro-
phase separation as in the metric Vicsek model'' and k-nearest
neighbor models,?® but rather macro-phase separation like in the
active Ising model.*®
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