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Dynamic control of self-assembly
of quasicrystalline structures
through reinforcement learning†

Uyen Tu Lieu *ab and Natsuhiko Yoshinaga *ab

We propose reinforcement learning to control the dynamical self-assembly of a dodecagonal

quasicrystal (DDQC) from patchy particles. Patchy particles undergo anisotropic interactions with other

particles and form DDQCs. However, their structures in steady states are significantly influenced by the

kinetic pathways of their structural formation. We estimate the best temperature control policy using the

Q-learning method and demonstrate its effectiveness in generating DDQCs with few defects. It is found

that reinforcement learning autonomously discovers a characteristic temperature at which structural

fluctuations enhance the chance of forming a globally stable state. The estimated policy guides the

system toward the characteristic temperature to assist the formation of DDQCs. We also illustrate the

performance of RL when the target is metastable or unstable.

1. Introduction

Nano- and colloidal self-assembly is promising due to its high
potential in creating complex structures with emergent photo-
nic,1,2 magnetic,3 and electronic4 properties. To make various
self-assembly structures, several particles have been proposed,
such as patchy particles,5–7 non-spherical particles,8 and parti-
cles with non-monotonic interactions.9 Among them, patchy
particles, which undergo anisotropic interactions, are good
candidates due to their high flexibility in designing the inter-
actions and the capability to form complex structures.6,10

In fact, complex structures, such as diamonds and quasi-
crystals, are reproduced by using patchy particles. Still, design-
ing a desired structure remains a formidable task and relies on
trial and error.

Recently, there has been growing interest in the inverse
design of desired self-assembly structures. In the conventional
forward-type approach, we start from a given model with a
specific type of interaction between particles and tune its
parameters to analyse the obtained structure. In contrast, the
inverse design estimates the model from the desired structure.
This approach has been successfully applied to several complex
structures, such as quasicrystals.11–14 However, so far, most of

the methods of the inverse design rely on static control, such as
optimisation of parameters in the potential interactions, and
do not take into account the kinetic process of self-assemblies. It is
well-known that the steady-state structure is largely affected by
dynamic control, such as the change in temperature and external
mechanical forces. For example, ref. 15 demonstrates the tem-
perature protocol that can select a desired structure from two
competing ones in a multicomponent self-assembly.

To design self-assembly structures by dynamic control,
we need to access their kinetic pathways, which are unknown
from the static interactions. Systems may often have many
metastable states even with the same parameters. As a result,
once the structure gets trapped in the metastable state at a
low temperature, the system hardly escapes from it to reach
the global minimum. Let us take an example of the two-
dimensional dodecagonal quasicrystal (DDQC) self-assembled
from five-fold symmetrical patchy particles. The DDQC can be
attained by linearly slowly decreasing the temperature in the
system (annealing).7 The obtained structures are not always
ideal as the assemblies may have defects. This is particularly
the case when the speed of temperature change is too fast.
In this case, the DDQC structure no longer appears. In a Monte
Carlo simulation of five-patch patchy particles,16 the tempera-
ture is quickly cooled down to zero, and then subsequently it is
fixed at a specific value. This two-step temperature protocol was
developed empirically. The challenge is to find a method that
can learn and find suitable temperature settings to facilitate the
formation of DDQCs with few defects, with no or little prior
knowledge. In this study, we will show that reinforcement
learning is useful for this purpose.
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Reinforcement learning (RL) is a branch of machine learn-
ing that aims to learn an optimal policy and protocol to interact
with the environment through experience. From the viewpoint
of physical science, RL can estimate an external force or
parameter change as a function of the state of the system.
Therefore, RL shares many aspects with adaptive optimal control
theory.17 RL can be versatilely applied in strategy games,18,19

robotics,20 and physical problems. Applying RL in dynamical
physical problems, such as fluid mechanics21,22 and navigation
of a single self-propelled particle,23 is promising because of
its capability of finding the best control policy by iterating
(experiencing) the dynamical processes without any prior knowl-
edge. RL has been applied in optimising the best operational
parameters for a system24,25 or tuning the operational parameter
during a dynamical process.23 In ref. 25, the Q-learning
algorithm26 is used to remove grain boundaries from a crystal-
line cluster of colloids. Few studies have focused on many-body
particles and their collective behaviours of active matter
systems27–29 or self-assemblies.25,30 In ref. 30, the evolutionary
optimisation method has been used to learn temperature
and chemical potential changes for self-assembly of complex
structures, such as Archimedean tilings. Despite the high
performance of this black-box approach, the mechanism of
success remains to be elucidated. We will discuss a more
detailed comparison between this approach and our method
in Section 4.

In this study, our main objective is to understand how and
why RL works in a self-assembly process. Therefore, we employ
a theoretically well-founded algorithm based on Markov deci-
sion processes, such as Q-learning, and demonstrate that RL
can learn to control the temperature during the self-assembly
of patchy particles into DDQC structures. Aside from that,
different targets and different models are considered to demon-
strate the generality of the proposed RL and to gain physical
insights into these systems (see Section 4).

The paper is organised as follows: In Section 2, we explain
our system and the simulations of the self-assembly, the basics
of RL and the Q-learning approach, and the setting of the
assembly problem into Q-learning. In Section 3, we show how
the policy is estimated during training, and how the estimated
policy works during tests to evaluate its optimality for the DDQC
target. The generality of the current approach is demonstrated by
using different targets whose structures are unknown. In Section 4,
we discuss several issues, such as how the estimated policy avoids
metastable states, training costs and the discreteness of states in
Q-learning. We also discuss physical insights that we obtain from
the RL results and a comparison of different RL approaches.
Finally, we summarise the main findings of this work.

2 Methods
2.1 Reinforcement learning for dynamic self-assembly

Fig. 1 shows the schematic of reinforcement learning (RL) for
the dynamical process of self-assembly. In RL, an agent learns
how to interact with environments through actions, so as to

maximise reward signals.31–33 In the context of self-assemblies,
RL aims to control the external force or the parameters on-the-
fly so that the desired structure is organised from a random
particle configuration. In this study, we control the temperature;
our action is whether the temperature increases, decreases, or
remains at the current value. The environment is the configu-
ration of the particles under certain conditions, such as tempera-
ture and density. In principle, the dimension of the particle
configuration is huge. It consists of all the degrees of freedom
of the particles, their positions and orientations, which are,
respectively, 2N and 3N for the system in this study. Our purpose
is to make the desired structure, which is the DDQC. Therefore,
we use statistical quantities (or feature values) to characterise the
particle configurations. This is the number of s particles, denoted
as Ns; we will discuss this issue in detail in Section 2.3.
We consider two observed states from the environment: the
temperature T and the ratio of s particles of the DDQC, which
is extracted from the particle configuration, to the total particles.
We denote the ratio by s = Ns/N. From the observed states, we take
an action a updating the current temperature to the next one.
We also get a reward rt from the measured state. From the reward,
the next action is decided at each step and the procedure
continues to update all different states. Within each step, the
configuration of particles is updated by BD simulations. The
control algorithm to be used is Q-learning. The details of RL
and Q-learning are found in Section S1 in the ESI.†

The schematic for training with Q-learning in this study is
given in Fig. 2. Initially, Q-table is set to zero for all a and s. The
RL includes Ne epochs or episodes in which the e-greedy
method is applied. In each epoch, the initial state, i.e. the
initial particle configuration, and the initial temperature (s0,T0)
are assigned. Next, the action a0 (either decrease, maintain, or
increase T) for the temperature is decided based on the current
policy and the e-greedy strategy, resulting in the new tempera-
ture T1. The Brownian dynamics simulation for the current
particle configuration at T1 is conducted. Details of the Brownian
dynamics simulation can be found in Section 2.2. The new

Fig. 1 Schematic of reinforcement learning for dynamic self-assembly.
The agent observes the state s from the environment and decides to take
an action a based on the policy p. The agent learns the policy p by a
training process to optimise the rewards r. In this study, the environment is
the particle configuration under a given temperature. The observed states
s are the ratio of the sigma particle s and the temperature T. The action a is
to decrease, maintain, or increase the current temperature.
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particle configuration is obtained after a predetermined time
t = NBDDt. Then one can determine the state s1, the reward r1,
and eventually update the Q-value Q(s0,T0,a0). This concludes the
Q-learning of the first step. The next step can be conduc-
ted analogically from the current state (s1,T1). The Q-table is
updated at every action step and every epoch, until the training
process ends.

From the trained Q-table, we can estimate the policy for
controlling the temperature with respect to the current state.
In order to evaluate the estimated policy, 20 independent tests
are conducted. Each test starts with an assigned initial particle

configuration and temperature (initial states), followed by
consecutive steps of deciding the next action based on the
estimated policy, observing the new states, and so on. Unless
otherwise stated, we set the parameters the same as the para-
meters used during training, except that e = 0 is fixed in
every test.

Table 1 shows the parameters of a training set for the target
DDQC from patchy particles. The two observed states are the
ratio of the sigma particle s and the temperature T. Initially,
the configuration of the particle is random (corresponding to
s0 E 0.1) and T0 values are chosen randomly in the investigated
range. The initial positions are obtained by inflation of ran-
domly distributed points under repulsive forces to prevent
overlapping. During RL, while the fraction of sigma particle
never reaches out of the range [0,1], the temperature Tk+1

after the action ak may exceed the investigated range. In this
case, the updating is carried out as usual except that we treat
Tk+1 = Tk. The policy after training is used for the test at the
same conditions as training (except e).

2.2. Self-assembly of patchy particles through Brownian
dynamics simulations

Our system consists of N patchy particles. Each particle sto-
chastically moves and rotates following eqn (1) and (2) at
temperature T and time t (see Fig. 1). The patchy particle under-
goes anisotropic interactions with other particles. Depending on
the anisotropy, the particles may form an ordered self-assembled
structure. Because the thermal fluctuation of the particles is
dependent on the temperature, the self-assembled structure varies
as the temperature changes.

The Brownian dynamics (BD) simulation is employed to simu-
late the assembly of five-fold-symmetric patchy particles.7,13 The
patchiness on the spherical particle is described by the spherical
harmonic of Y55. There are 5 positive patches and 5 negative
patches arranged alternatively around the particle’s equator (see
Fig. 1). We set that the same sign patches are attractive while
opposite patches are repulsive. The particles are confined to a
flat plane, meaning that the particles can translate on the plane
while they can rotate freely in three dimensions. We use the NVT

Fig. 2 Schematic of Q-learning at each epoch with the e-greedy method.
The action a is chosen based on the current policy p and e. Q is updated
according to eqn (S2) (ESI†). The Brownian dynamics (BD) simulation is
conducted for every action step in Nstep of each epoch.

Table 1 Parameters for the training set of DDQC patchy particles

Parameter Value

–States of the sigma fraction, s [0,1] With an interval of 0.1
–States of temperature, T [0.2,1.3] With an interval of 0.1
–Actions on the temperature, a {�0.05,0,0.05}
–Number of epochs, Ne 101
–e-Greedy Linearly decrease in each epoch from 1 to 0
–Initial temperature at each epoch, T0 Random, T0 A [0.2,1.3]
–Initial structure at each epoch, s0 Random configuration (s0 E 0.1)
–Number of action steps (RL steps) in each epoch, Nstep 200
–Number of BD steps in each RL step, NBD 100 000 Steps
–Time step in the BD simulation, Dt 10�4

–Target, s* 0.91
–Rewards, r �(s�s*)2

–Learning rate, a 0.7
–Discount factor, g 0.9
–Number of particles, N 256
–Area fraction, A = pa2N/(LxLy) 0.75
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ensemble under periodic boundary conditions applied in the
x and y directions of a simulation box of size Lx � Ly � 2a, where
a is the particle radius. In the Brownian dynamics, the position
r and orientation X of the particle are updated according to the
following equations:

rðtþ DtÞ ¼ rðtÞ þ DT

kBT
FðtÞDtþ dr; (1)

Xðtþ DtÞ ¼ XðtÞ þ DR

kBT
TðtÞDtþ dX; (2)

where DT and DR are the translational and rotational diffusion
coefficients, respectively, kB is the Boltzmann constant, F and T
are the force and torque, and the Gaussian noise terms dr and dX
are with zero mean and satisfying hdrdrTi = 2DTDt and hdXdXTi =
2DRDt, respectively. The characteristic length, energy, time, and
temperature for the nondimensionalisation are the particle radius
a, the potential well-depth eV, the Brownian diffusion time
tB = a2/DT, and eV/kB, respectively.

The interaction potential of a pair of particles i and j is Vij =
VWCA(rij) + VM(rij)X(Xij). The isotropic Week-Chandler–Anderson
term VWCA prevents the overlapping of particles. The inter-
action of the patchiness is given by the Morse potential VM

and the mutual orientation dependent term X(Xij) as follows:

VWCA ¼
4eV

2a

r

� �12

� 2a

r

� �6

þ1
4

" #
; r � 2a

ffiffiffi
26
p

0; r4 2a
ffiffiffi
26
p

8>>><
>>>:

(3)

VM ¼ eVMd 1� e
�
r�req
Mr

� �" #2
�1

8<
:

9=
;; (4)

where r is the center–particle distance and the Morse potential
equilibrium position, depth and range are respectively req =
1.878a, Md = 2.294a, and Mr = a.34

The orientation of particle i is determined by the orthogonal
local bases n̂(i)

m , m = 1,2,3 (see Fig. S7, ESI†). Let r̂ be the unit
distance vector of particles i and j. The interaction of a pair
of particle Ylm is Xlm p {n̂l–m

0 n̂m
+ }(i)}{r̂2l}}{n̂l–m

0 n̂m
+ }( j), where

n̂0 = n̂3, n̂þ ¼
1ffiffiffi
2
p n̂1 þ in̂2ð Þ, and {} indicates the irreducible

tensor. For a pair of Y55 particles X55 p {n̂5
+}(i)}{r̂10}}{n̂5

+}( j),
X is normalised to be in the range of [�1,1].

2.3 Characterisation of DDQC structures

One method to characterise two-dimensional DDQCs is to
determine local structures around each particle according
to its nearest neighbours7,16,35 (Fig. 3). Given the particle
positions, the s, hexagonal Z, and H local structures are
estimated. A DDQC structure usually contains a few Z dispersed
in many s particles and a few H particles. In detail, a dodeca-
gonal motif, which is made from one centred Z and 18 s
particles (Fig. 3d), is observed in the DDQC. The motifs can
be packed in different ways, e.g. the centres form triangles and
squares.7,16 The ratios of the s, Z, and H particles to the total

particles in the packed motifs are found to be 0.8 r s r 0.93,
0.07 r Z r 0.14, and 0 r H r 0.13, respectively. Such ratios
are found comparable to those in square-triangle tiling36 or the
simulated DDQC.7,16

In our previous study,7 we found that the DDQC consists of
several different motifs, each of which can form an approxi-
mate. In this view, the ratio of the number of sigma particles
to the total number of particles in DDQCs is expected to be
0.8 r s r 0.93, as mentioned earlier. However, at finite
temperatures, defects can always appear during the self-
assembled process, and therefore, s can be smaller than those
values, which we consider 0.7 t s t 0.93. Besides this, when
the structure is frozen with many defects and forms metastable
states, s becomes much smaller. We should note that in our
simulations, the out-of-plane rotation is allowed. Therefore, the
plane of five patches may deviate from the xy plane. We check
that this rotation rarely occurs for DDQC structures, while the
deviation occurs for the Z-rich phase (see Fig. S7, ESI†).

In order to clarify equilibrium and metastable structures, RL
is supplemented by three additional simulation methods under
the same conditions of RL with an area fraction A = pa2N/(LxLy) =
0.75, and the investigated temperature is T A [0.2,1.3]. The
three methods are (i) replica exchange Monte Carlo37,38 (REMC,
or called parallel tempering) described in Section S3 in the
ESI,† (ii) BD simulations under quenching to a fixed tempera-
ture (Section S4 in the ESI†), and (iii) BD simulations under
annealing temperature (Fig. 7). In (ii), we prepare an initial
configuration at a random position and orientation, and then,
set the temperature at a lower value.

In REMC, we found that the equilibrium phases are fluid at
high temperatures T \ 1.8, the Z-phase at intermediate tem-
peratures T \ 0.9, the DDQC (s = 0.84 � 0.023) at low
temperatures T t 0.89. We should note that the s-phase
appears when the area fraction is smaller than the current
value. Details of the calculation of the phases in REMC are
found in Fig. 12 and Section S3 (ESI†).

Fig. 3 Characterisation of DDQCs. (a) Demonstration of local structures.
(b) and (c) Examples of DDQCs with few and many defects, and the
corresponding Fourier transformations. The particles are coloured grey,
yellow, and orange according to the local structures s, Z, and H in (a). The
undefined particles (U) are marked purple. The fraction of sigma in (b) and
(c) are 0.84 and 0.67, respectively. (d) Dodecagonal motif made from one
Z particle centred in 18 s particles.
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The DDQC with defects can typically be seen in the self-
assemblies under quenching to a fixed temperature from a
random initial configuration (Fig. S6, ESI†). At intermediate
temperature T A [0.7,0.85], there is a DDQC with s A [0.7,0.9].
At a lower temperature T A [0.35,0.7], s decreases within s A
[0.5,0.7] as T decreases. This lower value of s is different from
that of the equilibrium state, as shown in Fig. 12 (see also
Table S3, ESI†). Therefore, we refer to these structures
as metastable because many particles are kinetically trapped
during the growth of the DDQC. At much lower T, s keeps
decreasing to 0.2.

During the training of RL, the value of s is used to evaluate
the DDQC structures (Fig. 3). As discussed in this section, we
consider that structures with 0.7 t s t 0.93 are DDQCs with a
few defects. We take this range from the value of the equili-
brium DDQC obtained from REMC (see Fig. 12 and Table S3,
ESI†). These values of s are comparable with the ideal value of
the DDQC. The finite range of s of the DDQC arises from the
appearance of defects at finite temperatures in which structural
fluctuations effectively reduce s. On the other hand, when
0.5 r s r 0.7, there are many defects in the structures and
we refer to them as metastable states. This argument confirms
that the DDQC and metastable structures can be distinguished
by the value of s. In fact, their Fourier transformation is
distinguishable. The DDQC has clear twelve-fold symmetric
spots separated from the background, whereas the metastable
structure has blurred twelve-fold symmetry (Fig. 3).

2.4 Target structures for RL

In RL, we choose s as one of the RL states with 0 r s r 1. The
value s* of the target DDQC is set as s* = 0.91. At the density

used in this study, using s alone is adequate to identify
different states formed during the assembly process (see
Section 2.3 and Table S3 for the details of other local structures,
ESI†). In other cases where the system has more complex
structures, other quantities, such as Z and H, may be needed.
However, as we demonstrate, using s not only works for the
DDQC target s* = 0.91 (Section 3.1), but also for other targets
such as s* = 0.65 and s* = 0.35 (Section 3.2). We will demon-
strate that RL is capable of stabilising a metastable structure
(s* = 0.65) and even finding a policy to control the structure
dynamically to realise the unstable target structure (s* = 0.35).
To do this, we use the value iteration method for the two targets
(see Section S2 in the ESI†).

Another state used in RL is the temperature T. The range of
the temperature is chosen as 0.2 r T r 1.3 so that the particle
interaction dominates the noise at Tmin and the noise domi-
nates the interaction at Tmax.

We also demonstrate the generality of proposed RL by
estimating the policy for DDQC formation from particles
interacting through a two-length scale isotropic potential in
Section S7 (ESI†). This model is known to exhibit DDQC
structures.39 Details of the isotropic potential are found in
ref. 7 and the references therein.

3 Results
3.1 Optimal temperature change to generate DDQCs from
patchy particles

3.1.1 Training process. First, we demonstrate the capability of
Q-learning to find the best temperature schedule to create DDQCs
of patchy particles from random configurations. Fig. 4 shows the

Fig. 4 Training data under the conditions of random T0 and number of epochs Ne = 101 in Table 1. (a) and (b) The progression of the states T and
s at selected epochs: first, middle and last epoch (equivalent e = 0, 0.5, and 1, respectively). (c) The policy after training, the dashed line indicates the target
at s* = 0.91. (d) The change of the ratio of the number of accessed states to total states and (e) the ratio of flipped-policy states to accessed states after
each epoch during training, the horizontal axis on the top of the graph is the corresponding value of e. The inset shows the number of flips at each state
from epoch 81 to epoch 101.
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training result under the condition in Table 1, where the policy is
trained with Ne = 101 epochs and the initial temperature T0 at
each epoch is randomly assigned within the investigated range.
During each epoch, the action changes according to the current
policy and e, hence the states of temperature T and ratio s change
at each step, as shown in Fig. 4(a and b). In the first epoch in
which e = 1, T fluctuates around T E 1.0. Accordingly, s is low so
0.2 and far from the target value s*. As the training continues, the
Q-table is updated. In the next epoch, we repeat the process with
a new initial random configuration and random temperature.
However, we use smaller e and the updated Q-table. In the mid
epoch n = 51 at which e = 0.5, T fluctuates around T E 0.7,
whereas in the last epoch n = 101 at which e = 0, T shows less
fluctuation around T t 0.7. After the epoch n = 51, s approaches
closer to s*.

Fig. 4(c) demonstrates the policy after training, which is
the action for the maximum of Q, namely, argmaxaQ(s,T,a).
This state-space roughly consists of two regions divided by a
characteristic temperature T* = 0.7. The estimated policy is to
decrease the temperature above T* and to increase the tem-
perature below T*. When s Z 0.8, the temperature can be
decreased further to T E 0.5. Such a behaviour is expressed by
the blue and grey cells, defined by the lower left corner, at (s,T)
= (0.8,0.5), (0.8,0.6) and (0.7,0.6). We will evaluate this policy by
performing tests in Section 3.1.2. The action of ‘maintaining
temperature’ can be seen scattered in the policy, but no clear
correlation to the states is observed. The policy has states
that are not accessed during training. The action for these

inaccessible states is random. Fig. 4(d) presents the ratio of the
number of accessed states to total states during training
(the total number of states is 10 � 11). We also measure
whether the policy converges to its optimal in Fig. 4(e), by
defining the ratio of the number of flipped states to accessed
states. The flipped state is counted when the policy at the
current epoch p(i)(s,a) changes compared to the policy at the
previous epoch p(i�1)(s,a). The ratio decays to t0.1, but
the decay is slow. Even after the epoch of e t 0.4 after which
the number of accessed states reaches a plateau, the ratio is
still decaying slowly, meaning that there is still uncertainty in
policy. The number of flipped states of each (s,T) during epoch
81 to 101 is shown. Majority of the flips comes from the states
with s A [0.5,0.8] and T A [0.7,0.8]. This result suggests that
many epochs are required to reach an optimal policy.

3.1.2. Testing evaluation. After training, the estimated
policy is tested. The results of the test are presented in Fig. 5.
The time evolution of temperature and s during the test with
initial configurations of random particle positions and orienta-
tions and with random T0 is shown in Fig. 5(a and b). First,
T quickly reaches the characteristic temperature T* = 0.7 and
then fluctuates around that value until s reaches the target
value. Finally, T decreases to T E 0.6. The final temperature is
dependent on each realisation. The snapshots at the final steps
have dodecagonal motifs consisting of one Z particle centred
in 18 s particles (see Fig. 3(d)). The intensities in the Fourier
space show clear twelve-fold symmetry, although some defects
are present in the real space.

Fig. 5 Testing data of the policy obtained under the conditions of random T0 and number of epochs Ne = 101 in Fig. 4. Samples starting with low (blue),
intermediate (red), and high (yellow) initial temperatures are shown with (a) the temperature schedule, (b) corresponding s, and (c) snapshots at the last
step of the corresponding trajectories. Particles are coloured by the local structures defined in Fig. 3. (d) The trajectories of (a,b) on the policy plane
obtained from Fig. 4(c), in which the starting points are from the left side. Changes of temperatures of the trajectories follow the policy shown in the
background. The vertical dashed line indicates s = s*. (e) Error bars of temperature (blue) and s (black) showing the mean and standard deviation from
40 independent samples.
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Fig. 5(d) shows trajectories of the states (T and s) during the
test together with the estimated policy. We show the three
trajectories with different initial temperatures: high T0, inter-
mediate T0, and low T0. In the case of high T0, the temperature
decreases to T E 0.8 but s does not increase. Once the
temperature becomes T E 0.7, dodecagonal structures start
to appear and s increases and fluctuates around s E 0.7.

In the case of low T0, some dodecagonal structures appear
from the beginning because the temperature is low. As the
temperature is increased to T E 0.7, s is also increased and
reaches s E 0.7. The temperature is found to decrease at a
point of s E 0.8.

When the initial temperature T0 is intermediate, s
increased, then fluctuates, and finally, it is increased more
when T is decreased slightly. Note that in all cases, the initial s
is small because the initial configuration of particles is random
in position. Using this policy, the DDQC structure can be
obtained in tests at any value of the initial temperature, as
depicted as s = 0.77 � 0.05 in the last step in Fig. 5(e). In this
figure, in the first 10 RL steps, the variance of temperature
is large because the initial temperature is random in the
investigated range. After 50 steps, the temperature reaches
the characteristic temperature. Then, the mean temperature
statistically decreases from 0.7 to 0.63 as the mean s increases
from 0.68 to 0.77. The result suggests that RL has learned the
importance of maintaining the temperature at T*, which then
further decreases when s Z 0.8. We would note that although
the policy still flips, such a behaviour is observed, e.g. the tests
following the policy obtained at epoch 81 and epoch 101 are
statistically similar (see Section S9, ESI†). The tests seem
independent of the number of epochs when the number of
epochs is large enough.

We also check the test in which the initial configurations are
not random but chosen from the state with s = 0.56 and s = 0.87
(see Section S6, ESI†).

In short, the RL agent has found out the role of the
characteristic temperature T* in facilitating the formation of
the DDQC structure. As a result, when the DDQC is not formed
(low s), the RL policy suggests to drive the temperature to T*
until a DDQC (high s) is formed and then decrease T to
stabilise the structure. We discuss T* in comparison with the
temperature where the transition of the DDQC and Z-state is
observed in Section 3.3.

The RL has discovered the characteristic temperature by
itself. We do not feed any information about the role of T* nor
its value. The role of T* is in contrast with the results for the
system with the isotropic interactions (see Section S7, ESI†).
The policy in the isotropic system is simple; that is, quenching
the temperature to 0.4 results in the DDQC after 50 RL steps.
For example, when the initial temperature is high, e.g. T0 = 1.2,
then during the decrease of temperature, the DDQC is created
from the Z-phase at T E 0.8. A further decrease of the
temperature to T = 0.5 brings almost no change in the DDQC
structure. We rarely observe the metastable state (sA [0.5,0.7])
in the isotropic system. The RL learns that in the isotro-
pic particle system, the transition temperature between the

DDQC and the Z-phase is not important in the formation of
the DDQC.

We further check the stability of the optimised structures, by
extending the simulations at fixed temperatures in the last RL
step. The results of the stability test are shown in Fig. 6 along
with the statistics of the local environments. Compared with
the RL test, we found no significant difference in the statistics
of the local environments, which implies that optimised
structures are inherently stable.

3.1.3. Comparison of RL with conventional approaches.
Next, we compare the formation of a DDQC using the estimated
policy with the self-assembly using the conventional annealing
and quenching methods.7 Fig. 7 shows the trajectories of T and
s for different realisations. In the annealing simulations, we
have used the linear temperature decrease during BD steps.
In this case, the time step for each BD step was also decreased
for numerical stability. In annealing and RL methods, s values
reach s E 0.8, in which the dodecagonal structures appear
clearly with a few defects. The ratios of Z and H are also
comparable between the two methods (see Table S3, ESI†).
To evaluate the speed of DDQC formation, we fit each trajectory
of s(t) by a sigmoid function and estimate its time. In the case
of annealing, we have used a pre-fixed temperature schedule,
and therefore, t \ 1600 is required for the dodecagonal
structures. Before the temperature reaches T E 0.8, no struc-
tural changes occur. In contrast, with the RL policy, s increases
quickly and then levels off. The estimated timescale is t E 150,
which is much faster than that of annealing. We should
emphasize that when RL is used, the temperature is controlled
according to the measured states. To check its importance, we
try fast annealing in which the temperature is decreased until
t = 150 and then fixed at the low temperature (see purple lines
in Fig. 7). In this case, the DDQC starts appearing at the
comparable time tsigmoid E 90 with the RL case (tsigmoid E
150). However, the final structure under the fast annealing
is s o 0.6 and contains many defects in the DDQC. This
result demonstrates that the fast annealing schedule using a
speed comparable to RL does not make a clear DDQC as our RL
can do.

We also compare RL and rapid quenching at a fixed tem-
perature. The temperatures in RL change, but their values
finally become in the range of [0.6, 0.7]. Therefore, the

Fig. 6 Stability of the RL tests under the conditions of random T0 and the
number of epochs Ne = 101 in Fig. 5. (a) Continuation of the optimised
structures from the step 400 in Fig. 5(a) at a fixed temperature. The
number of BD steps is 20 � 106 steps, equivalent to 200 RL steps.
(b) Statistics of the local structure for 20 independent samples in Fig. 5(e).
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quenching temperature we chose is T = 0.6. As depicted in
Fig. 7, the obtained assemblies have sE 0.6, meaning that they
are trapped in the metastable states and contain more defects
than that of RL or annealing. Readers may refer to Fig. S6 (ESI†)
for quenching at other temperatures.

In the training steps, we use a small system size, N = 256.
It is important to check whether the estimated policy using RL
can work upscale. We perform tests at larger system sizes
N = 512 and N = 1024 using the estimated policy with N = 256
(Fig. 4(c)). Fig. 8 demonstrates the obtained structures of
different system sizes. The estimated policy for the smaller
systems size works even for the tests with all investigated
system sizes, namely, we obtain s \ 0.7. The mean value of s
seems to slightly decrease with the system size. This is because
the larger system size requires more time to stabilise. If more
steps are conducted for a larger system size, there is no
significant difference between the three groups. In fact, the

snapshots both in the real and Fourier spaces for the larger
system sizes show dodecagonal structures.

3.2 Reinforcement learning for unknown targets of patchy
particles

In Section 3.1, we use the target s* = 0.91 to obtain the DDQC
structure. This structure is at an equilibrium state under a
certain temperature (see Section 3.3). In this section, we
demonstrate that RL also works for the unknown target struc-
tures, which are not equilibrium states. To do this, we perform
RL for different targets: s* = 0.65 and s* = 0.35 in patchy
particle systems. The estimation of the policy is conducted by
the value iteration method (Section S2, ESI†) instead of training
the Q-table through numerous episodes because of the avail-
ability of sufficient data (see Table S4, ESI†). As shown in Fig. 9,
RL estimates different policies for different targets.

For s* = 0.65, the structure obtained from the estimated
policy has s E s*, which is close to the DDQC but with many
defects. The policy in Fig. 9(a) shows a border at the character-
istic temperature at T* = 0.7 when s is small so 0.6. The policy
is similar to the case of the DDQC target in Fig. 4 and 5. It
suggests to drive the temperature to T* so that s increases, that
is to decrease T if T0 is high (orange trajectory) and to increase
T if T0 is low (blue trajectory). Then, when s\ 0.6, we decrease
the temperature and maintain it around T A [0.4,0.5] to trap the
particles kinetically. As a result, the structures remains meta-
stable with s E s* = 0.65.

Moreover, the structures obtained at the end of RL undergo
stabilisation at the corresponding temperatures (Fig. 10). The
continuation of the two trajectories in Fig. 9(c) is shown in
Fig. 10(a). Here, the temperature is fixed at the last temperature
of RL tests, which is T E 0.5. No significant change of s is
observed. Fig. 10(b) indicates that s is statistically maintained
around s* = 0.65 before and after stabilisation. When s 4 0.8,
the DDQC is the undesired structure as we set s* = 0.65.
Fig. 9(a) also shows how the policy prevents the DDQC by
increasing T whenever s 4 0.8. It can be inferred that the
system will be brought to the state of high T and low s, which
locates on the upper left of the policy in Fig. 9(a). Then the

Fig. 7 Comparing DDQC assemblies by the RL temperature policy and
annealing. The thin lines are the temporal changes of the temperature and
s ratio of samples from RL testing (grey), annealing (blue), fast annealing
(purple), and fixed temperature at T = 0.6 (quenching) (red). The bold lines
of s are the mean values. Simulation parameters are N = 256, A = 0.75, and
random initial configurations are used. The vertical dashed lines tsigmoid

indicate the average onset time of DDQC formation for RL (grey) and
annealing (blue and purple) tests fitted by sigmoid functions. The corres-
ponding temperatures at tsigmoid of the annealing settings are 0.8 (blue)
and 0.74 (purple).

Fig. 8 Performance of the testing on different system sizes, where the
policy is trained with the system of N = 256 particles. The means and
standard deviations are calculated from 20 independent samples after 400
RL steps (black) and 1000 RL steps (blue). The snapshots and Fourier
transformations are demonstrated for N = 512 (upper) and N = 1024
(lower) tests.
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state-action is operated somewhat similar to the trajectory in
orange. This kind of behaviour when s deviates from the target
is observed more clearly when the target structure is s* = 0.35.

In Fig. 9(d–f), the policy and tests for the target s* = 0.35 are
demonstrated. The policy can be divided into three regimes,
represented by the snapshots 1, 2, and 3. First, a large s
structure (s 4 0.5) is avoided by increasing the temperature
(see snapshot 1 of Fig. 9(d–f)). When T E 0.85, the structure
strongly fluctuates with 0 o s o 0.65, for example, between
snapshots 1 and 2. When s becomes small, the blue region in
the policy around snapshot 2 suggests decreasing the tempera-
ture, and the system attempts to reach a state such as snapshot
3. The structure near snapshot 3 is not stable, and after a long
time, the structure deviates from the target, i.e. s4 0.5. Then, a
new cycle of snapshots 3 - 1 - 2 occurs.

We check the stability of the obtained structure from the RL
test, similar to the case of s* = 0.91 and s* = 0.65. We fix the
temperature after the RL tests at the corresponding tempera-
ture after 1000 RL steps (Fig. 11). The samples before fixing
the temperature have s close to s*. Fig. 11(b) illustrates
structural changes after the stability test. The results show
that the obtained structure is not stable for the target s* = 0.35.

After fixing the temperature, some tests at T o 0.5 still have
their s fluctuate around s*, while others deviate from the
target. In order to drive these tests to the target, the tempera-
ture should follow the policy. The result reveals that RL can
learn even when the target is unstable, and we can obtain the
target structure dynamically by changing the temperature.

3.3 RL, equilibrium phases, and metastability

We have investigated how the RL agent learns and proposes
policies for temperature control of patchy particles to form a
DDQC. Our results suggest that the best policy for making the
DDQC is to change the temperature quickly to a characteristic
temperature T* = 0.7, maintain the temperature until the
system is dominated by the dodecagonal structures, and then
decrease the temperature further to get the DDQC stabilised.
It is noted that the characteristic temperature T* is autono-
mously found out by RL. At this temperature, the structural
fluctuations are enhanced. As a result, there is more chance of
getting the dodecagonal structure. In the estimated policy by
RL, if the temperature is high, the particles are too mobile to
make an order structure. Hence, a decrease in temperature is

Fig. 9 Reinforcement learning for other assemblies of patchy particles with the targets (a)–(c) s* = 0.65 and (d)–(f) s* = 0.35. (a)–(c) The policy with
selected trajectories during the tests and the corresponding temperature and s of the tests for s* = 0.65. The mean and standard deviation of s from
20 independent samples are 0.63 and 0.03, respectively. The snapshot at the last point of the blue trajectory is given. (e) and (f) The temperature schedule
and s of selected trajectories for s* = 0.35. Three snapshots of the orange trajectory are given. (d) The trajectories of the tests on the policy plane in which
only part of the data (darker points) is used. The mean and standard deviation of s from 20 independent samples are 0.42 and 0.14. The vertical dashed
line in (a) and (d) indicates s = s*.

Fig. 10 Stability of the RL tests for s* = 0.65. (a) Continuation of the
optimised structures from the step 200 in Fig. 9(a)–(c) at the fixed
temperature. The number of BD steps is 20 � 106 steps, equivalent to
200 RL steps. (b) Statistics of the local structure for 20 independent
samples.

Fig. 11 Stability of the RL tests for s* = 0.35. (a) Continuation of the
structures from the step 1000 in Fig. 9(d)–(f) at the corresponding
temperature. Two more tests (grey) are given. The number of BD steps
is 20 � 106 steps, equivalent to 200 RL steps. (b) Comparison of the
structures in the first and last points in (a) for 20 independent tests. The
arrows connect the first and last points of the tests in (a).
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suggested. When we start from low T0, the policy suggests
increasing temperature so that the system may escape from
the metastable state.

Our RL suggests that the policy changes at the characteristic
temperature T* = 0.7. Fig. 12 shows an equilibrium local
structure at each temperature computed by REMC. The phase
change between the Z-phase and the DDQC occurs at T E 0.89
(see Section S3, ESI†). Simulations of random initial configura-
tions with finite cooling rate methods such as quenching (rapid
temperature change) and annealing (slow temperature change)
show the transition at lower temperatures. In quenching
(Fig. S6, ESI†), the DDQC is formed when T E [0.7,0.85]. If
T o 0.7, the patchy particles cannot form DDQCs because the
system gets trapped in the metastable states, and it is unlikely
to remove the defects at the fixed temperature. In this sense,
the characteristic temperature T* = 0.7 coincides with the lower
limit of fixed T setting for the DDQC. On the other hand, during
annealing (Fig. 7, blue lines), the system has more chance to
escape from the metastable states. The onset of the DDQC is
observed at T E 0.8. In our study, the action space for
temperature is a = {�0.05,0,0.05}, meaning that the cooling rate
is at most �0.05 per RL step. At this rate, the onset of the DDQC
occurs at T E 0.74 (Fig. 7, purple lines). A faster cooling rate
generally lowers the effective transition temperature, because the
particles do not have sufficient time to settle in the stable
configuration. They remain at the disordered state even when
the temperature decreases and passes the transition temperature.
Therefore, the system needs a further drop in temperature for the
transition to occur. At a result, the observed transition tempera-
ture becomes effectively lower in RL than that by REMC.
We should note that in the policy of RL, the temperature is
discretised in a mesh size of 0.1. The characteristic temperature
T* may exhibit deviations dependent on the mesh size. Another
point to be noted is that T* in the policy exists when the current
structure is not a DDQC, in particular s o 0.7. When a DDQC
structure is obtained, the temperature should be kept around 0.5.

We should emphasise that our RL does not optimise the
distribution of s as a function of temperature, nor the phase

diagram. The RL policy suggests the most rewarding pathway to
reach the target. RL can learn that the characteristic tempera-
ture T* plays an important role in enhancing the probability of
QC structural formation. The RL method automatically finds
them during the training steps without being provided with the
existence or the value of this temperature.

4 Discussion and conclusions

Before summarising our study, we discuss several issues to
clarify the mechanism and generalisation of RL and compare
our RL with other studies.

We focus on the estimation of the policy for the DDQC,
which is stable in a certain range of temperature. The optimal
policy includes maintaining the temperature around a charac-
teristic temperature T* = 0.7 and then decreasing the tempera-
ture when the structure reaches the DDQC target. However, our
RL method is not limited to such a stable target structure. In
fact, we demonstrate that RL can estimate the temperature
protocol for metastable and even transiently stable structures.
To obtain the metastable structure as a target (s* = 0.65), we
may maintain the system near the characteristic temperature
T* = 0.7 in which structural fluctuation is large. Then, the
temperature is rapidly decreased so that the structure is frozen
at the desired metastable state. When the target is not even at
the metastable state (s* = 0.35), starting from a random
configuration, the policy suggests to wait at a certain low
temperature to obtain the target structure. In this case, the
structure is transient, and after some time, it escapes from the
target. Then, the temperature changes so that the system
returns to the target structure.

RL can work for different types of particle interactions. We
demonstrate it by studying particles forming DDQCs with the
isotropic two-length-scale interaction. The result also high-
lights different properties of self-assembly in the two systems.
Compared to the policy for the DDQC by patchy particles, the
policy in the isotropic interaction system is much simpler, as
no characteristic temperature is found.

These results, including the temperature protocol for the
DDQC, may be reached from a sophisticated guess, but we think
that this is not the case for many people. For example, a simple
feedback control (that is to keep T constant if s o s* and
decrease T if s Z s*) works only when the initial temperature is
T*. From a higher temperature, T 4 T*, the system remains in
the Z state, whereas from a lower temperature, T o T*, the
system gets trapped in the metastable states so 0.6. Since we do
not have prior information of T*, we cannot obtain the DDQC by
the simple control. We believe that RL, like any machine learn-
ing method, can assist our finding mechanisms of unknown
phenomena and making decisions more efficiently. To tackle
more complex, highly non-linear, and high dimensional pro-
blems, the combination of machine learning with expertise in
decision making may help to understand the problem better.

The choice of statistical quantities that characterise
the structures is crucial for designing a successful RL system.

Fig. 12 Dependence of the local structure on temperature, and the
dominant phase by REMC. The mean (dot) and standard deviation (bar)
are calculated from RE step 200 to 1000 in Fig. S2 (ESI†).
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This includes the choice of the relevant states and how finely to
discretise the states (for Q-table). In the case of DDQC, the
continuous state we choose is the ratio of the s particles
because s can span over a wide range in [0,1] under the
investigated temperature. Therefore, the states can distinguish
the DDQC from metastable and disordered structures. The Z
particles can be considered to evaluate the DDQC structure.
However, under the same conditions, the performance of
Q-learning with Z is not as good as Q-learning with s because
the ratio of Z spans over a much narrower range. Methodo-
logically, there is no limit of number of states in RL. For
example, one may include two microscopic states, e.g. s and
Z. When the dimension of states is much higher, the computa-
tional cost using a Q-table is too high. Approximation of the
Q-function by the small number of continuous basis functions
is promising in this direction.40

One general concern in RL is the training cost. In our study,
the total number of discretised states in Q(s,T,a) is not so
huge; therefore, we propose to use 101 epochs for training.
Considering the dimension of the Q-table, this choice of the
number of epochs is consistent with previous studies. For
example, Nasiri and Liebchen23 employed RL with a neural
network to optimise the path of a self-propelled particle on a
two-dimensional space. They performed 200 000 episodes for a
total state-action space of 50 � 50 � 60. Sankaewtong et al.41

trained their neural network for smart microswimmers in
three-dimensional flow fields with 1000 episodes. Their system
has 19 states and 7 actions.

The number of particles in self-assembly is an important
factor as it directly affects the computational cost. In our study,
we consider N = 256 during training. The cost for training
increases with the system size in two ways: (i) cost per simula-
tion step scales as N2 if the forces of all pairs in the Brownian
dynamics simulation are included. It can cost less depending
on the range of the potential and the use of neighbour list
methods. (ii) The simulation time increases because the relaxa-
tion time increases with the system size. It means that in each
RL step in training where the action is applied, the number of
Brownian dynamics steps should be increased so that the
structure is sufficiently relaxed. We should emphasise that
our estimated policy using N = 256 can be used for the tests
of the larger system sizes without extra training efforts (Fig. 8).

The periodic boundary conditions implicitly impose artifi-
cial periodicity on quasicrystals. Therefore, our DDQC is,
strictly speaking, not quasicrystal but periodic (higher-order
approximants), though its unit cell is very large. Still, the
structures found in our system exhibit similar characteristics
to a true DDQC,7 e.g. the Fourier transform has twelve-fold
symmetry. Despite the limitation in system size, our results
demonstrate that RL can learn to create structures with specific
symmetries.

In this study, we use the states of T and s, the action space
of change in temperature DT, and the reward function of
�(s � s*)2. However, we still need to consider many hyperpara-
meters, such as the number of epochs Ne during training and
the effect of discretisation. We discuss some general issues:

how prior knowledge can help reduce the calculation cost, the
effect of discretisation of Q-table, and the effect of e-greedy,
in the ESI.†

There are many ways of doing reinforcement learning.32,33

In their study on RL for self-assembly,30 Whitelam and Tam-
blyn have shown that the evolutionary optimisation to train the
neural network can learn actions on the control parameters,
such as temperature and chemical potential, for the self-
assembly of a target structure. Evolutionary optimisation uses
a black-box approach to learn the action as a function of the
state (or time), which is expressed by the weights in the neural
network.42 On the other hand, Q-learning relies on the max-
imisation of future reward, which is expressed by Bellman’s
equation. The sampling during training is also different in the
two methods. The evolutionary optimisation requires the final
outcome of the trajectory of the self-assembly process, while
Q-learning updates the policy iteratively by observing the state-
action pair during the dynamical process. As a result, Q-learning
works on-the-fly and requires a less computational cost compared
to evolutionary optimisation. We should emphasize that regard-
less of the differences, both evolution-type optimisation and
Q-learning based on the Markov decision process estimate the
policy that can produce the target faster than a conventional
cooling scheme. More studies are necessary to clarify generic
guidelines on how to choose a suitable RL model.

Although RL can estimate the best temperature protocol, it
has to be related to the physical properties of the system. The
work in ref. 15 proposed a temperature protocol based on free
energy calculations of the nucleation barrier and metastability
of the free energy minima. Although it is treated as a toy model,
relating the physical properties of QC formation and perfor-
mance of RL would be an interesting future direction.

To summarise, we employ RL to estimate the best policy for
temperature control during the self-assembly of patchy parti-
cles into DDQC structures. Using the estimated policy, we
successfully obtain the DDQCs even for the system size larger
than the size we use for training. The key to the success is that RL
finds the characteristic temperature of the DDQC self-assembly
during training. The estimated policy suggests that, first, we
change the temperature to the characteristic temperature so that
the larger fluctuations enhance the probability of forming DDQCs,
and then decrease the temperature slightly to remove defects.
In order to avoid metastable states, the optimal policy suggests
increasing the temperature if we start from a low temperature.
The RL is capable of giving insights into different self-assembled
systems, and dynamically adapting the policy in response to
the unstable target. We should emphasize that our method can
be applied to other parameters that we may control. Therefore, we
believe that the method presented in this work can be applied to
other self-assembly problems.
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U. M. Córdova-Figueroa, Soft Matter, 2016, 12, 4071–4081.

35 A. Reinhardt, F. Romano and J. P. K. Doye, Phys. Rev. Lett.,
2013, 110, 255503.

36 P. W. Leung, C. L. Henley and G. V. Chester, Phys. Rev.
B:Condens. Matter Mater. Phys., 1989, 39, 446–458.

37 Y. Sugita, A. Kitao and Y. Okamoto, J. Chem. Phys., 2000,
113, 6042–6051.

38 Y. Iba, Int. J. Mod. Phys. C, 2001, 12, 623–656.
39 M. Engel and H.-R. Trebin, Phys. Rev. Lett., 2007, 98, 225505.
40 S. Lobel, S. Rammohan, B. He, S. Yu and G. Konidaris,

Proceedings of the AAAI Conference on Artificial Intelligence,
2023, vol. 37, pp. 8932–8939.

41 K. Sankaewtong, J. J. Molina and R. Yamamoto, Phys. Fluids,
2024, 36, 041902.

42 T. Salimans, J. Ho, X. Chen, S. Sidor and I. Sutskever, arXiv, 2017,
preprint, arXiv:1703.03864, DOI: 10.48550/arXiv.1703.03864.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Ja

nu
ar

y 
20

25
. D

ow
nl

oa
de

d 
on

 1
/2

3/
20

26
 6

:0
7:

06
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://github.com/ULieu/RL_patchy
https://openai.com/research/openai-five-defeats-dota-2-world-champions
https://openai.com/research/openai-five-defeats-dota-2-world-champions
https://doi.org/10.48550/arXiv.1703.03864
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm01038h



