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Dynamics of polymers in coarse-grained nematic
solvents†

Zahra K. Valei,a Karolina Wamsler,a Alex J. Parker,b Therese A. Obara,c

Alexander R. Klotz c and Tyler N. Shendruk *a

Polymers are a primary building block in many biomaterials, often interacting with anisotropic

backgrounds. While previous studies have considered polymer dynamics within nematic solvents, rarely

are the effects of anisotropic viscosity and polymer elongation differentiated. Here, we study polymers

embedded in nematic liquid crystals with isotropic viscosity via numerical simulations to explicitly

investigate the effect of nematicity on macromolecular conformation and how conformation alone can

produce anisotropic dynamics. We employ a hybrid multi-particle collision dynamics and molecular

dynamics technique that captures nematic orientation, thermal fluctuations and hydrodynamic

interactions. The coupling of the polymer segments to the director field of the surrounding nematic

elongates the polymer, producing anisotropic diffusion even in nematic solvents with isotropic viscosity.

For intermediate coupling, the competition between background anisotropy and macromolecular

entropy leads to hairpins – sudden kinks along the backbone of the polymer. Experiments of DNA

embedded in a solution of rod-like fd viruses qualitatively support the role of hairpins in establishing

characteristic conformational features that govern polymer dynamics. Hairpin diffusion along the

backbone exponentially slows as coupling increases. Better understanding two-way coupling between

polymers and their surroundings could allow the creation of more biomimetic composite materials.

1 Introduction

Composite materials are ubiquitous in biology, with their
versatile and functional macroscopic properties arising from
greater complexity compared to single constituent counter-
parts.1 Biopolymer composites, such as microtubules in
filamentous actin,2 filamentous bacteriophages in pathogenic
biofilms,3 polysaccharides components in cell walls,4 chiral
chitin5 and mucus,6–8 exemplify mesoscale constituents sus-
pended within already complex soft material backgrounds.
Of these, polymers embedded in liquid crystalline solvents
(so-called hypercomplex liquid crystals9) are particularly inter-
esting because they idealize the competition between the
broken symmetry of the surrounding medium and the tendency
of the suspended phase to maximize entropy.

Macromolecules in good, isotropic solvents possess many
internal degrees of freedom, such that entropy maximization
encourages them to adopt random-coil configurations on scales

greater than their Kuhn length. On the other hand, polymers
suspended in liquid crystalline solvents can be highly extended
along the nematic director,10 with fluctuations away from
perfect alignment quantified by the orientation distribution
of the main polymer axis11 and by the Odijk deflection length.12

In fact, not only do they align with the director, but semiflexible
polymers are observed to possess enhanced orientational order
compared even to the background liquid crystal. This surpris-
ing result has been experimentally demonstrated by direct
single-molecule visualizations of semiflexible F-actin filaments,
worm-like micelles and neurofilaments suspended in nematic
phase solutions of rod-like virus particles,13 as well as conju-
gated polymers in 5CB.14 Increasing contour length further
increases the measured polymer orientational order,13 though
increasing segmentation within conjugated polymers decreases
order.15 Accompanying these changes in conformations are
changes to the dynamics. Polymers in nematic surroundings
exhibit anisotropic diffusion,16,17 but it is not immediately clear
if the anisotropic diffusion is due to the fluid’s anisotropic
viscosity or if it arises because of the elongation of the polymer.

While the interactions between component molecules lead
to nematic alignment and complex dynamics, they are funda-
mentally difficult to simulate because of the division of time
scales between the nematic surroundings and the poly-
meric solute. Indeed for this reason, numerical studies of the
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dynamics of semiflexible polymers within an ensemble of
many nematically ordered chains are more common than
simulations of single macromolecules within mesophase
nematics.18,19 The profound lack of numerical techniques for
efficiently simulating macromolecules in liquid crystalline sol-
vents demands novel simulation techniques be utilized if we
wish to fundamentally understand the physical principles that
lead to the unusual mechanical properties of binary mixtures of
semiflexible polymers and low-molecular-weight nematogens.

Motivated by single-molecule microscopy images of DNA
suspended in a solution of nematically ordered fd viruses,
we introduce a hybrid mesoscopic simulation method based
on molecular dynamics (MD) and nematic multi-particle collision
dynamics (N-MPCD). This hybrid approach employs standard MD
for simulating semiflexible macromolecules and coarse-grained
N-MPCD for modelling the nematic fluid, including diffusion,
director fluctuations and hydrodynamic interactions. We investi-
gate the configurational dynamics of a single chain by examining
the relationship between hairpins along the backbone of polymer
and polymer configuration, as well as the diffusion of hairpins.
We observe that the hairpins themselves diffuse along backbone of
the polymer, while the polymer exhibits anisotropic diffusion even
though the fluid viscosity is isotropic. Our simulations provide
evidence that the macromolecular conformation can be just as
significant as the anisotropy of the viscosity in governing the
diffusional anisotropy ratio.

2 Experiments

Here, we qualitatively examine the effects of a nematic solvent
on DNA molecules that are approximately 1000 persistence
lengths long. We use T4 DNA (169 kbp) stained with YOYO-1
fluorescent dye, leading to a contour length of approximately
60 mm, compared to a persistence length of approximately
50 nm. The DNA is embedded in a solution of rod-like fd
viruses, which are 880 nm long and 6.6 nm in diameter‡. The
virus solution concentration is 20 mg mL�1 in an aqueous
solvent with an ionic strength of 20 mM, placing them in the
weakly cholesteric nematic phase.20 DNA is stained in the same
ionic conditions and mixed with the virus solution at a 4 : 1
ratio, leaving the viruses in a nematic phase despite the lower
concentration. Nematicity is verified by viewing the solution
under cross-polarized microscopy; it is birefringent but not
iridescent, consistent with previous characterization of the
cholesteric phase.20

Because nematic fd virus solutions are a poor solvent for
DNA,13 the equilibrium configuration of the DNA molecules is a
diffraction limited globule. However when shear is applied, the
molecules are transiently elongated within the nematic. Mole-
cules are sheared by confining a solution of fd-DNA between a
glass slide and an unsealed glass cover slip, separated by
approximately 50 mm, and sliding the cover slip with respect
to the slide.

Molecules are seen with sharp bends at acute angles (Fig. 1),
qualitatively different from DNA sheared in isotropic fluids.21

Fig. 1 shows two such examples, one molecule possessing an
acute backfold (Fig. 1; top) and the other having two acute
hairpins (Fig. 1; bottom). Unfolding requires one arm of the
hairpin to slide while maintaining the angle with the other.
This indicates that the DNA hairpins are topologically protected
and can only be removed when the chain end reaches the joint
(or two hairpins annihilate). A complete experimental charac-
terization of this system is a subject for future work, but these
qualitative observations suggest that hairpins are characteristic
features of polymers embedded in a nematically ordered back-
ground. To investigate this assertion more quantitatively, we
perform simulations of the suspension of flexible polymers in
nematic liquid crystalline media.

3 Numerical model and method

To quantitatively study the conformations and dynamics of
polymers embedded in nematic background, we employ a
hybrid approach of N-MPCD to simulate the nematic back-
ground and MD to simulate the polymeric inclusion. N-MPCD fully
incorporates thermal fluctuations, hydrodynamic interactions and

Fig. 1 Hairpins along T4 DNA in nematic fd virus solution after shear.
(Top) A DNA molecule with a E1801 hairpin unfolding at the bottom of the
macromolecule. The bright object near the top is a second DNA molecule.
Two seconds elapse between shown frames. (Bottom) A DNA molecule
with two hairpins. The bottom hairpin unfolds. Half a second elapses
between shown frames.

‡ Nematic solutions were obtained from Christopher Ramirez and Zvonimir
Dogic at the University of California, Santa Barbara.
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nematic orientational order of the liquid crystal (Section 3.1).
MD discretizes the polymer into a linear sequence of bound beads
that exchange momentum with fluid particles (Section 3.2).
Additionally, polymer segments are coupled to the nematic
orientation via a two-way coupling mechanism.

3.1 Nematohydrodynamic model

While many microscopic particle-based methods explicitly calcu-
late effective pair potentials between mesogen molecules,22–25

mesoscopic models further abstract the interactions between
mesogens. An early example is the Lebwohl–Lasher model, which
models the nematic phase using nematogens fixed on a cubic
lattice, with interactions between particles governed by pair
potentials.26,27 Since then other mesoscale algorithms have been
conceived to simulate liquid crystal hydrodynamics, including
multi-particle collision dynamics (N-MPCD) schemes.28 N-MPCD
employs coarse-grained collision operators to evolve the density,
velocity, and orientation fields. Since the N-MPCD algorithm
discretizes the nematic fluid into point-particles that interact
through a stochastic, many-particle collision operator, the simula-
tion time is reduced compared to methods that calculate the pair
interactions. We build on N-MPCD’s success in simulating
electroconvection29 and colloidal liquid crystals30–32 to consider
polymer dynamics in liquid crystalline solvents.

The nematic fluid is discretized into point particles labeled i.
Each particle possesses a mass mi, position�r i(t), velocity�vi(t) and
nematic orientation �ui(t).

28 The number of lines under the
notation indicates the tensor rank, scalars are rank-0 tensors,
vectors are rank-1 tensors, and so forth. While time is discretized
into discrete time steps Dt, the other quantities evolve continu-
ously. MPCD is composed of two steps: (i) streaming and
(ii) collision. In the streaming step, particle positions translate
ballistically according to �r i(t + Dt) = �r i(t) + �vi(t)Dt. During the
collision step, particles interact in a coarse-grained manner via
collision operators. These cell-based operators randomly update
the velocities and orientations of the particles while ensuring
conservation laws are maintained. Particles are binned into cells
(labeled c) of size a containing Nc(t) particles at any instant t.
A random grid shift ensures Galilean invariance.33 Only particles
in the same cell interact, and every particle within each cell
participates in the interaction. The collision step itself can be
divided into two phases. Firstly, momentum is stochastically
exchanged. The velocity of each particle i in cell c is updated using
an Andersen thermostatted collision operator X i;c that randomly

generates velocities from a Boltzmann distribution characterized
by the thermal energy kBT34 while ensuring momentum is con-
served within each cell.

Secondly, each particle orientation �ui, is modified by an
orientation stochastic multi-particle collision operator cc. This
operator generates new random orientations drawn from the
canonical distribution of the Maier–Saupe mean-field approxi-
mation about the local director �nc within each MPCD cell.28 The
orientation collision operator is characterized by a globally
specified nematic interaction constant U, which controls
how strongly the orientations align. Additionally, nematogens

interact with velocity gradients in fluid flow and reorient.
Further details on the collision step are included in Appendix A.

Velocity-orientation coupling is achieved by application of
Jeffery theory for reorientation of particles possessing a bare
tumbling parameter l and shear susceptibility a. The heuristic
parameter a adjusts the alignment relaxation time relative to
Dt, effectively allowing Jeffrey’s equation to be averaged over a
small number of time steps of the fluctuating hydrodynamic
field (Appendix A). The bare tumbling parameter l of an
isolated rod is related to its aspect ratio, approaching zero for
spherical particles and unity for infinitely elongated filaments.28

However in liquid crystals, |l| 4 1 is possible,35 in which case the
nematogens align with the shear flow and the liquid crystal is said
to be flow aligning. Backflow is accounted for by balancing the
change in angular momentum generated by the orientational
collision operator with an angular momentum conserving term
in the velocity collision operator,34 the magnitude of which is
governed by a rotational friction coefficient gR.28,34,36 A small value
is selected to minimize backflow effects.

The N-MPCD method allows for simulations of two and
three-dimensional nematic fluids, possessing isotropic-
nematic phase transitions with annihilation of defects in 2D.
While the resulting nematic fluid is expected to exhibit some
anisotropic viscous dissipation due to the inclusion of a tum-
bling parameter, subsequent numerical analysis has shown
that the N-MPCD method obeys linearized nematohydro-
dynamics where viscosity and elastic effects are isotropic.37

All particles have the same mass m. The N-MPCD particle mass
m, thermal energy kBT and cell size a set the simulation units,

including units of time t0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
. The N-MPCD streaming

time step is set to Dt = 0.1t0 and the N-MPCD number density is
20/a3 giving a Schmidt number of E375.38 The N-MPCD para-
meters are chosen to be gR = 0.01kBTt0, l = 2 and a = 0.5. These
parameters control two-way coupling between the director and
fluid flow, representing flow-aligning liquid crystal.28 Selecting
a small rotational friction minimizes the backflow and miti-
gates any related effects in this study. The nematic interaction
constant U = 6kBT is within the nematic phase28 but with an
energy landscape that is low enough for the polymer to explore
conformational space in computationally feasible times.

3.2 Polymer model

The flexible polymer is simulated by molecular dynamics
(MD)39 simulations. It is composed of N beads ( j = 1,. . .,N)
with mass M, which obey the equations of motion

M€r j ¼ �rVj þ X j;c; (1)

in which Vj is the total potential of particle j and X j;c is the

thermal and hydrodynamic drag forces due to including MD
particle j in the MPCD collision of cell c. The beads interact via
pair potentials which are composed of a bond VFENE, steric
effects VLJ and nematic coupling VNPC terms. We model freely
jointed chains with no internal bending potential.
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Beads are linearly connected by a finitely extensible non-
linear elastic (FENE) bond potential40–42

VFENE rjl
� �

¼ �kFENE

2
r0
2 ln 1� rjl

2

r02

� �
; (2)

where kFENE is the bond strength, r0 is the equilibrium length of
the bonds and rjl = |�r jl| for�r jl =�r j ��r l between monomers j and
l. For bonds (eqn (2)), l = j � 1. Excluded-volume interactions
are taken into account by the purely repulsive Lennard-Jones
potential40–43

VLJ rjl
� �

¼ 4e

s
rjl

� �12

� s
rjl

� �6

þ1
4
; rjl osCO

0; rjl 4 sCO:

8>><
>>: (3)

The energy e sets the strength of the repulsive potential, s is the

effective size of a bead and sCO ¼
ffiffiffi
26
p

s is the cutoff.
Individual monomers are not directly coupled to the sur-

rounding nematic as might be the case for colloids with strong
surface anchoring at their surface.36,44 Rather, segments of the
polymer are anchored to the surrounding nematic by coupling
the tangent between pairs of monomers along the polymer
backbone to their local nematic direction �nc by a harmonic
potential

VNPC t jl ; n c

� �
¼ k

2
arccos2 t jl � n c

� �
¼ 1

2
ky2; (4)

where �t jl = (�r j � �r l)/rjl for l = j � 1 is the tangent, y is the angle
between �t jl and �nc, and k the coupling constant (Fig. 2a). The
angular harmonic potential accounts for the tendency of poly-
mer segments to align with the surrounding medium. This co-
alignment can arise from pairwise interactions between poly-
mer segments and nematogens, such as electrostatic dipole–
dipole interactions45 or steric interactions46 (as described by
the Onsager theory47). While eqn (4) causes segment jl of the
polymer to rotate to align with the surrounding nematic, an
equal-but-opposite torque must be applied to the local nematic
to create the two-way coupling effect on the nematic. To this end,
the N-MPCD mesogens within cell c are subject to the torque

t c ¼ a n c � tjl t jl
� �

n c � tjl t jl
� �

(5)

where c is the cell that monomer j resides within, and tjl ¼ t jl
		 		 is

the torque due to VNPC experienced by both monomers j and l.
This assures that the local director feels an equal-but-opposite
torque. This torque changes the orientation of local nematic
mesogens by

dy ¼ t cj j
gR

Dt; (6)

where gR is the rotational friction coefficient. This introduces a
two-way coupling through which the polymer conformation affects
the local nematic orientation. Through this coupling, the liquid
crystal orientation around a polymer can be perturbed to align
with the polymer (Video S1, ESI†). Likewise, the polymer backbone
and nematic orientation may align at most points but a sudden
bending of the polymer backbone can locally disturb the nematic

order (Video S2, ESI†). While all quantitatively analyzed data is
from 3D simulations (Section 3.3), we present movies of 2D
simulations to illustrate this two-way coupling. These 2D simula-
tions allow the director configurations to be clearly visible without
any obstruction from the third dimension. These 2D simulations
are performed in square, periodic domains of size L = 30a, with
degree of polymerization N = 20 and coupling k = 20 kBT.

In our simulations, parameters are set to e = 1kBT, s = 1a and
monomer mass M = 10m for all j. The equilibrium bond length
is r0 = 1a, with a bond strength kFENE = 120kBT/a2 and the
coupling coefficients are varied from k = 0 to 20kBT. The degree
of polymerization is N = 20, giving a contour length 19b, where
b = (0.89� 0.02)a is the average bond length. The MD algorithm
time step is DtMD = 0.002t0, requiring 50 MD iterations per N-
MPCD iteration. A summary of all variables used in the numer-
ical model is presented in Table 1.

3.3 System setup

The simulations are conducted in a 3D cylinder of length L =
30a and radius R = 10a (Fig. 2b). Strong planar anchoring at the
cylinder surface assures the global liquid crystal orientation is
parallel to the long axis of the cylinder.44 A perfect-slip bound-
ary condition on the impermeable cylinder wall is applied to

Fig. 2 Simulation and boundary conditions. (a) The orientational coupling
potential between the polymer and nematic solvent is an angular harmonic
potential (eqn (4)) between the backbone tangent �t and the local nematic
director �nc. (b) Cylindrical system of length L = 30a and radius R = 10a. The
director �n is parallel to the long axis of the cylinder, with planar anchoring.
The cylinder is impermeable with hydrodynamic slip conditions and
periodic boundaries at both ends.
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velocity by reflecting the normal component of the velocity
relative to the surface and leaving the tangential component
unchanged. To allow free flow at the wall, phantom
particles48–51 are not included. Choosing perfect-slip over no-
slip assures the mobility of the polymer is not significantly
affected by the presence of the wall. Periodic boundaries cap
both ends of the cylinder.

The fluid is initialized with Maxwell–Boltzmann distributed
speeds and the director field parallel to the cylinder axis. The
polymer is initiated in the fully extended conformation on the
center line of the cylinder, aligned with the global nematic
direction and allowed to relax. Data is recorded once the system
reaches its steady state, which is identified via an iterative
procedure. In each iteration, the ensemble average is compared
to the overall average calculated from all repetitions to find the
first instance where it falls below this overall average. This time
is then used as the starting point for updating the overall
average. The process is repeated until successive updates of
this reference time do not alter and stabilize, indicating that
the system has achieved a steady state. Twenty repeats for each
set of parameters are simulated, each lasting 1.2–1.5 � 105t0.
All simulations are performed using a custom-developed
N-MPCD/MD solver.

4 Results

First we present how conformational properties of the polymer
are affected by different coupling parameters k. We then show
how these configurations contribute to different diffusivity of
the polymer. Finally, we quantify the dynamics of hairpins.
Table 2 provides a summary of all variables utilized in this
section.

4.1 Conformations

The average shape of the polymers can be characterized by the
gyration tensor

G ¼ r i � r cmð Þ r i � r cmð Þh i; (7)

which measures the distribution of monomers around the
center of mass, �r cm = h�r ii. The average h�i is over the N
monomers. To understand how the nematic solvent impacts
the conformation, we compare the values of G parallel and

perpendicular to the global nematic orientation �n.
Due to the strong anchoring, the global director lies along the

axis of the cylinder. The parallel component of the gyration tensor

is Rgk
2 ¼ n n:G and perpendicular Rg?

2 ¼ 1� n n
� �

:G
� �.

2,

where the double-dot product ‘‘:’’ is the double contraction of
tensors and 1 is the identity rank-2 tensor. These form the semi-

major and minor axes of an ellipsoid approximating the polymer.
These values give the aspect ratio b = Rg>/Rg8, which measures the
degree to which the polymer is elongated. When the polymer is
weakly coupled to the nematic orientation (k/U { 1), it conserves
its symmetry, taking an isotropic shape with 1 � b E 0 (Fig. 3a;
diamonds). As the coupling strength increases, the energy cost of
misaligning with the surrounding nematic rises and causes the

polymer to elongate in the nematic direction. For high coupling
(k/U c 1), the polymer forms a rod-like conformation with
1� bE 1 (Fig. 3a; diamonds). Coupling to the nematic orientation
field elongates the polymer.

To understand how the aspect ratio increases, let us assume
a model in which the backbone of the polymer perpendicular to
the global nematic director does a self-avoiding random walk.
This can be seen by considering the components of the end-to-
end vector �Re = h�r N � �r 1i. The end-to-end distance of the

perpendicular random walk Re;? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R e � 1� n n

� �
� R e

r
scales

with the number of steps as Re,> B Nn, where n = 3/5. To
compare this prediction to the simulations, we measure the
perpendicular end-to-end distance and normalize it as r> =
Re,>/Nnb for n = 3/5 (Fig. 3a; pentagons). If the tangent �t is
decomposed into parallel �t8 = �n�n��t and perpendicular

t? ¼ 1� n n
� �

� t components, the size of the steps in the

Fig. 3 Coil-to-rod transition of a polymer as a function of the coupling to
the local nematic order k scaled by the nematic interaction constant U.
(a) The aspect ratio is plotted as 1 � b = 1 � Rg>/Rg8. The normalized
perpendicular end-to-end distance is r>

2 = Re,>
2/N2nb2 with n = 3/5 for

self-avoiding random walk. The average of tangent perpendicular to the
nematic direction (1 � h(�t��n)2i)/2 for simulations and the thermodynamic
expectation value. The bottom left and upper right snapshots illustrate
typical coil-like and elongated conformations, respectively. (b) The parallel
end-to-end distance Re,8

2 is normalized by different scalings, r8
2 =

Re,8
2/N2nb2. At low coupling, n = 3/5 but n = 1 for a rod at high coupling.

The average of tangent along the nematic direction h(�t��n)2i is compared to
the thermodynamic expectation value. The snapshot shows a single
hairpin.
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perpendicular direction is b
ffiffiffiffiffiffiffiffiffiffi
t?

2h i
p

. Thus, we ideally expect
r>

2 = h�t>
2i. At the low coupling limit (k/U { 1), r>

2 = 1/3 is
expected for a coil-like random walk because the bond tangent
vector �t is a unit vector whose average in each direction is
isotropic and so each component contributes 1/3. At high
coupling (k/U c 1), r>

2 gradually goes to zero (Fig. 3a; penta-
gons) as expected from the decreased degrees of freedom in the
perpendicular direction and the suppression of h�t>

2i.
To further explore the role of the perpendicular fluctuations,

we measure them directly from simulations as h�t>
2i = (1 �

h(�t ��n)2i)/2 (Fig. 3a; circles). The normalized end-to-end distance
r>

2 qualitatively agrees with h�t>
2i. However, there are quanti-

tative differences, especially at intermediate couplings. We
hypothesize that the difference is primarily due to the finite
size of the polymer and build an analytical model for the large-
N thermodynamic limit.

Assuming each segment fluctuates independently, the partition
function – the sum over all possible states – of a single segment in

the continuum limit is Z1 ¼
Ð 2p
0 df

Ð p
0e
�VNPC=kBT sin ydy. The

form of the aligning harmonic potential used in the simulations,
VNPC = ky2/2 (eqn (4)), does not permit an analytical solution for the
partition function. Therefore, we adopt the approximation VNPC E
k sin2y/2 = k(1 � (�t ��n)2), which similarly penalizes deviations from
the local nematic orientation and has been used in previous
studies.13,52 With this approximation, the partition function of a
single segment becomes

Z1 ¼
ð2p
0

d

ðp
0

e
�1
2

kb
kBT

1�ðt�nÞ2ð Þ
sin ydy; (8)

which involves integrating over the azimuthal f and polar y
angles. The integral over the unit sphere gives

Z1 ¼ e�K
ffiffiffiffiffiffi
p
K

r
erfi

ffiffiffiffiffiffi
K
p� �

(9)

with the dimensionless coupling K = �kb/(2kBT).
We differentiate the free energy of one bond (�kBT ln Z1)

with respect to the coupling parameter k to obtain the expecta-
tion value for its thermodynamic conjugate

1� ðt � nÞ2

 �

¼ 1þ 1

2K
� 1ffiffiffiffiffiffiffiffi

pK
p eK

erfi
ffiffiffiffiffiffi
K
p� �; (10)

which is equivalent to 2h�t>
2i (Fig. 3a; dashed line). The

thermodynamic expectation value agrees well with the perpen-
dicular tangent h�t>

2i but only qualitatively with the normalized
end-to-end distance in the perpendicular direction r>

2. This
leads us to conclude that, even though individual segments are
in equilibrium and fluctuating about the global nematic direc-
tor, the overall conformation is more complex than a simple
sum of these fluctuations. As we will show in Section 4.2, this is
due to the existence of hairpins.

A similar line of argument follows for the parallel direction.
Similar to the perpendicular component, the thermodynamic

expectation value

t k
2

D E
¼ � 1

2K
þ 1ffiffiffiffiffiffiffiffi

pK
p eK

erfi
ffiffiffiffiffiffi
K
p� �; (11)

agrees well with simulation results for all coupling parameters
(Fig. 3b; dashed line and circles, respectively). The parallel
component of the end-to-end vector Re,8

2 = �Re��n �n��Re is more
complicated. At low coupling (k/U { 1), the polymer performs a
self-avoiding random walk with the normalized parallel end-to-
end distance r8

2 = Re,8
2/N2nb2 = h�t8

2i = 1/3 with n = 3/5 (Fig. 3b;
blue squares).

While the theory and simulations agree for the limit of very
low coupling, the normalized end-to-end distance r8

2 quickly
diverges and deviates from the parallel tangent. This is because
the assumption of n = 3/5 for an isotropic coil breaks down.
Likewise, at high coupling (k/U c 1), the polymer is a rod r8

2 =
Re,8

2/N2nb2 - 1 with n = 1 in this limit (Fig. 3b; purple squares).
The theory fails to reproduce the parallel extension r8

2 for
intermediate coupling in the parallel direction due to crossing
between scalings. This is due to the formation of hairpins –
sudden turns along the backbone of the polymer (Fig. 3b,
snapshot of the polymer).

4.2 Hairpins

Hairpins arise in polymers suspended in nematic fluids because of
the competition between conformational entropy and the energy
due to being coupled to the nematic background.52

For weak coupling between the polymer and the nematic
(k/U { 1), entropy maximization is dominant and polymers
randomly explore conformational space (Fig. 3a; low coupling
snapshot). On the other hand for strong coupling (k/U c 1), the
energy cost of misaligning with the surrounding liquid crystal
is so high that the elongated conformations are preferred
(Fig. 3a; high coupling snapshot). However, at intermediate
coupling neither contribution to the free energy is negligible.
The polymer forms hairpin-like conformations to simulta-
neously satisfy the nematic symmetry and retain access to
many conformational states. The resulting hairpins are loca-
lized to sudden turns so that the energy cost of a hairpin is
not substantial (Video S2, ESI†). Because these hairpins can
diffuse along the backbone of the polymer, the polymer can
access many conformations with the same energy, allowing
the entropy gain to compensate the energy cost (Videos S3
and S4, ESI†).

Hairpins are formed by thermal fluctuations that are large
enough to let the polymer overcome the elastic barrier of the
nematic liquid crystal. They form either as single hairpins
forming at either ends (Fig. 4a; i and ii, Video S3, ESI†) or as
pairs at any point along the backbone (Fig. 4a; iii, Video S3,
ESI†). By qualitative comparison of the results of simulations
with experiments, we see that the single hairpin example
(Fig. 4a; i) is similar to top panel of Fig. 1 from experiments
and the two hairpins case (Fig. 4a; ii) is similar to bottom panel
of Fig. 1.
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To identify hairpins, each monomer is given a ‘‘hairpin
score’’, which measures the different features of hairpins.
Monomers that have a sufficiently high score are identified as
hairpins (Appendix B for details). Based on this identification,
we measure the number of hairpins for different coupling. For
the low coupling (k/U { 1), the probability distribution func-
tion (PDF) of the number of hairpins NH is wide (Fig. 4b). The
distribution has a maximum of 13 ‘‘hairpins’’. In this coil-like
configuration, identifying these as hairpins is not particularly
meaningful since the self-avoiding random walk has many
sudden turns that are not related to the director orientation.

As the coupling increases, the energy barrier rises and the
likelihood of hairpin formation decreases. This causes the
PDFs to shift to lower values and narrow. The resulting lower
average number of hairpins hNHi (Fig. 4b; inset) has a smaller
standard deviation than the weak coupling limit (Fig. 4b;
shaded area in inset). The elastic nature of the nematic solvent
dominates the thermal fluctuations when k/U c 1 and hNHi- 0
(Fig. 4(b); inset). The number of hairpins are Poisson distributed,
which is shown by comparing the measured average number of
hairpins to the Poisson fit of the PDF (Fig. 4b; inset). This
suggests that hairpins form randomly and independently.

We previously demonstrated that the conformation is well
predicted by theory in the low and high coupling limits, but
hairpins strongly modify the observed conformations at

intermediate couplings (Section 4.1). Having quantified the
number of hairpins, the conformational properties at inter-
mediate couplings can be explored as functions of number of
hairpins. For this purpose, we return to the parallel and
perpendicular components of gyration tensor. The normalized
parallel component of gyration tensor is rg8 = Rg8/Rrod, where

Rrod ¼ Nb
� ffiffiffiffiffi

12
p

is the gyration radius for a rod with N monomers
connected by bonds of length b. The normalized perpendicular

component of gyration tensor is rg> = Rg>/Rcoil, where Rcoil ¼
RSAW

� ffiffiffi
3
p

is the contribution due to one component of the gyration

radius for a self-avoiding polymer RSAW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25=176

p
bN3=5 (Fig. 5;

symbols).53 In the parallel direction, the gyration radius
linearly decreases with average number of hairpins, rg8 =
(�0.165 � 0.003)hNHi + (0.969 � 0.005) (Fig. 5; solid line).
The linear dependence of rg8 on hNHi highlights the signifi-
cance of hairpins in the adopted shape of the polymers. Since
strong coupling results in no hairpins and weak coupling
results in many, it is the intermediate region of Fig. 5 that is
of primary interest and the fits are performed over the range
0.01 r hNHi r 3.7.

Similarly, the perpendicular component exhibits a linear
dependence, rg> = (0.135 � 0.005)hNHi + (0.320 � 0.009) (Fig. 5;
dashed line). While a linear fit is good, including a quadratic
term rg> = (0.337 � 0.007) + (0.086 � 0.012)hNHi + (0.014 �
0.003)hNHi2 further improves the agreement (Fig. 5; solid line).
The goodness of these fits are assessed using the reduced chi-
squared w2. The values of w2 = 0.33 for the linear and w2 = 0.20
for the quadratic fit indicate that both are acceptable but that
including the quadratic term better represents the results.

Fig. 4 Hairpin formation and distribution. (a) Snapshots of different types
of hairpin formation due to thermal fluctuations (i) single hairpin at one end
(ii) two hairpins at both ends (iii) two hairpins (pair creation) away from
ends. (b) Probability distribution function (PDF) of number of hairpins NH,
for different coupling parameters k. (Inset) The measured average (dots)
compared to the fit (solid line) of the PDF for each coupling to a Poisson
distribution. The shaded region is the standard deviation.

Fig. 5 Conformation as a function of hairpin number NH. The normalized
parallel component of the radius of gyration is rg8 = Rg8/Rrod, where Rrod is
the radius of gyration for a rod. The perpendicular component of gyration
radius rg> = Rg>/Rcoil is normalized by the perpendicular component
of gyration radius for a self-avoiding polymer. At low hairpin number
(hNHi - 0), the conformation is rod-like with rg8 - 1. At high hairpin
number (hNHi \ 3), the conformation is a coil with rg> - 1. The primary
fits are plotted as solid lines, linear for the parallel component and
quadratic for perpendicular component. A linear fit to the perpendicular
component is plotted as a dashed line. The colors correspond to the color
bar in Fig. 4.
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4.3 Dynamics

4.3.1 Center of mass dynamics. The hairpins’ impact on
polymer dynamics can be seen by focusing on the polymer
center-of-mass dynamics. The dynamics of polymer center of
mass is characterized by its mean squared displacement (MSD)

hd�r cm
2i = 2dDdt, (12)

where d�r cm = �r cm(t + dt) � �r cm(t). From eqn (12), the isotropic
diffusion coefficient D is determined for the dimensionality d.
However, to understand how the nematic solvent affects the
diffusion of the center of mass of the polymer, the MSD is
decomposed into parallel and perpendicular components

hd�r cm��n �n�d�r cmi = 2dD8dt (13)

dr cm � 1� n n
� �

� dr cm
D E

¼ 2dD?dt: (14)

An example MSD for coupling parameter k/U = 2.5 is plotted
with its components in Fig. 6a. Eqn (13) and (14) with d = 1 and
d = 2 give the parallel D8 and the perpendicular D> diffusion
coefficients, respectively. While the parallel diffusion stays
unchanged as the average number of hairpins hNHi increases
with decreasing coupling, the perpendicular and total diffusion
increase as hNHi increases (Fig. 6b).

To understand this anisotropy, consider two possible
sources of diffusion anisotropy in liquid crystalline solvents.
The first is the anisotropy in the viscosity of the solvent.
In nematic solvents viscosity is lower along the nematic director
and it has been shown that spheres diffuse anisotropically in a
nematic solvent, with D8/D> E 1.6.54,55 The second source of
the anisotropy is the shape of the solute. For instance, for a rod-
like inclusion, diffusion along the axis of the rod is less
hindered than that in the direction perpendicular to the rod
axis. For an infinitely long thin rod in an isotropic solvent
D8/D> = 2.56 Since our nematic liquid crystal does not have
anisotropic viscosity,37 the reason behind the measured aniso-
tropic diffusion must be the anisotropy in the shape of the
solute. However, due to the finite length of the polymer,
the ratio D8/D> converges to approximately 1.6, which is less
than 2.

The diffusion coefficients are related to the drag coefficients
through the Einstein relation as D ¼ kBTz�1 (ref. 57) and so the

anisotropy in the shape of the solute affects its diffusivity
through anisotripic drag coefficients. The drag coefficients

z � 6pZRK ; (15)

are related to the fluid viscosity Z, the characteristic size of the
solute R and its shape, accounted for by dimensionless resis-
tance tensor K.58 The resistance tensor K is known for various

shapes, including prolate ellipsoids (Appendix D). Prolate ellip-
soids are a reasonable first-order model for the elongated
conformations of polymers in nematic fluids. Approximating
the polymer to first order as an ellipsoid gives the ratio of
expected diffusivities for ellipsoids (denoted by superscript e)
De
8/De

> as a function of only the aspect ratio b (Appendix D). In
an isotropic fluid when the shape is symmetric (b = 1), De

8 = De
>

Fig. 6 Diffusion of polymer center of mass of as a function of hairpins
number. (a) An example MSD with its parallel (MSD8) and perpendicular
(MSD>) components for k/U = 2.5 with hNHi = 0. The lag time is normal-
ized by tg, the time for the uncoupled (k = 0) polymer to diffuse its size Rg.
The dashed lines show the fits. (b) Total D, parallel D8 and perpendicular
D> diffusivities are normalized by D0, the uncoupled diffusion coefficient.
(c) The ratio of parallel to perpendicular diffusivity. (Inset) Ellipsoids of
semi-major (Rg8) and semi-minor (Rg>) axes, with different orientations to
the direction of motion �v. In (b) and (c), solid lines show the ellipsoidal
model, where the parallel gyration radius is fitted linearly and the perpendi-
cular component quadratically. The dashed lines are for the linear fit of the
perpendicular component. Shaded regions shows the standard deviations
and colors correspond to the color bar in Fig. 4.
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and their ratio has its minimum value of unity. For the rod-like
limit (b { 1), the ratio rises to its maximum value of
De
8/De

> = 2.56 We use this ellipsoidal model with semi-major
axis Rg8 and semi-minor axis Rg> (Fig. 6c; inset), to confirm that
anisotropy in the diffusion rises only due to shape anisotropy.

However, the polymer is inside a cylinder and the cylinder
wall affects polymer diffusion. To account for the wall effect,
correction factors are applied to the ellipsoidal expectation
values,59

Dk ¼ 1� Ck
Rg

R

� �
De
k

D? ¼ 1� C?
Rg

R

� �
De
?;

(16)

with the radius of the cylinder R and Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rgk2 þ 2Rg?2

q
the

gyration radius in the absence of coupling (k = 0). Applying
these corrections to the values calculated using eqn (26) repro-
duces the diffusion coefficients for the polymer embedded in a
nematic inside the cylinder (Fig. 6b and c; solid lines). The
correction parameters are fit to C8 = 1.20 � 0.01 and C> =
1.35 � 0.02. The diffusion coefficients demonstrate good agree-
ment with the simulation results. The radius of gyration as a
function of the number of hairpins used in eqn (16) comes
from the fits shown in Fig. 5. While a linear fit to both the
parallel and perpendicular gyration radius is fairly accurate, it
causes the diffusion constants to be under predicted and D8 to
be predicted to be concave up (Fig. 6b; dashed lines). Including
the small quadratic correction for rg> causes the ellipsoidal
model to be more accurate and not curve up at high hairpin
numbers (Fig. 6b; solid lines).

The analysis shows that the shape is the primary factor
contributing to anisotropic diffusion. The variation in diffusion
coefficients in different directions can be fully explained by the
conformational changes resulting from coupling. By increasing
the coupling, number of hairpins decreases and polymer
stretches and becomes less symmetric (Fig. 3a). The elongated
polymers with few hairpins (k/U c 1) experience larger drag
forces perpendicular to �n which results in lower perpendicular
diffusion coefficients, lim

NHh i!0
D? ¼ ð0:70� 0:03ÞD0, with D0 the

diffusion coefficient of the center of mass of the polymer in the
absence of coupling (Fig. 6b). On the other hand, as the
coupling decreases the number of hairpins increases and the
shape gets more symmetric with D>/D0 approaching unity,
lim

NHh i!1
D? ¼ ð0:96� 0:02ÞD0 (Fig. 6b).

In the parallel direction, diffusion starts at lim
NHh i!1

Dk ¼

ð1:07� 0:05ÞD0 for the limit of many hairpins and stays con-
stant, only changing to lim

NHh i!0
Dk ¼ ð1:09� 0:05ÞD0 for elon-

gated polymers with no hairpin. Perhaps this indicates that the
parallel diffusion coefficient does not vary considerably with
different numbers of hairpins. However, the total diffusion
coefficient D gradually decreases down to lim

NHh i!0
D ¼ ð0:83�

0:05ÞD0 at the strongest coupling. This should be expected since

D = (D8 + 2D>)/3, which means that the decrease in D> mainly
governs the total diffusion coefficient drop. We must conclude that
the mobility of the polymer is primarily controlled by the effect of
its conformation on perpendicular diffusivity that is caused by its
coupling to the nematic orientation.

The ratio D8/D> shows a clearer comparison of the impact of
coupling on diffusion coefficients in different directions
(Fig. 6c). In the low coupling (k/U { 1), the ratio is

lim
NHh i!1

Dk
�
D? ¼ 1:11� 0:06, which is close to the expected

isotropic value D8/D> = 1. The deviation from unity is likely
due to the cylinder wall that partially hinders the diffusion in
the perpendicular direction. The ratio for no hairpins (k/U c 1)

is lim
NHh i!0

Dk
�
D? ¼ 1:56� 0:1. This value is comparable to the

ratio observed for a symmetric shape, such as a sphere,
embedded in a nematic background with anisotropic viscosity,
where D8/D> = 1.6.54,55 This underscores the significance of the
solute’s shape in its diffusivity: changes to polymer conforma-
tion should not be neglected in estimating anisotropic diffu-
sion since their contribution is comparable to the direct
contribution of anisotropic viscosity.

4.3.2 Hairpin dynamics. Hairpins are the primary degree
of freedom for an intermediately coupled polymer to explore its
configuration space. The movement of hairpins along the
polymer backbone grants polymers access to different confor-
mations through a diffusive hopping process. We track hair-
pins over time (Fig. 7a, Video S4, ESI†) and use their MSD along
the backbone of the polymer to measure their diffusivity for
different coupling parameters k (Fig. 7b). Additional details on
how we track the hairpins are included in the Appendix C.
Because the lifetimes of hairpins are quite short for low
coupling parameters (k/U o 1), the MSD does not extend to
long lag times (Fig. 7b) and diffusion coefficients cannot be
accurately extracted. For this reason, the analysis is restricted to
k/U Z 1. The diffusion coefficient of hairpins decreases expo-
nentially as the coupling parameter increases (Fig. 7c; inset).

To understand the exponential decay of the hairpin diffu-
sion coefficient, consider the polymer backbone to be a one-
dimensional lattice along which hairpins perform a hopping
process (Video S4, ESI†). Each time a hairpin hops, the bond
connecting its current position to the next must rotate in the
director field. During this rotation, the polymer segment per-
turbs its surrounding liquid crystal orientation via the two-way
coupling through k. This suggests there is an energy cost
to overcome, which can be understood through Kramer’s
model of Brownian motion across a barrier of height Eb.60

The probability current across the barrier sets the hopping
rate60

G ¼ 1

2pz
V 00 xað ÞV 00 xbð Þð Þ

1
2exp � Eb

kBT

� �
; (17)

where z is a drag coefficient of the hairpin, V00(xa) is the
curvature of the energy well, V00(xb) is the curvature of the
energy barrier over which it jumps and Eb is the barrier energy.
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Each of the factors in eqn (17) can be estimated (Appendix
E). Substituting these estimates into eqn (17) and recognizing
DH = b2G/2 leads to the rough approximation

DH

D0
� 60

k

U
exp �4k

U

� �
; (18)

where D0 = (300 � 6) � 10�5 a2/t0 is the diffusion coefficient
for the center-of-mass of uncoupled polymer. This rough
approximation agrees within an order of magnitude with the
exponential fit of the hairpin diffusion coefficient (Fig. 7c)

DH

D0
¼ ð19:98� 6:23Þk

U
exp �ð4:44� 0:29Þk

U

� �
: (19)

We have shown that the hairpins move diffusively by hopping

over local energy barriers. In the strongly coupled limit
(k/U 4 1) hairpins are topologically protected defects acting
as singularities for the backbone tangent vector �t . One can
arbitrarily designate a hairpin that opens towards the +x̂
direction (as in Fig. 7a) to be a +1/2 hairpin (1/2 since the U-
turn is 1801 or half of 2p) and a hairpin that opens in the �x̂
direction a �1/2 hairpin. As in nematic systems,61 defects can
arise through pair creation events and be removed through pair
annihilation. Additionally, individual hairpins spontaneously
enter or leave the system from the polymer ends, explaining
why odd NH are observed (Fig. 4–6 and 7a).

5. Conclusion

This study investigated the conformation and dynamics of a
single flexible polymer suspended in a nematic liquid crystal
background, where its backbone is coupled to the local nematic
orientation. This coupling introduces anisotropy to the polymer
conformation and, if large enough, elongates the polymer.
In the weak and strong limits of coupling, the extension of
the polymer due to coupling can be described by the partition
function for independent segments. However, for intermediate
coupling, the theory fails to reproduce the observed extension
values due to formation of hairpin-like configurations along the
polymer. These hairpins act as topologically protected defects
that minimize the internal energy by being mainly aligned with
the liquid crystal and maximize entropy by moving along the
polymer backbone. We quantify the number of hairpins for each
coupling strength to demonstrate that polymer conformational
properties are characterized by the average number of hairpins.
These predictions offer a pathway for future experimental
studies to indirectly measure the coupling parameter between
suspended polymers and nematic solvents through polymer
conformation and the distribution of the number of hairpins.

The coupling leads to anisotropic diffusion of the polymer
center of mass, mainly affecting the diffusivity in the perpendi-
cular direction. Since our nematic fluid has isotropic viscosity,
this anisotropic diffusivity arises from asymmetric polymer
shapes. We employ the ellipsoidal model to incorporate this
polymer shape anisotropy into its drag coefficient, which
directly influences its diffusivity. Our results show a good
agreement with this model, confirming the shape-related
anisotropy in polymer diffusion. We demonstrate that confor-
mational effects of freely jointed polymers can be just as
significant as viscosity anisotropy. This demonstrates an inde-
pendent mechanism to engineer dynamics of composite
nematic/polymeric materials. We further show how tuning
the coupling strength can have a profound effect on hairpins
dynamics, providing a potentially powerful mechanism for
controlling the temporal dynamics of polymer configurations.

Data availability

All data needed to evaluate the conclusions in the paper are present
in the paper and appendix. Code available upon polite request.

Fig. 7 Hairpin diffusion. (a) Snapshots of hairpin diffusion. The instanta-
neous position of the hairpin colored in blue (Appendix B). (b) MSD
examples for hairpin with various coupling parameter (the colors corre-
spond to the color bar in Fig. 4). The lag time is normalized by tg, the time
for the uncoupled (k = 0) polymer to diffuse its size Rg. The dashed lines
represent the fit for diffusion coefficients. The colors correspond to the
color bar in Fig. 4. (c) Diffusion of hairpin DH normalized by the uncoupled
polymer center-of-mass diffusion D0. The solid line represents the expo-
nential fit and the inset shows the diffusivity on a semi-log axis.
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Appendices
A Nematic multi-particle collision dynamics

This study employs a nematic multi-particle collision dynamics
(N-MPCD) approach, which is chosen for to its capability to
simulate embedded particles in a fluctuating nematohydrody-
namic background. For a list of all variables introduced in the
Appendices, see Table 3.

The multi-particle collision dynamics approach consists of
two steps: the streaming step and the collision step. In the
steaming step, the position of each particle updates assuming
ballistic motion of

�r i(t + Dt) = �r i(t) + �vi(t)Dt, (20)

where�r i is the position of the particle i, t is the current time and
Dt is the time step.

The collision step is composed of two phases: (1) momen-
tum exchange and (2) orientation fluctuations.

(1) Momentum exchange. The velocity of particle i within
cell c is updated as v iðtþ DtÞ ¼ v cmc ðtÞ þ X i;c, where �v

cm
c (t) =

h�vi(t)ic is the velocity of the cell’s center of mass at time t, h�ic
represents the average within the cell c and X i;c is the collision

operator. We assume all the fluid particles have the same mass
m. A modified angular-momentum conserving Andersen-
thermostatted collision operator is employed. In the absence
of angular momentum conservation, the Andersen-thermo-
statted collision operator is X i;c ¼ v rani � v rani


 �
c
, where the

components of�v
ran
i are Gaussian random numbers with variance

kBT/m and zero mean.34,62 Although the individual velocity of
each particle is randomized, subtracting h�v

ran
i ic assures that the

center of mass velocity of the cell—and consequently the total
momentum—remains unchanged.34 To conserve angular
momentum, an additional term must be added to the collision
operator to remove any angular velocity generated by the colli-
sion operation.63 In an isotropic system, the change in the
angular momentum can rise due to the stochastically generated

velocities dL vel ¼ m
PNcðtÞ

j¼1
r j;c � v j � v ranj

� �
, where �r i,c = �r i � h�r iic

is the relative position of particle i with respect to the center of
mass of all particles in the cell. In a nematic system, changes in
the orientation will contribute additional angular velocity dL ori,
which will be elaborated below. For angular-momentum conser-
ving Andersen-thermostatted N-MPCD the collision operator is

X i;c ¼ v rani � v rani


 �
c
þ I

c

�1 � dL vel þ dL orið Þ
� �

� r i;c; (21)

where the moment of inertia tensor I
c

is for the particles in

cell c.
(2) Orientation fluctuations. Orientation of particle i updates

according to �ui(t + Dt) = cc, where cc is the nematic collision
operator acting on particles in cell c. The collision operator acts

as a rotation, altering the orientation of each N-MPCD particle
over the time step Dt. The reorientation process can be decom-
posed into a (i) stochastic contribution (d�u

ST
i /dt) and (ii) a flow-

induced contribution (d�u
J
i/dt) contributions.

(a) The stochastic random orientations are drawn from the
canonical distribution of the Maier–Saupe mean-field approxi-
mation fori(�ui) = f0 exp(USc(�ui��nc)2/kBT) about the local director

�nc with normalisation constant f0 and mean field interaction
constant U.28 The local director �nc is the eigenvector of the cell’s

tensor order parameter Q
c
ðtÞ ¼ 1

d � 1
du iðtÞu iðtÞ � 1
D E

c
corres-

ponding to the largest eigenvalue Sc for the dimensionality d
and the identity rank-2 tensor 1. The largest eigenvalue corre-

sponds to the scalar order parameter. The globally specified
nematic interaction constant U controls the strength of align-
ment between the MPCD nematogens.

(b) The flow-induced changes to orientation occur because
the MPCD nematogens respond to velocity gradients. This flow-
induced reorientation is captured through Jefferey’s equation

duJ
i

dt
¼ a u i � O c

þ l u i � E c
� u i u i u i:E c

� �h i
; (22)

for a bare tumbling parameter l and heuristic shear coup-

ling coefficient a in a flow with strain rate tensor E
c
ðtÞ ¼

rv c þ rv cð ÞT
� �.

2 and rotation rate tensor O
c
ðtÞ ¼

rv c � rv cð ÞT
� �.

2. The rotations of nematogens generate

hydrodynamic motion known as backflow, which is accounted
for by the change in angular momentum dL ori ¼

�dt gR
PNcðtÞ

j¼1
u iðtÞ � _u i

 !
, where gR is a rotational friction coeffi-

cient and _u i ¼ du ST
i

�
dt

� �
þ duJ

i

�
dt

� �
.

B Hairpin identification

To identify the hairpins, five hairpin factors are considered.

Each monomer is given a score Pj ¼
1

5

P5
n¼1

pn, where each pn

measures one of the five hairpin features. Monomers with score
Pj 4 Pcutoff = 0.5 are identified as hairpins.

Bend aligns with nematic. p1 ¼ k
j
� n c

			 			measures the degree to

which the unit curvature vector k
j
¼ t jj�1 � t jþ1j

� �.
t jj�1 � t jþ1j
		 		

for monomer j is aligned with the local nematic director. If the
segment is relatively straight, k

j
is orthogonal to �nc. However, if

there is a 1801 turn, k
j

is parallel to �nc and this factor has the

maximum value of 1.
U-turn. p2 = (�t jj�1��t j+1j � 1)2/4 assesses the degree to which

the segments after and before monomer j are antiparallel. For a
U-turn conformation p2 is close to 1; whereas, for self-avoiding
random walks, this is rarely 1.

Arm length. p3 measures the length of the two arms around
a hairpin at index j. To determine the arm length, pairs of
monomers a distance dq away from j are checked to see if they
are antiparallel. The arm length is the maximum dq for which
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they are antiparallel. It then normalizes the arm lengths by the
maximum possible number arm length lmax = min( j,N � 1 � j).

Specifically, p3 ¼
1

lmax

P
dq

Y �t jjþdq � t jj�dq
� �

, where Y(�) is the

Heaviside function. This value represents the relative length
of hairpin arms.

Relative curvature. p4 ¼ f kj
		 		. kh i
� �

measures the relative
curvature at monomer j in comparison with average curvature

along the polymer. The sigmoid function f ðxÞ ¼ x
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

caps p4 to 1. The average h�i is over the N monomers.
Persistence. The last is a measure of persistence time of a

hairpin at monomer j. To get this factor, we first check if the
monomer j was a hairpin in the previous time step. If it was, the
time possibility of being a hairpin now pt will be 1. If it was not,
then we check if it was an immediate neighbor to a hairpin. If it
was, it has pt = 1/2. Otherwise, pt = 0. Non-zero values of pt add to
persistence time Tj of being a hairpin at monomer j, Tj(t + dt) =
Tj(t) + pt. Conversely, when pt = 0, the persistence time is halved
Tj(t + dt) = Tj(t)/2. Once again, the sigmoid function ensures
values less than or equal to 1, by setting p5 = f (Tj(t + dt)).

C Hairpin tracking

To track the hairpins in time, the initial hairpins are identified
(Appendix B) and the position q(0) of each hairpin along the
backbone of the polymer is recorded. The position q is a monomer
index. In each time step t, a new set of hairpins are identified
(Appendix B) and these are checked to see which hairpins are new
and which are evolutions of pre-existing hairpins from the pre-
vious time step t � dt. If the position of any hairpin matches the
position of any hairpin from the previous time step q(t) = q(t � dt)
or if the hairpin is at an adjacent position q(t) = q(t � dt) � 1 then
the hairpin is considered an evolution of the previously existing
hairpin. If the hairpin cannot be associated to any previously
existing hairpin from the previous time step, it is considered a
newly created hairpin. In this way, hairpin trajectories q(t) can be
tracked in time (Video S4, ESI†). From these tracks, the mean-
squared displacement can be computed and the diffusion coeffi-
cient for hairpins in one dimension can be found.

D Ellipsoidal model of diffusion constants

The diagonalized resistance tensor in the drag (eqn (15)) for an
ellipsoid with an aspect ratio b is

K ¼
Kk 0

0 K?

" #
; (23)

where

Kk ¼
8

3

1� b2

2� b2ð ÞS� 2

K? ¼
16

3

1� b2

2� 3b2ð ÞSþ 2

(24)

S ¼ 2 1� b2
� ��1=2

ln
1þ 1� b2

� �1=2
b

" #
(25)

for prolate ellipsoids b o 1.64 Thus, the expected parallel and
perpendicular diffusion coefficients are

De
k ¼ kBTzk

�1 ¼ kBT

16pZrgk

2� b2
� �

S� 2

1� b2

De
? ¼ kBTz?

�1 ¼ kBT

32pZrgk

2� 3b2
� �

Sþ 2

1� b2

(26)

and their ratio is

De
k

De
?
¼ 2

1� b2
�
2

� �
S� 1

1� 3b2=2ð ÞSþ 1
: (27)

E Estimation of hairpin hopping rate

For the hairpin hopping along the polymer backbone coupled
to the nematic orientation, eqn (17) gives the hopping rate G in
terms of the energy landscape. It involves the effective drag of a
hairpin z, barrier height Eb and the second derivatives of the
potential V00 at the local minimum xa and barrier location xb.
The curvature of the local potential well at its minimum is

V 00 xað Þ ¼
d2

dy2
VNPC ¼ k; (28)

simply the second derivative of eqn (4). The curvature at the
barrier peak V00(xb) is estimated by the maximum change in the
energy versus the minimum change in angle

V 00 xbð Þ �
DVmax

Dyminð Þ2
: (29)

The maximum change in energy occurs when a bond transitions
from being fully parallel to the nematic orientation to being fully
perpendicular, DVmax = k(p/2)2/2. For the small variation in angle,
the arc length is Ds E bDymin = vDtMD, which suggests Dymin E
vDtMD/b, where v is the speed of monomers. Based on the equiparti-
tion theorem, the average energy for each degree of freedom is kBT/2

which leads to v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=M

p
, in 3D. Substituting these para-

meters in MPCD units into eqn (29) results in

V00(xb) E 902k. (30)

We estimate that the drag coefficient of a hairpin is similar to
the drag coefficient of a monomer z E 6pZs E 160. Substitut-
ing all of this into eqn (17) gives G E 0.09ke�Eb/kBT.

Finally, the barrier energy Eb must be estimated. To proceed
with this estimation, we assume a hairpin consists of two
consecutive perpendicular bonds, each forming p/4 angle with
the nematic orientation. For the hairpin to hop to its next
position, these bonds must move forward or backward along
the polymer backbone. The energy cost of this process is

Eb �
1

2
k

p
2

� �2
�2 1

2
k

p
4

� �2� �
¼ k

p
4

� �2
� 0:62k: (31)

These rough values can be substituted in eqn (17) to approximate
the hairpin diffusion constant, and the prediction is found to be
consistent with the measured diffusivity (eqn (19)).
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F Variable lists

Table 1 Variables used in the numerical model

Parameter Description Units Value

a MPCD cell size, unit length [Length] 1
kBT Thermal energy, unit energy [Energy] 1
m MPCD particle mass, unit mass [Mass] 1
t0 Derived unit of time a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
1

U Inter-molecular orientation interaction strength kBT 6.0
Dt Streaming step duration t0 0.1
�r Particle position a —
�v Particle velocity a/t0 —
�u Particle orientation — —
�n Director — —
l Bare tumbling parameter — 2
a Shear susceptibility — 0.5
gR Rotational friction kBTt0 0.01
N Degree of polymerization — 20
i, j, l Particle indices — —
c Cell index — —
M Monomer mass m 10
X MPCD collision operator — —
V Total potential of a monomer kBT —
VFENE Finitely extensible nonlinear elastic (FENE) potential kBT —
kFENE FENE strength kBT/a2 120
r0 FENE equilibrium bond length a 1
VLJ Repulsive Lennard-Jones (LJ) potential kBT —
s Monomer diameter a 1
e LJ strength kBT 1
sCO LJ cutoff distance a

ffiffiffi
26
p

s
VNPC Nematic–polymer coupling potential kBT —
�t Monomer–monomer tangent — —
k Nematic–polymer coupling constant kBT (0,. . .,20)
y Angle between polymer tangent and local director [Radians] —
t Torque kBT —
dy Change in nematic orientation [Radians] —
b Average bond length a 0.89 � 0.02
DtMD MD time step duration t0 0.002
L System length a 30
R Confining cylinder radius a 10

Table 2 Variables used in results

Parameter Description Units Value

G Gyration tensor of polymer a2 —

�r cm Polymer center of mass position a —
Rg Radius of gyration a —
rg Normalized radius of gyration — —
1 Identity rank-2 tensor — —
b = Rg,>/Rg,8 Aspect ratio — —
�Re End-to-end vector a —
r = Re/Nnb Normalized end-to-end distance — —
n Scaling exponent of polymer — 3/5 (SAW), 1 (rod)
Z1 Partition function for a polymer segment — —
f,y Azimuthal and polar angles [Radians] [0,2p], [0,p]
K = �kb/(2kBT) Dimensionless coupling
NH Number of hairpins — [0,13]
Rrod ¼ Nb

� ffiffiffiffiffi
12
p

Radius of gyration for a rod with N monomers a —

Rcoil ¼ RSAW

� ffiffiffi
3
p

Contribution of one component to the radius of gyration for
a self-avoiding random walk (SAW)

a —

RSAW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25=176

p
bN3=5 Radius of gyration for SAW a —

w2 Reduced chi-squared — —
d Dimensionality — [2,3]
D Diffusion coefficient a2/t0 —
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