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A multi-body finite element model for hydrogel
packings: linear response to shear†

Ahmed Elgailani * and Craig E. Maloney

We study a multi-body finite element model of a packing of hydrogel particles using the Flory–Rehner

constitutive law to model the deformation of the swollen polymer network. We show that while the

dependence of the pressure, P, on the effective volume fraction, f, is virtually identical to a monolithic

Flory material, the shear modulus, m, behaves in a non-trivial way. m increases monotonically with

P from zero and remains below about 80% of the monolithic Flory value at the largest P we study here.

The local shear strain in the particles has a large spatial variation. Local strains near the centers of the

particles are all roughly equal to the applied shear strain, but the local strains near the contact facets are

much smaller and depend on the orientation of the facet. We show that the slip between particles at the

facets depends strongly on the orientation of the facet and is, on average, proportional to the

component of the applied shear strain resolved onto the facet orientation. This slip screens the stress

transmission and results in a reduction of the shear modulus relative to what one would obtain if the

particles were welded together at the facet. Surprisingly, given the reduction in the shear modulus

arising from the facet slip, and the spatial variations in the local shear strain inside the particles

themselves, the deformation of the particle centroids is rather homogeneous with the strains of the

Delaunay triangles having fluctuations of only order �5%. These results should open the way to

construction of quantitative estimates of the shear modulus in highly compressed packings via mean-

field, effective-medium type approaches.

I. Introduction

Particles made of hydrogels – chemically cross-linked polymeric
materials which swell when they absorb water – are important
in industries such as pharmaceuticals, bioengineering, agricul-
ture, food science, and cosmetics.1–4 Owing to their softness
and the in situ tunability of their size via controlled swelling,
they have also been used more recently as a test bed for basic
ideas in the physics of jamming and the glass transition.5–11

The basic statistical mechanical description of the mechanical
properties of macroscopic, monolithic pieces of hydrogel mate-
rial goes back to Flory and Rehner,12–15 however, the properties
of suspensions or packings of particles made out of the hydro-
gel are much more subtle and have been the subject of active
research only over the past couple of decades.

Typically, in experiments, the particles in a suspension are
initially allowed to freely swell at low number density, then,
once fully swollen, are subjected to osmotic confinement with a
membrane11,16,17 or to centrifugation,18 forcing the swollen

particles into persistent contact and making a jammed solid
where the particles are no longer free to diffuse and pass each
other without incurring an energetic penalty associated with
deformation of the polymer network. At low degrees of con-
finement, the particles remain essentially spherical, and con-
tacts between them are only slightly deformed. The mechanics
and energetics of the interactions in this regime should be
reasonably well described by standard Hertzian contact
mechanics19 treating one contact at a time resulting in a pair-
wise description of the energy of the whole system. However,
as the confinement increases, the inter-particle contacts will
develop into curved facets,20,21 and, at large enough confine-
ment, the void space with pure solvent will completely disap-
pear altogether. In foams and emulsions at such large particle
volume fractions, it is known that not only does linear contact
mechanics fail to describe the interactions at a given contact,
but even worse, pairwise descriptions of any kind become
qualitatively inaccurate in this regime,22–24 and there is no
reason to think that the micro gel packings of interest here will
be any different. One must consider in detail the deformation
inside the particles. It is this strongly confined, fully-faceted,
regime which is of primary interest to us here.

Several groups11,16,17 have measured the elastic modulus,
G, of highly compressed microgel packings under osmotic
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confining pressure, P, at increasing nominal volume fraction,
f. In all cases, one observes a rapid increase of P and G from,
essentially, zero as the particles are first forced into contact at
the jamming transition when f reaches the random close
packing point fJ. The observed behavior of P and G is
qualitatively consistent with the jamming picture25 where P
and G are both zero below the jamming point, fJ, and, near
jamming, scale as non-trivial power of df = f � fJ. Precise
scaling laws for P and G are difficult to obtain in experiments,
but in all experiments, there is an obvious and dramatic onset
of both P and G near a critical f value. At higher f, away from
jamming on approach to the fully faceted regime, the situation
becomes more complicated. Cloitre et al.,11 have shown that
there is a transition from a more pronounced to a less pro-
nounced dependence of G on f and argued that it occurs at the
point at which the assembly becomes fully faceted with no void
regions of pure solvent remaining. Liétor-Santos et al.17 showed
that G, P, and, the compression modulus, K, all scaled with Kp,
the compression modulus of an isolated particle osmotically
confined to the same average particle size as in the packing, so
that G/Kp, K/Kp, and P/Kp were all universal constants in the
compressed packing independent of the degree of compression
of the packing or the degree of crosslinking of the particles.
Menut et al.16 have studied a variety of particles with different
cross-linking densities and sizes. They argued that sufficiently
far above the jamming point, the density dependence of the
modulus followed the trend that would be expected for a
monolithic Flory material.12,13 Here, we find, what is perhaps
the simplest non-trivial outcome one could have expected: a
pressure vs. f behavior almost precisely the same as the
monolithic Flory material and a universal shear modulus vs.
pressure curve for systems with different cross-linking density
when the modulus and pressure are both scaled by the Flory
pressure, NkT, where N is the density of cross-links in the dry
reference state.

II. Model

Previous modeling work has proceeded along many fronts.
Many groups assume pair-wise additive interactions between
particles even in a very high-density regime far from jam-
ming,20,26–29 sometimes modified to attempt to account for f
dependent effective interactions,24,30–35 which are, however,
still pair-wise contact interactions. As we mention above, this
approach is known to fail in foams and emulsions due to strong
many-body effects in the particle–particle forces,24 and we
would expect it to fail as well here for the microgel packings
in the high f, fully faceted, regime. More realistic and appro-
priate models take into account the nature of the deformation
of the polymer network itself.21,27,36–39 Nikolova et al.39 studied
a bead-spring coarse-grained model with dissipative particle
dynamics (DPD) to model both the elasticity of the gel network
and the dynamics of solvent expulsion out of the network as the
packing is confined. They allowed their particles to swell and
subjected them to isotropic osmotic confinement. They found

that, above f = 1, K/Kp approached a constant value of about
0.8, in agreement with the experiments of Liétor-Santos et al.,17

but they did not study the shear modulus.
Here, we take a different approach. Rather than using a

bead-spring model to explicitly represent the gel network, we
represent the gel network as a homogenized continuum using
the Flory–Rehner constitutive law. This approach is standard
in the solid mechanic’s community where various non-linear
elastic properties of macroscopic swollen gels are of interest,40–43

however, perhaps surprisingly, it has not been applied to particle
packings. The model can easily incorporate spatial variations in
local cross-linking densities within a particle which may arise in
various particle synthesis procedures (e.g. a hard, moderately
swollen, core with high cross-link density enclosed by a soft, highly
swollen, corona with low cross-link density), but in this prelimin-
ary work, we assume a homogeneous cross-linking density across
the particle, and we assume the same cross-linking density for
large and small particles. The main disadvantage of our approach
is that we cannot realistically study the fluid dynamics of solvent
uptake/expulsion from the network and are restricted to compres-
sion and shear rates which are slow enough that we can assume
the hydrodynamic forces generated by solvent flows are negligible.
However, as we are primarily interested in the quasi-static regime
in this work where the packing is sheared slowly enough to allow
the fluid to be fully expelled/absorbed before further shearing, we
are not adversely affected by this limitation. Another potential
disadvantage is that we are not able to capture inter-digitation of
polymer segments across inter-particle facets.21,39,44,45 However,
the effects of inter-digitation are largely uncontrolled in bead-
spring models; this will give rise to tangential forces at the facets in
a way that is not particularly well controlled or calibrated. In our
opinion, it is best to study and characterize a model which at first
excludes these effects explicitly and only later introduces them in a
controlled way. Furthermore, in ref. 39, the authors tune the
properties of their bead-spring network to make sure that it
behaves mechanically as a Flory solid, whereas here, we simply
start with a Flory solid by construction.

Flory’s constitutive law is governed by a total free energy
density, Wtot, which gives the free energy per unit (unswollen
reference) volume where Wtot = We + Wm receives independent
contributions from non-linear elastic deformation of the poly-
mer network, We, and from the free energy of mixing of the
polymer and solvent, Wm. We have, for We and Wm,12–15,40

We ¼
NkT

2
FabFab � d � 2 logðJÞ
� �

(1)

Wm ¼
kT

O
ðJ � 1Þ log

J � 1

J

� �
þ w
J

� �
(2)

where N is the number of cross-links per unit volume in the dry
reference state, k is Boltzmann’s constant, T is the temperature,
Fab = dab � qaub is the deformation gradient where u is the
displacement of the polymer network away from its unswollen
reference configuration, d is the dimension of the system, J is
the determinant of Fab (so that J gives the volumetric expansion
at a given point relative to the dry reference and J1/d = l gives the
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linear stretch ratio), O is the volume of a solvent particle (which
is taken to be constant) and w gives the energetic contribution
to the free energy of mixing. In this preliminary work, we
consider entropic swelling only and set w = 0, so there is one
and only one dimensionless parameter in the model: NO, the
number of cross-links in the dry reference configuration per
unit solvent particle volume. In the case of strongly hydropho-
bic energetics (large w), the interplay between stretching of the
network and demixing of the polymer from the solvent can lead
to a non-monotonic pressure vs. volume fraction dependence
which could, in principle, affect the mechanics of the assembly.
However, this non-monotonic pressure dependence occurs in
the tensile regime of stresses and would not qualitatively affect
the main results in our study. For large NO the particles will be
stiffer and undergo less free swelling, while for small NO, the
particles will undergo more free swelling and be softer. If we
consider the isotropic swelling case with a linear stretch factor,
l, we have, Fab = ldab and J = ld so FabFab = dl2 = dJ2/d. The
osmotic pressure, P, is simply the derivative of the free energy

with respect to the logarithm of the volume, P ¼ J
@W

@J
, so

P
NkT

¼ J2=d � 1
� 	

þ 1

NO
ð1þ J log½ðJ � 1Þ=J�Þ (3)

The degree of free swelling is determined by setting P = 0
and solving for the equilibrium, J0. J0 will depend on NO, with
larger NO (more cross-linking) giving less unconstrained
swelling.12–15,40 We study three different NO values: 1/20,
1/133, and 1/754, and solving for P = 0 gives: J0 = 4.00762,
8.99301, 20.2519 respectively. That is: our least densely cross-
linked (softest) particles freely swell to roughly 20 times their
dry area, while our most densely cross-linked (hardest) particles
freely swell to roughly 4 times their dry area.

We simulate the system using standard finite element
method (FEM) techniques using constant strain triangle (CST)
elements to mesh the particles46 and use a simple gradient
descent to re-equilibrate the system. We use a 50 : 50 mixture of
two species of circular particles with the ratio between the radii
equal to 1.4.25 The disks are initialized on a square grid,
allowed to swell freely, and then slowly compressed.

To enforce impenetrability constraints, we simply introduce
a strong power-law repulsion between surface nodes of oppos-
ing particle FEM meshes: Vij = V0(rij/R)�a where rij is the
distance between the surface nodes on opposing particle
meshes, R is the length-scale of the repulsion, V0 is the energy
scale of the repulsion, taken here to simply be NkT, and a = 12 is
an exponent which is chosen to be large enough that it prevents
inter-penetration and does not otherwise affect the results.
To avoid artificial interlocking of surface nodes and the result-
ing tangential forces, we choose a lengthscale for the power-law
repulsion which is roughly 6 times the surface node spacing
in the dry reference mesh, and we find that this sufficiently
suppresses tangential traction forces at the facets. Because of
the stiffness of the surface repulsion, the surface interactions
do not contribute significantly to the overall energy or stress, so
we neglect them when reporting stresses and moduli. However,

the numerical scheme results in a skin at the facets between
the surface nodes which has a constant size which does not
change as the packing is subjected to contraction of the space.
This results in a larger and larger fraction of the space being
taken up by the spurious skin as the system is compressed.
To compensate for this artifact, we define the Cauchy stress,
whose trace is the pressure, as the derivative with respect to an
infinitesimal strain increment of the total energy of the
deformed elastic network divided by the area occupied by the
gel excluding the area of the skin region. We have checked that
the contribution of the power-law repulsion to the total energy
is negligible as long as the exponent is chosen to be sufficiently
large. We similarly define f = J0/hJi as the ratio of the total
freely-swollen particle area to the current total particle area
occupied excluding the skin. This definition of f – which is,
by construction, greater than or equal to 1 for compressed
particles – is somewhat un-natural near the jamming onset
where one would want to divide the freely swollen particle
volume by the area of the simulation cell rather than just the
area occupied by the polymer network. To measure f = J0/h Ji
in an experiment, one would need to have an independent
measurement of the pore volume in the sample to infer the
current total particle volume, but, nevertheless, it is the natural
quantity to use in the model to make a direct connection
between the mechanical response of the packing and the
mechanical response of the equivalent monolithic continuum.

III. Results

In Fig. 1, we show an image of the local pressure in units of NkT
for a typical system of 16 particles with NO = 1/133 at a nominal
f = 1.73 which is in the fully faceted regime with no remaining
voids of pure solvent. Each triangular element in the FEM mesh
is colored according to its pressure (with the standard solid
mechanics convention that compressive stresses are negative).
We observe some high-frequency oscillations from element to
element, but we have checked that these are suppressed using
higher-order finite element schemes and do not affect any of
the main results of this work. Some general trends can be seen
here which are observed in other members of the ensemble and
at various other NO and various other f. (i) Small particles tend
to have higher pressure than large particles. (ii) Pressure tends
to be larger near the centers of facets than near the facet
junctions. (iii) Facets between large and small particles tend
to be convex on the small-particle side and concave on the
large-particle side: that is, the small particles tend to protrude
into the large ones. (iv) Particles with fewer facets tend to be at
larger pressure and vice versa. For instance, particle 14, a small
particle which has four neighbors, is at a larger pressure than
the other small particles which have 5 or 6 neighbors, while
particle 10, a large particle which has eight neighbors, is at a
smaller pressure than the other large particles which have 7 or
6 neighbors.

In the inset of Fig. 2, we show the pressure, P, vs. f (recall
the definition of f = J0/J excludes regions of pure solvent).
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The results are for an ensemble of 36-particle systems. The
symbols represent the pressure computed in the actual packing,
and the curves simply represent the pressure for an isotropic
monolith of Flory material as computed from eqn (3) at the given
J = J0/f. The agreement is striking! The pressure field inside the
particles is inhomogeneous: it is large near the facets and smaller
near the vertices in the facet network with overall fluctuations of
order tens of percent. Yet despite this inhomogeneity, the spatial

average of the pressure is very close to that of the isotropically
confined Flory monolith at the same density as the average density
of the packing. There is no fundamental reason why this relation
must be an exact identity, and we do see deviations from the
monolithic result of the order of a few percent. It is a manifestation
of the fact that the distribution of local J values has a width that is
small relative to its average and that the P(J) function from eqn (3)
varies relatively slowly on that scale so that hP(J)i E P(hJi).

The pressure diverges locally as J - 1 from above, and this
sets an upper bound on f at fmax = J0 as the solvent is
completely expelled from the system. Accordingly, we see P
begin to diverge first for the system with the highest NO and
last for the system with the lowest NO. Our numerical scheme
becomes unstable at a pressure of about P = 10NkT for all
systems, so we are able to reach slightly higher f for the
systems with lower NO.

To measure the shear modulus, we make a small axial
deformation to all FEM nodes and the periodic boundaries
with extension along the horizontal, x, and contraction along
the vertical, y: x - eex E (1 + e)x,y - e�ey E (1 � e)y,
re-equilibrate, and then measure the tangent modulus as m =
Ds/e where Ds is the change in the shear component of the
Cauchy stress. Since we hold the cell in a square shape during
the initial swelling of the circular particles, there will be a
random residual shear stress which is distributed normally
about zero in our ensemble. It is very small compared to m and
does not affect the results.

In the main plot of Fig. 2, we show the shear modulus, m, vs.
the osmotic pressure, P. For a monolithic Flory material in 2D,
m = NkT regardless of NO and completely independent of P
(and/or f). For our particle packing, the curves all start at zero
near the jamming point at P = 0 and increase monotonically
remaining below the monolithic Flory value. Strikingly, the
curves collapse, indicating that the shear modulus of the
packing is a function of the pressure alone and is independent
of the cross-linking density (after scaling by NkT). This obser-
vation for the shear modulus is in a similar spirit to the
observation of Liétor-Santos et al.17 that the pressure and shear
modulus scale like the single-particle compression modulus,
but must differ in detail as we argue below.

In Fig. 3(a), we show a typical NO = 1/20 system with 36
particles at f = 2.09 subjected to a small strain step as
described above. We show only the non-affine component of
the nodal displacements. In Fig. 3(b), we show the combination
of the components of the gradient of the displacement corres-
ponding to the applied strain: (qxux � qyuy)/2 normalized by the
applied strain so that a value of 1 indicates that the material is
locally shearing precisely according to the globally imposed
shear strain. The strain is quite inhomogeneous across the
particles. In the centers of all the particles, the shear strain is
approximately equal to the globally imposed shear strain, while
the deformation near facets and vertices depends on the
orientation. Facets that are roughly vertical or horizontal have
essentially no relative displacement, while facets that are
roughly diagonal across the cell have a significant amount of
relative tangential motion indicating sliding along those facets.

Fig. 1 Local pressure, P, in units of NkT for a typical system of 16 particles
with NO = 1/133 at a nominal f = 1.73. Particles are labeled with a unique
identification number for discussion in the text.

Fig. 2 Main: Shear modulus vs. osmotic pressure, P, for various cross-link
densities. The red line is the shear modulus of a two-dimensional mono-
lithic Flory material. Inset: P/NkT vs. f. Dots are data from the FEM
simulation. Solid lines are for a monolithic Flory solid.
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In Fig. 4, to illustrate this point, we zoom in on the facet
between particles 25 and 31, since this facet is nearly vertical.
For ease of discussion, we label the triple junction with particle
26 on top and with particle 30 on the bottom as T and B
respectively. Since the facet is a contact between a large and
small particle, it has a slight curvature toward the small
particle, but this should not significantly affect the response.
The facet is nearly vertical, and there is essentially no non-
affine displacement on either side. However, the displacement
on particle 26 at the T vertex is downward, and the displace-
ment on particle 30 at the B vertex is upward, so the facet is
shortening. As particles 26 and 30 are advancing into the facet,
the strain near their vertices at the triple junctions is nearly zero:

green in the color scheme of the image. On the other hand, the
material near the four vertices on particles 25 and 31 at the T and B
triple junctions is very strongly sheared – with local shear strains
greater than the applied shear strain – to accommodate the
shortening of the facet. The two other facets connected to T and
the two other facets connected to B are all oriented approximately
30 degrees from horizontal and have a significant amount of
slipping. Since the tangential traction forces at the slipping inter-
face are zero, and the shear stress must be zero along the facet, the
slip results in a screened region where the strains in the particles
are quite small and nearly zero at the facet.

The same scenario plays out in reverse for facets which are
oriented horizontally. The result is that all particle vertices in
the packing whose opposing facet is nearly horizontal or
vertical should have a very low strain in their neighborhood,
and a quick scan of the packing shows this to be true.
For example, the facet between particles 34 and 35 is nearly
horizontal, so it is lengthening, and the corresponding vertices
on particles 28 and 4 have a very low shear strain on them: the
fact that particle 28 has 5 neighbors and is compressed into a
pentagon is incidental and has little impact on this result.

In Fig. 5 and 6, we show the slip and strain on the facets as a
function of the facet angle. We approximate the facet network
as polygonal and identify the vertices of the polygonal net-
work with the surface nodes of the mesh located at the triple
junctions. Then, to define the facet slip, o, we simply take the
difference in the average tangential component of displace-
ment on either side of the facet. Similarly, to define the facet
strain, eL, we take the difference in the component of the end-
to-end displacement along the end-to-end separation and
divide by the current facet length. What we see agrees remark-
ably well with the anecdotal description of the displacement
fields in Fig. 3 where facets along the box diagonals slip
significantly but neither shorten nor lengthen while facets
along the axes do not slip but shorten (the vertical ones) or
lengthen (the horizontal ones). In fact, we can make some
simple assumptions about the deformation kinematics. If we
assume the slip on a facet is equal to the locally resolved

Fig. 3 (a) Non-affine displacement field normalized by the imposed shear
strain. The imposed shear strain is axial with vertical contraction (horizontal
extension) and area-preserving at f = 2.1 for a system with cross-linking
density NO = 1/20. Arrows are drawn to scale to precisely give the non-
affine displacement per unit applied strain. (b) Local shear strain, (qxux �
qyuy)/2, scaled by the imposed shear strain.

Fig. 4 Closeup on the facet between particles 25 and 31 from Fig. 3. The
triple junction with particle 26 on the top and 30 on the bottom are labeled
T and B respectively for ease of discussion in the text.
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transverse component of the applied displacement gradient:
o = n̂at̂bqaub where qaub is the imposed deformation and n̂ and t̂
are the unit normal and tangent to the facet, then we would get:
o = e sin(2y) where y is the angle of the tangent. For the strain,
if one imagines that the triple junctions in the facet network
deform affinely with the imposed shear, one would expect that
eL = t̂at̂bqaub = e cos(2y). We see that the data follow that trend
remarkably well regardless of f with no discernible trend
with f. Our argument seems to slightly overestimate the slip
and underestimate the strain, but all things considered, this
prediction with no adjustable parameters seems to work out
well: the deformation of the facet network is essentially affine
and equal to the homogeneously imposed deformation.

In Fig. 7, we show the strains associated with the motion
of the particle centroids. We define the strain as piecewise

constant on the Delaunay triangulation47 of the contact net-
work using linear interpolation of the three centroid displace-
ments. What we see is that the resulting deformation of the
particle centroids is quite homogeneous despite the large
inhomogeneities within any given particle. It is hard to draw
any statistical trends or make correlations between the Delau-
nay strain and any obvious geometrical or topological proper-
ties of the packing.

IV. Discussion and summary

We have shown here that the microgel packings behave in one
of the simplest ways one could have imagined: the pressure has
a density dependence as if it were a monolithic Flory material,

Fig. 5 (a) Facet slip, o (defined in text) scaled by applied strain e vs. facet
angle y for three different NO systems at f = 1.5, 1.9 and 2.1. (b) Facet slip in
real space with arrow length indicating the amount of slip with red and
blue indicating counter-clockwise and clockwise vorticity respectively.

Fig. 6 (a) Facet strain, eL (defined in text) scaled by applied strain e vs. facet
angle y for three different NO systems at f = 1.5, 1.9 and 2.1. (b) Facet strain
in real space with bar length indicating the amount of relative lengthening
(red) or shortening (blue).
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while the shear modulus, although it has a non-trivial f
dependence and starts from zero at the jamming point, is a
universal function of the dimensionless pressure, P/NkT, inde-
pendent of cross-linking densities. The m/NkT vs. P/NkT curve
shows a transition from a more strongly pressure-dependent
regime at low pressure near jamming onset to a much weaker
pressure dependence in the fully-faceted regime and is consis-
tent with the conjecture in Cloitre et al.11 that the transition to
the weaker concentration dependence of G occurred at the
onset of full-faceting where solvent-pure void space completely
disappeared. This is also completely consistent with the argu-
ments of Menut et al.16 who claimed that their systems showed
monolithic Flory behavior at high density (although we point
out that the scaling behavior for a Flory monolith in 3D is m B
f1/3 rather than the m B f1 suggested in that work).14,15

We note that our definitions for f and P are based on the
notion of excluding the artificial skin region which results as an
artifact from our algorithm that enforces the impenetrability
constraints, and it was necessary for us to make these correc-
tions to get precise agreement with the monolithic Flory curve
at all f. In order to make a closer comparison with experiments
to see whether the P vs. f behavior is a also described by a
monolithic Flory material, one would want to independently
measure the volume of pure solvent in a packed sample (which
would vanish in the fully-faceted regime) and remove this
volume when calculating P and f as we did here in the model.
However, in experiments, there is an extra complication arising
due to the uncertainty in defining a particle volume even in the
case of freely swollen, highly dilute systems where the edges of
the network consist of a corona of dangling segments. Despite
this complication, one might still hope to recover the mono-
lithic Flory behavior in the fully faceted regime where the
current total particle volume is simply equal to the system
volume and there is no pure-solvent region to correct for.
In fact, we now discuss how the P/Kp vs. f results in ref. 17,

may be in agreement with monolithic Flory behavior. At face
value, our results would seem to be inconsistent with Liétor-
Santos et al.17 where P became independent of f when scaled
by the particle compression modulus, Kp, rather than the Flory
modulus, NkT. However, in Fig. 8, we plot the compression
modulus, K, vs. the pressure, P, for our three NO values for a

homogeneously compressed Flory solid where K ¼ J
@P
@J

. The

compression modulus for the zero pressure freely swollen state
is around Keq E 2NkT and has only a weak dependence on
cross-linking density NO. We see that P/K does not vary
dramatically over the pressure range, and for the two more
weakly cross-linked systems, P/K E 0.4 above about P = 4NkT.
Since our P vs. f curves for the packing are virtually identical to

Fig. 7 Shear strain of the particle centroids scaled by the applied strain.
The strain is computed for each Delaunay triangle in the contact network
by linear interpolation. Slip vectors are reproduced from the figure for
convenience 5.

Fig. 8 (a) Compression modulus, K/NkT, vs. osmotic pressure, P/NkT, for
a monolithic Flory material in the range of pressures of interest in this work
0 o P/NkT o 10. (b) Their ratio, P/K, vs. P/NkT.
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the monolith, this means that our results are roughly consis-
tent with ref. 17 where P/K was roughly constant above f = 1.
Our results for the shear modulus, in distinction with the
pressure and compression modulus, are not as easy to reconcile
with ref. 17. If we were to scale the shear modulus by K rather
than NkT, because of the NO dependence of K illustrated in
Fig. 8, we would break the good collapse obtained in Fig. 2.
Furthermore, the f-independent values of G/Kp obtained in ref.
17 are of the order of a few percent, whereas here, our values of
m/NkT are around 0.8 for most of the pressure range of interest;
our values for m/K would vary much more strongly with pressure
than our m/NkT do.

What we’ve shown here is that, once the system is in the
fully faceted regime, the kinematics of shear deformation
becomes largely insensitive to the compression. The vertices
in the facet network, on average, follow the imposed homo-
geneous deformation. The resulting slip at the facets results in
a reduction of the modulus of the packing away from the
monolithic Flory value by some tens of percent but remains
of the order of the monolithic value. In the future, it would be
important to use the kinematic information about the affine
motion of the facet-vertex network to try to construct quantita-
tive estimates for the modulus reduction away from the Flory
value. Since each particle is assumed to be homogeneous, the
result of imposing a homogeneous deformation on the parti-
cle’s boundary would be a homogeneous deformation of the
particle interior, and the result would be a recovery of the full
Flory shear modulus as if the particles were welded together at
the facets. So it seems, going beyond considering the average
kinematic behavior of the facet network would be necessary to
obtain any corrections to the Flory shear modulus.

In this work, we made many simplifying assumptions.
We assumed that: (i) the particles were homogeneous disks,
(ii) the free energy of mixing was completely entropic with w = 0,
(iii) the facets were free of friction and neglected any possible
effects of inter-digitation of the polymer networks across the
facets, (iv) the deformation was slow enough that kinetics and
viscous flow effects were negligible and that the solvent was
able to freely flow into and out of the polymer network with no
resistance (v) the particles were large enough that Brownian
effects were negligible, (vi) the system was 2D. It will be useful
to go beyond these assumptions in future models. In particular,
interdigitation and/or roughness across the facets – which
could be accounted for, in a model like ours, through a Coulomb
friction term – might suppress the slipping we see at the facets and
bring the shear modulus up toward the monolithic Flory value.
It would be interesting to account for this quantitatively. It would
also be important to know how the many-body interactions
studied here at large volume fraction affect the plastic yielding
behavior at large strains and the glass transition for the Brownian
case, and, more generally, the overall rheological response at
arbitrary strains and strain rates. Despite these interesting future
directions for study, our explanation for the corrections to the
monolithic Flory behavior induced by the affine facet slip provides
a starting point for future quantitative models of the mechanical
response of these packings.

Data availability
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23 D. Weaire, R. Höhler and S. Hutzler, Bubble-bubble inter-
actions in a 2d foam, close to the wet limit, Adv. Colloid
Interface Sci., 2017, 247, 491–495. Dominique Langevin
Festschrift: Four Decades Opening Gates in Colloid and
Interface Science. Available from: https://www.sciencedir
ect.com/science/article/pii/S000186861730204X.
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