Volume 21
Number 6
14 February 2025
Pages 1029-1242

Soft Matter

rsc.li/soft-matter-journal

—~ A\ e K » — ~
\ ) —
g n - v ¥ > o )
- p P \ >
> - . - : -
u Ny ) o« | b
2% . G pe — - %) > o
- . P N Ry
- 5
v T B |
- o \ , @ ]
B y 5
Y o ey =y
pra—— }
> N | M
-
N ) \
y
y W J— N
. Y.
4 b
1‘ \ - . —
— ' . 7’ ’
v - ' ’ y N
- . i
-t 2 1‘ e,
4 )
4 < L ! . { ! ¥ - _ .
J 3 { \ N
), .
v ,J\ @ - \ |
Y | L . -
.
i : 7 |
‘ . 4 = » 7 \ ) )
Y. = g \-/ ) A { ) s
et " - / - ‘\ . 1 R 4 .
» ) <
> ’ P
3 ¥4 - B A\
\ +

ISSN 1744-6848

™ ROVALSOCETY  roen

“ OF CH EMISTRY Juan Pablo Miranda, Demian Levis and Chantal Valeriani

Collective motion of energy depot active disks ANNIVERSARY



¥® ROYAL SOCIETY
PP OF CHEMISTRY

Soft Matter

View Article Online

View Journal | View Issue

W) Cheok for updates Collective motion of energy depot active disks¥

Juan Pablo Miranda, (2 *3° Demian Levis () *“° and Chantal Valeriani {2 2°

Cite this: Soft Matter, 2025,
21, 1045
In the present work we have studied collectives of active disks with an energy depot, moving in the
two-dimensional plane and interacting via an excluded volume. The energy depot accounts for the
extraction of energy taking place at the level of each particle in order to perform self-propulsion,
included in an underdamped Langevin dynamics. We show that this model undergoes a flocking
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propagating structures. Large density bands disappear as the activity is further increased, eventually

reaching a homogeneous polar state. We unravel an effective alignment interaction at the level of two-
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1 Introduction

Active matter systems, composed of a collection of interacting
self-propelled units, have been the focus of a great deal of
research efforts over the last decades.’™ Given that they are not in
equilibrium, these systems exhibit a number of large-scale phe-
nomena, not detected in equilibrium systems. A salient example is
the emergence of collective motion, widely observed both in the
living world and in synthetic realizations of active particles
designed in the laboratory.*” Collective motion has been reported
in a broad range of time and length scales, ranging from systems
made of 1077-10°® m objects (e.g actomyosin networks,’®
bacteria’® and colloidal suspensions'®'") up to systems composed
of agents of the order of ~1 m in size (e.g. animal groups'?).

To gain a theoretical insight into this seemingly common
feature displayed by a large variety of active systems of self-
propelled units, simple models have been proposed, such as
active Brownian particles," the Vicsek model'* together with
their continuum hydrodynamic descriptions.”*"” Spherical
active Brownian particles have been shown to exhibit phase
separation even when interacting only repulsively. This phase
separation is induced by self-propulsion and appears in dense
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particle collisions that can be controlled by activity and gives rise to flocking at large scales.

enough situations.'”” Whereas the Vicsek model describes the
behaviour of self-propelled aligning particles, propelled at a
constant speed and solely interacting via velocity-alignment
interactions, being ferromagnetic/polar or nematic.> In two
dimensions, a collection of polarly aligning self-propelled parti-
cles exhibits a flocking transition towards a collectively moving
state, the emergence of which is typically accompanied by large
density heterogeneities in the form of traveling bands.'®"’
Beyond the ideal case in which particles are just point-like,
aligning particles have also been demonstrated to undergo a
flocking transition, with the emergence of band-like patterns,
even when repulsive interactions are taken into account.*?*
These works suggest that neither excluded-volume interactions
nor collision rules are enough to change the phenomenology of
the order-disorder transition in the Vicsek model. Flocking can
also arise from particles’ shape (e.g. self-propelled rod-like
particles aligning upon collision***®) or from collisions between
spherical particles which are not momentum conserving, such as
vibrated polar grains®*?® (the latter are typically modeled as
particles ‘self’ re-orienting their direction of self-propulsion with
the one of their instantaneous velocity**>?).

Although self-propulsion needs an energy intake from the
environment (or from an internal fuel) to convert it into motion
in the presence of dissipation, Vicsek-type models and other
simple active particle descriptions do not consider it explicitly.
These models describe a system of active particles at a larger
mesoscopic scale, somehow coarse-graining the microscopic
details of the self-propulsion mechanism. One of the earliest
models of active particles®® explicitly considering an internal
energy intake leading to self-propulsion is the so-called energy
depot model.>* The dynamics of such an energy depot active
particle (EDAP) model has been thoroughly studied in the past,
mostly considering medium-mediated inter-particle interactions®®
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or their dynamics in an external potential.’*® This model has
proven useful for a stochastic thermodynamic description of active
matter,>*® even though most authors have used active Brownian
particles*** and active Ornstein-Uhlenbeck particles**** for this
purpose.

As far as we know, the collective behavior of dense suspensions
of EDAP with excluded volume interactions has not been explored
so far. Other works have focused on modifying the model
considering different assumptions, leading to substantial differ-
ences in diffusivity and transport properties, such as the effect of
cross-correlated noise,">*® a braking mechanism,"”*® the cou-
pling of a load to an energy depot particle*® and even their motion
in disordered media where their propulsion is coupled to the
properties of the latter.>

In the present work, we consider repulsive spherical EDAP
(disks) in two dimensions. We show that the mere competition
between crowding effects and self-propulsion is enough to
trigger a flocking transition, exhibiting some of the key features
of Vicsek model’s phenomenology, namely band formation and
giant number fluctuations. As compared to suspensions of active
Brownian particles, where motility-induced phase separation is
observed,'” our system of repulsive spherical EDAP does not
show evidence of such a phenomenon. Moreover, ABP suspen-
sions undergo fluid-hexatic and hexatic-solid transitions at
higher densities.>® Here we focus instead on the emergence of
collective motion in a system of repulsive, non-polar, spherical
EDAP, putting aside the investigation of the phase transitions
associated with 2d melting at larger densities.

In the ‘density-activity’ plane plotted in Fig. 1, we report the
value of the global polar order parameter for different state
points, using a color code ranging from yellow (high polarity) to
blue (low polarity). Each state point (represented by a circle)
corresponds to an independent numerical simulation of a
system with N = 2000 disks. Beyond a given threshold in density
and/or activity, the system sets in a collectively moving state.
The transition towards such a state is accompanied by the
formation of large density bands that disappear as the activity
is further increased, eventually reaching a homogeneous polar
state. To understand this behaviour, we extract an effective
interaction via the radial distribution function and find that
pair-collisions lead to an effective alignment that can be con-
trolled by activity and is responsible for the flocking transition
to occur.

The paper is structured as follows: in Section 2 we define the
model and its different regimes; in Section 3 we focus on the
identification and characterisation of collective motion; in Section
4 we shed light on the origins of the reported flocking behaviour
in the absence of explicit alignment, showing that an effective
alignment interaction emerges from two-particle collisions.

2 Model for self-propelled particles
with an energy depot

We consider a two dimensional suspension of N particles whose
position and velocities are r; and v;, respectively. Each particle
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Fig. 1 (a) State diagram for a system of N = 2000 particles representing

the values of activity and area fraction according to which the systemisina
disordered or polar state, as indicated by a color map of the steady state
global polarisation. The inset shows the activity threshold a.(¢) (in log—log scale)
above which we observe collective motion (extracted as the maximum of the
susceptibility). The dashed red line corresponds to a power-law decay ~ ¢
with 2 = —0.77. The colored squares indicate the location of the snapshots
shown below in the (¢ — a) plane. Snapshots of the steady state of N = 10 000
systems at ¢ = 0.3: (b) a = 0.3, homogeneous and disordered states; (c) a = 0.5,
dense polar band surrounded by a (dilute) disordered background; (d)a = 0.9, a
polar state with a more homogeneous density distribution.

carries an internal energy depot ¢;, describing the conversion of
energy extracted from the environment into kinetic energy at the
level of individual particles. The dynamics of ¢; is over-damped
and given by**?**

é(t) = q — celt) — dvie(?) @

The parameters ¢, ¢ and d quantify the rate of energy intake,
energy dissipated and conversion into kinetic energy, respec-
tively. The motion of each particle is then governed by the
following Langevin equation:

mv; = —(yg — de;(1))vi — ZVU(”U) +V2Dg (1) (2)

J#i

where U(r;) is the inter-particle repulsive interaction and ¢ is a
Gaussian white noise of zero mean and unit variance, mimick-
ing a thermal bath at temperature T. The damping coefficient y,
(obeying D = yoksT) is combined with the internal energy
depot term. The energy depot acts on each particle as a self-
propulsion force: indeed, it appears as an advective term, which
can be cast as an effective velocity-dependent damping coeffi-
cient y(v;) = yo — dey(t). If (v) < 0 the particle is accelerated by
the effect of the energy depot, while in the opposite case it is

This journal is © The Royal Society of Chemistry 2025
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still damped but with a smaller damping coefficient than 7,. In
the adiabatic limit, considering that the energy depot is the
fastest degree of freedom, the equations of motion are
simplified to

mv; = —(v;)v; — Z VU(ry) + \/ﬁfi(f)- (3)

J#i

with

a

10 =r0(1 - 5453) (@
where we have introduced, to reduce the number of para-
meters, a = q/yo and b = c¢/d. EDAP exhibits different dynamic
regimes depending on the values of these parameters.** Eqn (4)
is obtained by setting é/¢) = 0 in eqn (1) and then injecting its
solution in Eqn (2). In Fig. 2(b) we represent the different
dynamic regimes in terms of the behaviour of y(v). We denote
vo = Va — b, the velocity for which y(v,) = 0, being a > b (orange
line). We can then identify two different situations depending
on the value of the velocity with respect to this reference. For
v > v, the motion is damped with 0 < y(v) < y,, approaching
the passive limit as v increases. Meanwhile, for v < v, y(v) < 0,
meaning that the energy depot accelerates the motion in the
direction of v. Eventually, as the particle accelerates, it reaches
a velocity close to vy, above which its motion is damped. All in
all, the average velocity of a single EDAP is v,.** For a < b,
particles always exhibit damped Brownian motion as y(v)
remains positive (blue and green lines in Fig. 2). The passive
limit is recovered when a — 0, allowing for a smooth connec-
tion with a well-known equilibrium system. We shall thus
identify a as our activity parameter, and consider the other
energy depot parameters as fixed. For a single particle the
mean-square displacement reads, in the weak noise (strong
pumping) approximation®*>?

A1) = {(x(1) — £(0))%) = 4D {1 + r[exp(—%) -1} 6

showing thus persistent random motion with effective diffusivity
D= v 2k Ty o (a — b)* and persistence time 1 = v*/2kgTy, oC
a — b. Thus, varying a allows us to disentangle the role played by
activity and move across the different dynamic regimes. In
Fig. 2(a) we put eqn (5) into test and run numerical simulations
to extract estimates of the parameters v,, t and D7 (see Fig. 2
panels (c)-(e)). It is worth mentioning that D%, v, and 7 are ill-
defined when a < b, while they increase with a once the active
regime is reached (quadratically and linearly, respectively). Then,
in the following, we consider a as the activity control parameter.
Eqn (5) is obtained in the strong pumping approximation,
namely, from the assumption that the particle velocity has
relaxed to v, (its relaxation to this value is omitted). Therefore,
one expects a good agreement between the simulation data and
this analytical result only at long-enough times (longer than the
relaxation of the velocity), as shown in Fig. 2(a).

The interactions between particles derive from a pairwise
potential U(r; = |r; — 1j]), that here we choose to be purely
repulsive and short-range. In practice, we use the following

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 (a) MSD of non-interacting energy depot particles for different
degrees of activity at fixed yo = 10, kT = 5.10™% and b = 1/10. The black
solid line represents the analytical expression (5) for a system with a = 0.3.
Discontinuous lines represent the long time diffusive behavior with the
effective diffusivity given in the key. The blue line represents a system with
a = 0, i.e., in the Brownian case. The green line corresponds to the limit
case a = b. The orange line represents a system in the regime a > b with
a = 3. (b) Different values of y(v) depending on their velocity for the
corresponding colors of panel a. We extract, by fitting our data to eqn (5),
vo? (panel ¢), t (panel d) and D (panel e), and compare them to the
expected scaling with a.

WCA form:>*

-, r,-j<21/66

(6)

0, r,-j>21/66

where ¢ is the particle’s diameter.

We simulate a system of N active particles in an L x L box
Nno?
412
The Langevin dynamics has been implemented by means of the
LAMMPS** open source package, making use of the Velocity
Verlet integrator. In order to perform these simulations we have
used different initial configurations. At intermediate densities,
we have started from random positions and velocities
(uniformly distributed); whereas at higher densities we have

with periodic boundary conditions and area fraction ¢ =

Soft Matter, 2025, 21,1045-1053 | 1047
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located particles in an ordered square lattice, with again ran-
dom velocities.

All physical quantities are expressed in Lennard-Jones
reduced units, with lengths, times and energies given in terms
of o =1y =uo=1,where 1y = /ma? Jug and m = 1. We have run
simulations of systems with N = 2000 up to 30 000 particles at
different area fractions ¢, in the range ¢ = 0.05, ..., 0.8. In our
simulations, we set y, = 10, the time step to At/ty; = 1072 and
the reduced temperature ksT/uo = 5 x 10~*. We explore the
collective behavior of the model at fixed b = 1/10 as a function of
both @ and ¢. In practice, due to the extent of the parameter
space in the model, we choose to fix ¢, d and y,, while the
activity a is varied changing the values of g. As we group the
parameters, this choice is equivalent to varying the parameter a
while fixing b. The values of the original parameters were ¢ = 1,
d =10 and g varying between 0 and 30. This is equivalent to vary
a from 0 to 3. The chosen parameters allow us to set an energy
scale (being ¢ directly proportional to the depot internal energy)
and to explore different dynamical regimes by only varying a
(having chosen a small value for b). It has to be taken into
account the fact that systems with a < b cannot be considered
motile, even though we have also studied them.

3 Transition to a flocking state

To quantify collective motion, we employ the global polar order
parameter £, or polarisation, given by the modulus of the
average direction of the instantaneous velocity vector of each

particle

where e; is the orientation of the velocity vector of particle i,
given by e; = v;/|v;| = (cos 6;sin 6;), and (-) denotes a steady-state
average. Values of 2 > 0 indicate that a fraction of the particles
is aligned, thus moving coherently, whereas 2 = 0 corresponds
to particles moving in random directions.

Fig. 3(a) represents the values of polarisation obtained for a
range of activities and area fractions ¢ (as indicated in the
legend). Increasing activity, at a fixed ¢, we observe a disorder
(low polar order) to order (high polar order) transition. Inter-
estingly, the value of a beyond which the transition takes place
depends on the system area fraction, decreasing when the area
fraction increases. To establish the robustness of this transition
and the relevance of finite-size effects, we have performed
simulations at the same ¢ = 0.3 and for different system sizes.
As shown in Fig. 3(b), the disorder-to-order transition is always
present and the value of activity needed for the transition to
take place is not significantly affected by the system size (in the
chosen parameter range).

Polar order appears in a suspension of EDAP repulsive
particles, in the absence of a prescribed orientation and an
explicit alignment rule akin to Vicsek-like models."* Particle
activity (as a self-propulsion) is controlled by a velocity dependent
friction y(v), which changes its modulus in the under-damped

1048 | Soft Matter, 2025, 21, 1045-1053
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Fig. 3 (a) Polar order parameters as a function of a for different ¢ in a
system of N = 2000 particles. The different colors represent different area
fractions ¢ (the arrow indicates increasing values of ¢). (b) Polarisation as a
function of a at fixed ¢ = 0.3 for systems with N = 5000, ..., 30000
particles, and corresponding system sizes L/o = 114.41, ..., 280.25. The
inset of the figure represents the polar order for different linear sizes below
and above the onset of flocking. The black line (crosses) corresponds to
the time dependent energy depot.

regime. Thus when a particle’s self propulsion strength overcomes
the particle’s rotational noise, the persistence length of the
particle increases resulting in a local alignment of colliding
particles. The emergence of flocking, typical of polar systems, is
caused by particle interactions controlled by activity when self
propulsion overcomes rotational noise. More examples of parti-
cles with polar order without an explicit alignment have been
earlier reported."®**" In ref. 26 the authors describe experiments
on a two dimensional system of disks with a “built-in polar
asymmetry” (due to an asymmetric mass distribution). These
studies and more recent ones underlined the existence of parti-
cles’ alignment through collisional arguments using kinetic
theory.>®”” Unlike these works, our system is made of isotropically
interacting particles whose activity is encoded in a velocity-
dependent friction, resulting in the velocity to change its modulus
in an under-damped regime. To explain the observed flocking, we
quantify two-body effective interactions,®***° showing how it
develops a tendency to align particle’s velocity as activity is

This journal is © The Royal Society of Chemistry 2025
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increased. A heuristic argument based on particle collisions is
presented in Section 4.

Briefly, we have found that collisions favour alignment via
the combined effect of self-propulsion in the direction of the
particles’ velocities and steric repulsion. When two particles
collide, repulsive forces accelerate them longitudinally. Their
speed is thus reduced and activity thus pushes them along a
direction that will typically reduce the angle between their
velocities. As the rate of collisions increases with density, the
onset of flocking decays with ¢.

Fig. 1(a) shows the region in parameter space where flocking
occurs (in yellow). To detect the onset of collective motion we
measure the parameter a. First, we calculate the susceptibility as
the variance of the order parameter: A? = (#%) — (#)?, and
denote a, the activity corresponding to the maximum of the
susceptibility. The inset represents the activity threshold a.¢)
above which we detect collective motion: a, decays with the area
fraction (in a way that phenomenologically suggests a. ~ ¢~ °77).

As shown in Fig. 1(b)—~(d) the system in steady state displays
different structures. To better understand the nature of the
transition towards collective motion, we characterize the struc-
tural properties of the different states by computing the prob-
ability density of the local order parameter F(#;) and the local
area fraction G(¢;). The local polar order parameter 2; is
obtained from dividing the system into 100 square cells and
computing the average polarisation of the particles inside each
one. The local area fraction G(¢;) is obtained from a Voronoi
tessellation. Based on the results of local density and polarisa-
tion, presented in Fig. 4, we identify three states, reported in
Fig. 1(b)-(d). The first one (Fig. 1(b)) is the disordered state,
which corresponds to a homogeneous density distribution

0002 0T 06 s 10
/L

Fig. 4 (a) Local area fraction probability distribution G(g;) calculated via
Voronoi tessellations for systems of N = 10000, ¢ = 0.3 and different
values of a = 0.1, ..., 1. (b) Probability distribution function of the order
parameter F(2) (same parameters as panel a). (c) Local area fraction ¢; (in
blue) and local polar order 2, profiles along the x direction, across two
bands, in a system with N = 30 000, ¢ = 0.3 and a = 0.45. (d) Snapshot of
the system corresponding to the profiles shown in (c).
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centered around the mean density (orange and green curves
in Fig. 4(a)), and a homogeneous local polarisation distribution
(orange and green curves in Fig. 2(b)) corresponding to the
absence of polar ordering. With increasing activity we detect a
transition to an ordered phase. Beyond the onset of flocking
one can identify two different states based on their local density
and polarisation. A heterogeneous state (Fig. 1(c)) is observed
close to the transition, for which G(¢;) is no longer uni-modal,
but displays two maximum values (one at low and one at high
densities), indicating a dense region coexisting with a dilute
disordered background (see a = 0.45, Fig. 4(a)). Interestingly,
heterogeneity in the distribution of polarisation coincides with
this density heterogeneity. As shown in Fig. 4(b), F(P) exhibits a
sharp peak close to 1 with a very broad tail at smaller values,
signaling large fluctuations. Such states, as illustrated in
Fig. 1(c) correspond to traveling bands, as typically observed
in models of flocking. Bands are dense and very strongly
polarized propagating structures. A dynamical state of single
and multiple band structures is observed at very long times, see
ref. 60. The band profile is again reminiscent to the one found
in the Vicsek system.'® As expected, particles in the band
accumulate at the front and are better oriented than particles
located at the dilute part of the band.

Increasing activity even further, density heterogeneities
disappear, and G(¢,) presents a uniform distribution again,
although broader than in the small activity limit (see Fig. 4(a)).
This regime corresponds to the emergence of a homogeneous
polar state (Fig. 1(d)). The polarisation distribution now
exhibits a sharp peak close to 1, whose width decreases
with increasing activity. So far, we have only detected band
formation for intermediate densities close to the transition,
quickly disappearing upon increasing activity.

As known from the literature of polar fluids,’" giant number
fluctuations typically appear in the flocking phase. We measure
the number density fluctuations to unravel possible connec-
tions between orientational order and giant number fluctua-
tions. To do so, we divide the system into 2 cells and count the
number of particles in each cell, considering a large number of
configurations, to estimate the mean number of particles (N)
and its variance AN. We repeat the procedure over boxes with
different sizes (ranging from k =2, ..., 8) and obtain a value of
(N) for each box size. We then extract a power-law relation AN
~ N”*where a value o > 1/2 signals giant number fluctuations.

Fig. 5 shows the variance of the number of particles AN as a
function of the mean number of particles for systems at fixed
density (¢ = 0.3) but varying the value of the activity parameter.
In all cases, AN ~ N”. However, as clearly shown in the inset,
depending on the activity, the exponent o« noticeably varies,
jumping from values around 1/2 to almost 1 when a =~ a..
When « > 0.5 the system exhibits giant number fluctuations.
As shown in Fig. 5, this occurs beyond the onset of flocking.
When o ~ 0.5, number fluctuations follow what one expects
from the central limit theorem. The variation on the value of o
with the activity parameter thus provides a complementary way
of locating the onset of flocking. When the system sets into the
homogeneously dense polar state, at large values of a, we find a

Soft Matter, 2025, 21,1045-1053 | 1049
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Fig. 5 Variance of the number of particles AN compared to its mean (N)
for systems of N = 20000 particles, ¢ = 0.3 and different values of a
ranging from 0.3 to 2. Curves (and points in the inset) are colored
according to their degree of activity. Dashed lines correspond to a values
below the transition, solid lines above, in the band regime, dashed—-dotted
lines represent two systems in the homogeneous polar fluid regime. The
inset shows the dependency of the o exponent with a as extracted from
the data in the main panel.

value « =~ 0.8, still exhibiting large number fluctuations,
although with a smaller exponent than the one in the band
regime. This value of o ~ 0.8 is close to the value of 0.725
reported by Deseigne et al.>® for vibrated polar disks, and
coincides with the exponent of 0.8 in the Vicsek system

reported by Chaté et al.*®

4 Understanding the effective
alignment

Even though many body interactions might be relevant to
understand collective phenomena in active particle systems,*
one might start with unraveling the emergence of collective
motion from the analysis of two body interactions.

To understand whether the emergent behavior is due to pair
interactions, we compute the two-particle pair correlation func-
tion, depending on both the inter-particle distances and the
relative orientation of their velocities. This function can be
defined as (ref. 63 and 64)

g(r,0) N2<ZZ

i j#i

5(0 - 0:/)> ®)

where 7; = |r; — 1] is the distance between two disk centres and
0; = 0; — 0; is the relative angle formed by their velocities. We
numerically computed g(r,0) from two particle simulations. The
results are shown in Fig. 6. While in the passive system (left-
hand side) g(r,0) is isotropic, in the presence of activity (right-
hand side) it shows a strong anisotropy, with a pronounced
peak for values close to 0 = 0, fading to zero as the relative angle
moves away. This means that particles’ velocities are more
likely to point along the same direction. Such correlation is
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0.0

Fig. 6 Pair distribution g(r,0) function for a = O (left) and a = 1 (right). The
angles represent relative orientation between velocities and the color plots
the numerical values. The thick arrow indicates the perfectly aligned
direction.

localized at contact and quickly decays for r larger than the
particle’s radius. This shows that the competition between
self-propulsion and steric effects gives rise to an effective
alignment.

To further quantify such alignhment, we extract an effective
potential from the radial distribution and study its behavior
in terms of the different parameters (such as the activity).
This procedure has been conducted earlier to estimate effective
interactions between Active Brownian Particles.>**®>° Assuming
that g(r,0) = exp(—BUes(r,0)), one can map the radial distribution
function to an effective potential. Fig. 7 shows the effective
potential as a function of the angle (panel a) and the effective
potential as a function of the inter-particle distance, for varying
values of the activity parameter a (panel b). On the one hand, as
reported in Fig. 7(a), activity lowers the minima of the potential,
favoring an effective alignment: U is lowered as a increases for
relative angles close to 0, thus increasing the effective alignment
as self propulsion is increased. On the other hand, as shown in
Fig. 7(b), the minimum of the effective potential corresponds to
the cutoff of the WCA potential r = 2" ~ 1.12¢. This reveals
that the alignment arises from the interplay between the
excluded volume interactions and activity.

Since the only interactions are given through excluded
volume, the mechanism for alignment has to be mediated by
contact interactions (collisions), explaining why the minima of
the effective potential occurs at the contact distance between
two particles. This also has to do with the fact that the other
part of the mechanism is the active force, as the effective
potential develops a deeper minimum as activity is increased.

In our model, self-propulsion is controlled by a velocity
dependent friction. Particles velocity changes in modulus and
direction when particles interact. When two particles collide,
their velocity is reduced along the longitudinal, center-to-center
direction, while the transverse component remains roughly
unchanged at short time scales. Large enough persistence thus
generates long collision times, where the longitudinal compo-
nent of the velocity drops, resulting in a velocity with a larger
transversal component, as illustrated in Fig. 8. In this way
velocity alignment is induced at the two particle level and this
effect is amplified when considering the entire system, thus
leading to a polar order at large length scales. Large activity
thus induces a velocity alignment in this model, where, as

This journal is © The Royal Society of Chemistry 2025
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Fig. 7 (a) Effective potential as a function of the relative orientation

between particle’s velocities at a given inter-particle distance r = 1.12¢
and different values of a. (b) Effective two particle potential as a function of
distance for 0 = 0 and different values of a. The inset in the figure shows how
the minimum of the potential becomes more pronounced with activity.

compared to active Brownian particles, rotational noise is
absent. We show in Fig. 8 a sequence of snapshots during a
collision event. The top-right particle hits the other one from
behind and it is slowed down by the interaction potential. This
makes the collision lasting longer than if the two particles were
passive, since the active force is pushing the particle to
collide again.

So far, the model defined by eqn (1) and (2) was only
considered in the limit in which the internal energy depot
relaxes much faster than any other degrees of freedom in the
system, ie. the depot is fully over damped. When this assump-
tion is relaxed, we talk about the time dependent energy deport

O O G- % %

Fig. 8 Successive snapshots during a collision between two particles,
where their velocities are represented as orange arrows. The snapshots are
ordered from left to right, as time goes on.
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model. We implement the full dynamics of the internal depot
by integrating eqn (1) with an Euler scheme. To compare the
time dependent model with its adiabatic limit, we have per-
formed a set of simulations for N = 10 000 particles, ¢ = 0.3 and
a ranging from 0.3 to 2. In this parameter regime, the over-
damped model exhibits the characteristic states described
above, namely, a is the disordered state, followed by a polar
state featuring dense bands and moderate valued of a > a,.
Once the full evolution of the energy depot is considered, polar
order is lost in this parameter regime, as Fig. 3 shows. The time
scale of the energy relaxation, 1/c = 1, is typically smaller than
the persistence time, 7 in the regime where flocking is
observed. However, in the time-dependent case, the ¢ term
has a faster relaxation that cannot be ignored. As these results
are only validated for b = 0.1, further parameter exploration
could provide a more accurate description on how the polarisa-
tion is lost when this time dependence is introduced. The loss
of polar order raises the question of whether there is a way to
restore it in a different parameter regime, or, eventually, the
emergence of other collective states. We leave such an investi-
gation for future work.

5 Conclusions

The present work studied a system of active disks that are self-
propelled by an internal energy depot, characterized by a
velocity dependent friction and an isotropic repulsive (hard)
potential. The novelty of this version of the EDAP model with
respect to others is that it presents polar alignment, despite
repulsive interactions and not an explicit alignment mecha-
nism. A Vicsek-like transition from a non-polar isotropic state
to a polar and ordered state is identified and characterized in
terms of the polar order parameter and the giant number
fluctuations. The structural analysis reveals the presence of
different phases, such as a non-polar homogeneous density
phase, and two polar phases. The polar phases are divided into
a homogeneously dense and a band phase.

Even though the flocking behavior exhibited by this model
resembles the one of the Viesek model," here the alignment
arises from steric collisions in the presence of activity (encapsu-
lated in an internal depot) with no need of an explicit interaction
of this kind. Once alignment, controlled by activity, becomes
strong enough, flocking occurs, with strong similarities to the
well-known phenomenology of Vicsek-type models. As increasing
activity increases the tendency of particles to align, the emergence
of large-scale polar order is controlled by competition between
noise and alignment. Given that the alignment mechanism is not
explicit, an explanation is provided in terms of an effective
potential originated by collisions between particles. The effective
potential reveals a connection between the potential and the
activity, which is translated as the torque acting on particles.

From our results, we conclude that this model is a good
candidate for more realistic systems of active engines®” at the
micro-scale, since it allows a theoretical approach that could
complement numerical simulations (as in ref. 66-68).
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