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Ketonic decarboxylation of carboxylic acids over ZrO,-modified catalysts has proven highly effective in
yielding ketones and bio-hydrocarbons — key intermediates in biofuel and chemical manufacturing.
However, most studies have focused on carboxylic acids with C;—C,4 chains. This study explores the
effect of modifying ZrO, catalysts with cost-effective transition metals to enhance the cross-
ketonization of triglyceride-derived C;g fatty acids with acetic acid to the Cy9 fatty ketone,
nonadecanone. Further deoxygenation of nonadecanone — with ~18-23% carbon retention (C;,—Cyg) —
signifying preservation of the green diesel energy density was achieved. We introduce an in situ
hydrogen generation strategy via formic acid decomposition, which preferentially hydrogenates tall oil
fatty acid (TOFA) into stearic acid, significantly improving cross-ketonization. This approach afforded up
to 93% conversion, with a catalyst turnover frequency (TOF) of 69 h™%, yielding 64% nonadecanone and
~20% green diesel-range bio-hydrocarbons (C;,—Cjg) in a stirred-batch reactor (SBR) system using 10
wt% Ni/ZrO, at 350 °C for 5 h. The inherently low bio-hydrocarbon selectivity from unsaturated TOFA
feedstock was improved by applying 10 bar of hydrogen pressure, coupled with hydrogen from formic
acid decomposition, leading to a 1.5-fold increase in bio-hydrocarbon yield — confirming a saturated

fatty acid-favoured cross-ketonization pathway. Furthermore, vanadia (V,Os) modification of the Ni/ZrO,
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Accepted 8th March 2025 catalyst enhanced bio-hydrocarbon selectivity (~45%) by facilitating nonadecanone deoxygenation.

These findings highlight the role of acid—base tuning in Ni/ZrO, catalysts, demonstrating that vanadia
doping effectively promotes ketonization and deoxygenation of fatty acids, advancing sustainable green
diesel and biochemical (nonadecanone) production.
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Hydrodeoxygenation,® decarboxylation,” and decarbon-
ylation' are standard deoxygenation methods that eliminate
oxygen in the form of water, carbon dioxide, and carbon
monoxide, respectively. Despite their strong potential for
renewable diesel production, these methods have significant
drawbacks: hydrodeoxygenation requires excessive hydrogen
pressure and catalysts comprised of noble metals and sulfided
materials - the latter often introducing unwanted sulfur into
the resultant bio-hydrocarbon, thereby compromising fuel
standards.”™** Decarboxylation and decarbonylation promote
carbon-carbon (C-C) bond cleavage, which results in carbon
loss and reduced fuel energy density.**

Ketonic decarboxylation (ketonization) is a highly efficient,
eco-friendly alternative that condenses two molecules of
carboxylic acids via C-C coupling, removing oxygen as carbon
dioxide and water.'® This deoxygenation pathway offers several
advantages, including enhanced carbon retention, reduced
energy consumption, and minimized dependency on external

1. Introduction

Renewable biomass has shown significant potential as
a sustainable alternative energy source. This is highlighted by
profitable sectors that focus on transforming biomass into
renewable energy and bulk chemicals.'? Triglycerides extracted
from vegetable oils and animal fats are a notable example, being
both economical and environmentally benign.* The production
of biodiesel (fatty acid methyl esters) from the trans-
esterification of triglycerides has been investigated extensively
as a potential fuel substitute for petroleum-based fuel.*®
However, the application of this fuel type is limited by its low
heat value, poor oxidation stability, and engine corrosion due to
the high oxygen content, making oxygen removal a necessary
step.®”
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reagents such as solvents."” The ketone is formed through
a reaction pathway involving hydrogen abstraction at the a-C
position of the carboxylic acid as a first step before subsequent

transformations. This reaction leverages the electron-
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withdrawing nature of the carboxylic acid, while the ketone
product may exhibit electron-donating and electron-with-
drawing behaviour depending on its molecular context.'®

Short-chain carboxylic acids are commonly utilized in
ketonic decarboxylation reactions—such as the formation of
acetone from the self-ketonization of acetic acid.**° Fatty acids
from forestry and waste cooking oil present a more sustainable
approach for producing diesel-range fuels (C;,-C;5) and lube-
base oleochemicals.” An example is tall oil fatty acid (TOFA),
anon-edible, abundant, and affordable raw material made up of
C,g fatty acids, the most common in nature.?** This fatty acid is
obtained by distilling crude tall oil and is the third-largest
chemical byproduct produced by the pulp and paper
industry.>»*® With a global market of USD 1 billion in 2020,
TOFA is both economically and environmentally appealing.®®

Although the deoxygenation of tall oil fatty acid has been
studied to some degree, the primary reaction pathway under
high hydrogen pressure has been decarboxylation, leading to
the formation of C,_; bio-hydrocarbons. Méki-Arvela et al. re-
ported the deoxygenation of TOFA over Pd/C, which resulted in
59% conversion and 91% heptadecane selectivity at 350 °C in
5.5 hours using 100% H,.>” Jenistova and colleagues also re-
ported the effect of hydrogen pressure on the hydro-
deoxygenation of TOFA where the highest conversion (99%)
with 97% heptadecane selectivity was observed at 300 °C/6 h
over 30 bar H,.>* When comparing the conversion of TOFA with
that of stearic acid under the same reaction conditions, it could
be seen that highly saturated fatty acids are more prone to
deoxygenation than unsaturated compounds. This phenom-
enon is attributed to catalyst deactivation caused by double
bonds in the feedstock. Lee et al. reported a similar observation
in the ketonization of C,;g fatty acids, noting that increased
feedstock unsaturation promoted catalyst deactivation. This is
due to dienes and methyl ketones forming, likely resulting from
the McLafferty rearrangement.”® Considering that industrial
feedstock such as tall oil and waste cooking oil are highly
unsaturated, a hydrogenation step may be crucial in obtaining
the deoxygenated bio-hydrocarbon.*

Ketonization is catalyzed by metal oxides containing surface
acid-base properties and oxygen vacancies and proceeds
without molecular hydrogen. Notable catalysts include well-
researched amphoteric metal oxides like TiO, and ZrO,, which
have high lattice energy and excellent ketonization ability.****
These mesoporous materials can be promoted using effective
Ru, Pt, and Pd metals. However, the costs associated with noble
metals can be limiting to the future development of industrial-
scale fatty acid deoxygenation processes.**** Ni is a suitable
alternative as an active metal due to its abundance, low cost,
and strong hydrogen activation capacity, displaying similar
properties to Pd or Pt in C-C and C-H bond cleavage. The
performance of Ni-based catalysts can be enhanced by incor-
porating a promoter metal, which helps optimize the deoxy-
genation rate, improve product selectivity, and enhance catalyst
durability. Furthermore, bimetallic systems can adapt the
crystal plane structure of the catalyst to slow down carbon
deposition, enhance hydrophobicity, and reduce coking.*** Ni
catalysts are effective despite being susceptible to coking due to
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their acidic sites. Introducing a promoter metal with lower
acidity can enhance the catalyst performance.*®

Herein, Ni supported on ZrO, (Ni/ZrO,) and vanadia-
promoted Ni/ZrO, catalysts were prepared and applied in the
ketonic decarboxylation of lipid biomass. Vanadium(v) oxide
(V,0s) is a cost-effective, thermally stable, and sulfur-resistant
material that has demonstrated its value in industrial catalytic
applications.>** The catalysts, reperted herein, were prepared
using hydrothermal techniques, with crystal morphology and
surface chemistry reported.

Formic acid was employed as a hydrogen donor to partially
saturate the feedstock and enhance hydrogen availability,
thereby mitigating catalyst deactivation. In tandem with
hydrodeoxygenation or decarbonylation-hydrogenation, the
one-pot ketonization process offers a promising route for
producing energy-dense green diesel-range bio-hydrocarbons.
However, its optimization is crucial due to the inherent chal-
lenges associated with this method.*

Refining the deoxygenation process of raw feedstock
requires fine-tuning the catalyst and reaction conditions. The
study aimed to determine the optimal conditions for deoxyge-
nating TOFA and other lipid-based feedstocks through cross-
ketonization with acetic acid, producing ketones that are
subsequently deoxygenated to yield bio-hydrocarbons with
carbon numbers corresponding to the original feedstock.
Beyond fuel production, this method generated valuable inter-
mediates, including (1) nonadecanone, the primary cross-
ketonization product between Cy; fatty acids and acetic acid, (2)
acetone, which is produced selectively from a self-ketonization
of the inexpensive acetic acid if used in excess, (3) penta-
triacontanone, which can be obtained when excess stearic acid-
based feedstocks are present.*” The findings in this study
highlight the critical role of feedstock selection and catalyst
design in influencing product distribution and guiding keto-
nization reaction pathways.

2. Experimental

2.1. Catalyst preparation

Nanomaterials including nickel oxide (NiO), zirconia (ZrO,),
nickel supported on zirconia (Ni/ZrO,), and vanadia-promoted
nickel supported on zirconia (V-Ni/ZrO,) were synthesized to
investigate the impact of ZrO,-supported nickel nanocrystals
and vanadia-promoted Ni/ZrO, catalysts on the ketonic decar-
boxylation of fatty acid feedstocks. Ni(NOjs),-6H,O (98.0%),
ZrOCl,-8H,0 (=99.5%), and NH,VO; (=99.0%) were purchased
from Sigma Aldrich. The nickel oxide powder and the zirconia
support were synthesized using self-assembly and co-precipi-
tation methods.**** The Ni-based catalysts (Ni/ZrO, and V-Ni/
Zr0,) were prepared via the wetness impregnation method.*”**
For Ni/ZrO,, Ni(NO3),-6H,0 was added to a solution of ZrO, in
distilled water to make up 10 wt% of Ni followed by stirring at
room temperature for one hour. The solvent was then removed
using a rotary evaporator. In an oven at 110 °C, the precipitant
was dried overnight and calcined at 400 °C, over 6 hours (2 °C
min~' ramp). To prepare the vanadia-promoted catalyst (2 wt%
V — 8 wt% Ni), a specific amount of NH,VO; and
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Ni(NO;),-6H,0 was added to a solution of ZrO, in water, after
which the salt mixture was stirred at room temperature (RT) for
4 h. The precipitate was recovered under vacuum and then dried
in an oven at 80 °C for 24 hours. The solid product underwent
a 6 h calcination process with a ramp rate of 2 °C min ", All
calcination processes were conducted under oxidative condi-
tions in the presence of air.

2.2. Catalyst characterization

2.2.1. Inductively coupled plasma-optical emission spec-
troscopy (ICP-OES). The metal loading on the support surface
was quantified using ICP-OES on a SPECTRO ARCOS instrument.

2.2.2. Nj-adsorption/desorption isotherm. Following an
overnight degassing process at 250 °C, the materials' surface
areas and porosities were analyzed on a Micrometrics ASAP
2460 at a temperature of —196 °C. The Brauner-Emmet-Teller
method (BET) and the Barrett-Joyner-Halenda (BJH) approach
were used to determine the surface area and pore-size
measurements.*°

2.2.3 X-ray powder diffraction (XRD). A PANalytical X'Pert
Pro powder diffractometer (X-ray radiation source: Cu Ka (k =
0.15405 nm) tube) was used to analyze the metal oxides’
diffraction patterns. The results were processed on the ICDD
PDF-4+ 2019 database using the High Score (Plus) program. The
acquired data were subsequently applied to calculate the crys-
tallite size using Miller indices (kkl) and the Deb-Scherrer
equation.”’

2.2.4 Scanning electron microscopy (SEM). A TESCAN
VEGA 3 LMH (20 kV accelerating voltage) was used to obtain and
analyze microscopic images of the porous materials after the
samples had been coated with a carbon source using the Agar
Turbo Carbon coater. The elemental composition and distri-
bution of the materials were studied using energy dispersive
spectroscopy (EDS) and an Oxford secondary detector (SED)
with the Aztec analytic tool.

2.2.5. Hydrogen temperature programmed reduction (H,-
TPR) and ammonia temperature-programmed desorption
(NH3-TPD). The hydrogen reduction properties of ZrO,, Ni/ZrO,,
and V-Ni/ZrO, were evaluated on a Micrometrics 3 Flex,
MicroActive Version 5.02. Using the AutoChem II 2920 Plus
V5.03 chemisorption analyzer, ammonia temperature-pro-
grammed desorption (NH;-TPD) revealed the acidity of the
prepared materials.

(moles of fatty acid in feed — moles of fatty acid in product)
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2.2.6. X-ray photoelectron spectroscopy (XPS). The elec-
tronic and surface states of the oxidic compounds were exam-
ined using X-ray photoelectron spectroscopy. Using the Al K
(alpha) excitation source (15 mA, 0.15 eV), these parameters
were examined on an AXIS Supra+, and the data were processed
with the CasaXPS software (version 2.3.22).

2.3. Fatty acid ketonic decarboxylation

The catalyzed ketonization reactions were performed in a batch
reactor (20 mL) using a PI-controlled band heater. In a typical
reaction, the reactor was charged with 0.87 mmol of TOFA, 1.80
mmol acetic acid, 10 mg of Ni/ZrO,, and 2.50 mmol of formic
acid in 3 mL n-hexane. The temperature and time ranges for the
reactions were 250-350 °C and 1-5 hours, respectively (Scheme
1). At the end of each reaction cycle, the reactor was quenched
in cold water, and the products were recovered and separated
using a centrifuge. The liquid products were then diluted with
hexane or dichloromethane for analysis. Feedstock raw mate-
rials such as TOFA and dehydrated castor oil fatty acid (DCOFA)
were supplied by AECIL. Palm oil (PO) and waste cooking oil
(WCO) were obtained from local Johannesburg markets. Bio-
diesel was synthesized via the transesterification of WCO
(Fig. S1 and S27).%%*

A gas chromatograph fitted with a flame ionization detector
(PerkinElmer Claurus 580) was used to quantify the liquid
products from the deoxygenation reactions. The products were
quantified and identified using the Van den Dool and Kratz
equation® (eqn (1)), peak regions, and known concentrations of
the original feed. The conversion, yield, and selectivity were
calculated using decane as an internal reference standard (eqn
(2)-(4))- The turnover frequency was calculated as the moles of
reactant converted per mole of accessible Ni over a unit of time
(eqn (5)). Chemisorption studies have not yet been conducted;
therefore, the active sites on the catalyst surface were estimated
using the PXRD-derived crystallite size of NiO.**">*

RI— 1001+ 100 =t (1)
(th+1)—1,)
where n = lowest number of reference alkanes, ¢, = retention
time of the compound, t,.; = retention time of the reference
alkane eluting after the compound, ¢, = retention time of the
reference alkane eluting before the compound.

Conversion (%) =

(moles of fatty acid in feed)

(moles of product)

x 100 )

Yield (%) =
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Scheme 1 Catalyzed ketonic decarboxylation of fatty acids over Ni/ZrO,.

(moles of desired product)
(moles of all product)

Selectivity (%) = x 100 (4)

(moles of fatty acid feed converted)
(moles of metal x dispersion X reaction time)

(5)

TOF (h™') =

3. Results and discussion

3.1. Catalyst properties

Utilizing surface analytical methods like BET, PXRD, SEM-EDS,
H,-TPR, NH,-TPD, and XPS, the effect of adding the active
nickel phase and vanadia promoter on the crystalline structure
and surface chemistry of the zirconia support was assessed.

Minimal changes in the specific surface area and pore
volume of the zirconia support were observed following Ni
impregnation (Fig. 1a). Adding vanadia to the catalyst system
decreased the pore size to 22 nm, indicating alterations in the
textural properties and the potential formation of new phases,
which affected both the surface area and porosity.

The XRD pattern of ZrO, displayed a predominant mono-
clinic crystal phase with traces of a tetragonal crystalline phase
(Fig. 1b). A new peak, attributed to the strongest peak of the NiO
active phase, that is seen at 43.4° on the 200-lattice plane of

(a) 250
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e

'; 2 140 — NierOz
200 ——Nifzro, zr0,

NiO/ZrO,, confirmed successful impregnation.”” In the V-
modified catalyst, diffraction peaks attributed to V,05 could not
be distinguished, and a broadening of the NiO crystalline peak
(42.8°) suggests an improved active phase dispersion.*® This is
evident from the decrease in crystallite size (Table 1), from 9.0
nm for Ni/ZrO, to 5.3 nm for V-Ni/ZrO,, indicating that vanadia
minimizes Ni agglomeration and promotes uniform distribu-
tion of the active species. The improved crystallinity of the Ni/
Zr0O, diffraction peaks and enhanced peak separation can be
attributed to incorporating vanadia species (V°") into the cata-
lyst lattice.>*

SEM images depict an aggregation of crushed angular
particles, which retained their texture even after impregnation
with the active metals (Fig. 2). The active phase dispersion and
elemental composition of ZrO,, Ni/ZrO,, and V-Ni/ZrO,
confirmed a uniform Ni distribution, with approximately 13
wt% and 9.3 wt% Ni loading, similar to the ICP-OES, which
yielded values of 10 wt% and 8 wt% Ni loading. Vanadium oxide
was also identified, albeit in minimal amounts (0.3 wt%),
explained by the low mass loading and effective impregnation
of vanadium (<2 wt%) in the catalyst system.

The temperature-programmed hydrogen-reduction (H,-TPR)
of ZrO, in the temperature range (25-800 °C) displayed two low-
intensity reduction peaks at 412.1 °C and 632.9 °C, which are
attributed to hydrogen uptake on the zirconia surface since the
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3
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20(°)

Fig.1 (a) BET graphs of ZrO,, Ni/ZrO,, and V-Ni/ZrO, in the P/P° range 0.05-0.99; (b) stacked PXRD patterns for zirconia and its Ni-derived

catalysts (Ni/ZrO, and V-Ni/ZrO,).

This journal is © The Royal Society of Chemistry 2025
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Table 1 Surface properties of the metal oxide catalysts
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Catalyst “N loading %V loading Specific surface area (m* g~ ) Pore size (nm) bCrystallite size “TEM particle size
710, — — 40 24 8.1 (£5.3) 17.4 (£3.9)
Ni/ZrO, 9.7 — 40 24 9.0 (£3.2) 16.2 (£3.1)

11.74
V-Ni/ZrO, 7.5 1.5 63 22 5.3 (42.6) 15.1 (£7.3)

5.9¢

“ Based on ICP-OES. ” Based on PXRD data. © Based on TEM images (Fig. S3). ¢ Based on NiO(200) crystallite size calculation.
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Fig. 2 SEM images and elemental mapping of the metal oxide catalysts: (a) ZrO,, (b) Ni/ZrO, and (c) V-Ni/ZrO..

support material is not easily reduced (Fig. 3a). For Ni/ZrO,, the
peaks at 338.6 °C and 437.6 °C indicate weak to medium metal-
to-support interactions due to NiO particles adsorbed on the
support surface. In contrast, the higher temperature peak
suggests strong interactions, representing the reduction of NiO
nanoparticles embedded within the support structure. The V-
promoted catalyst depicted three shoulder peaks at 290.9 °C,
348.6 °C, and 414.4 °C ascribed to the hydrogen reduction of
weakly bound NiO particles, the surface adsorbed NiO nano-
particles, and the NiO material embedded into the support,
respectively.>® The increased peak intensity for NiO reduction

2742 | Sustainable Energy Fuels, 2025, 9, 2738-2752

above 400 °C suggests that the V promoter strengthens the
metal-to-support interactions between NiO and ZrO,, resulting
in better dispersion of the active species, higher hydrogen
uptake, and a lower reduction temperature.

The ammonia temperature-programmed desorption illus-
trating the surface acidity of ZrO,, Ni/ZrO,, and V-Ni/ZrO, is
displayed in Fig. 3b from 150 °C to 600 °C. Weak acid sites on
the support and Ni/ZrO, catalyst were observed at ~150 °C
assigned to the zirconia surface acidity.>® Desorption peaks over
Ni/ZrO, in the weak to medium acidity (at 298 °C) and strong
acidity (at ~620 °C) regions are attributed to weak acid sites of

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 Temperature programmed (a) hydrogen reduction and (b)
ammonia desorption of ZrO,, Ni/ZrO, and V-Ni/ZrO,.

the support and the strong acid sites of the active Ni phase. The
catalyst modification with vanadia resulted in a desorption peak
at roughly 470 °C, which indicates medium-to-strong acidity.
The reduction in NH;-desorption temperature after V addition
is due to increased oxygen vacancies and decreased acidic Ni
sites on the zirconia surface (lower Ni wt%).*” This influenced
catalytic performance, as strong acidic sites are known to boost
catalytic activity in deoxygenation reactions but may also cause
catalyst deactivation and promote bio-hydrocarbon cracking.*®
Medium acidity catalysts are preferred as they enhance selec-
tivity and conversion while inhibiting bio-hydrocarbon
cracking.*

The XPS spectra (Fig. 4) provide detailed insights into the
elemental composition and oxidation states of the nano-
materials. The Zr 3d region exhibits doublets in the 189-177 eV
binding energy range: 182.2 and 184.6 eV (ZrO,), 182.0 and
184.4 eV (Ni/ZrO,), and 182.0 and 184.2 eV (V-Ni/ZrO,). These
values suggest the presence of a Zr** oxidation state and metal-
to-support electronic interactions, as evidenced by the binding
energy shifts following active phase dispersion.*®

This journal is © The Royal Society of Chemistry 2025
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The O 1s spectra reveal a distinct lattice oxygen peak at 530
eV for all three oxides.®* Notably, a shoulder peak at 533.2 eV
indicates the formation of oxygen vacancies due to V,Os
incorporation. These vacancies are critical in enhancing cata-
Iytic activity by facilitating reactant adsorption.

Following Ni impregnation on the zirconia support, the Ni
2ps,» binding peaks were identified at 856.2 eV and 855.8 eV for
Ni/ZrO, and V-Ni/ZrO,, respectively, corresponding to NiO and
corroborating the PXRD assigned oxidation state for the active
species.”> Satellite peaks detected at 862.6 eV and 861.2 eV
further confirm the presence of Ni** species.® Interestingly,
adding vanadia to the catalyst surface reduces Ni** to metallic
Ni°, highlighting a modification of the surface chemistry. This
change suggests strong interactions between Ni, V, and ZrO,,
enhancing the catalyst's deoxygenation performance by
improving hydrogen activation and electron transfer
processes.*

The binding energy peak assigned to V 2ps, is identified at
517.2 eV and corresponds to the presence of the V>* species.®*

3.2. Deoxygenation of fatty acid feedstock

To achieve high conversion and selectivity, fatty acid upgrada-
tion through deoxygenation can be tailored using different
reaction parameters. The composition of the raw materials of
fatty acid feeds utilized in this study is displayed in Table 2.
3.2.1. Evaluation of optimum reaction conditions.
Temperature and time parameters are crucial in determining
the conversion rate and product distribution in deoxygenating
fatty carboxylic acids.”® The optimum deoxygenation reaction
conditions to produce bio-hydrocarbons over Ni/ZrO, were
determined using TOFA as the model feedstock, containing Cqg
fatty acids, a major component of naturally occurring lipids.*
Time-based experiments were carried out over 1 to 5 hours at
300 °C (Fig. 5a); the conversion ranged from a minimum of 12%
after 1 h to a maximum of 61% after 5 h reaction times. The
catalyst is most productive at 3 h reaction time as seen through
the highest turnover frequency (TOF) of 105 h™* at 3 h, after
which a decline to 95 h™" at 4 h and 86 h™' at 5 h is observed.
This reduction suggests a progressive decrease in available
active sites, likely caused by surface blocking or catalyst coking
over time.*® Bio-hydrocarbon selectivity at the 5 hours mark was
just 1.4% n-heptadecane, meaning very little direct decarbox-
ylation to C;, bio-hydrocarbons occurs, and no further cracking
of n-heptadecane to C;,-C;¢ bio-hydrocarbons occurred. TOFA
is first converted to stearic acid (67%), which, in turn, is
consumed gradually over 1 h to 5 h, indicating that the reaction
pathway involves prior hydrogenation of unsaturated fatty acids
in TOFA at 300 °C. This is followed by ketonization of stearic
acid with acetic acid to give 2-nonadecanone (26%) in 5 h.
However, further decarbonylation of 2-nonadecanone to Cig
bio-hydrocarbons was not observed under these conditions.®”
To assess the effect of reaction temperature, the reaction was
carried out at 25 °C increments starting from 250 °C to 350 °C
(Fig. 5b). A steady increase in TOFA conversion with catalyst
productivity is seen with an increase in temperature from 250 °©
C to 350 °C, with conversion reaching 80% and a TOF of 112
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h™'. The TOF increase with rising temperature confirms that
the reaction rate is temperature-dependent.®®*® At 250 °C, TOFA
conversion reached 36%; however, no C;; or C;g3 bio-hydrocar-
bons or ketones were formed. Instead, the hydrogenation of
unsaturated fatty acids in TOFA resulted in 100% selectivity to
stearic acid. A shift in the reaction pathway to ketonization
occurred at 325 °C, marked by the production of 2-non-
adecanone (28%) and minute amounts of C;g bio-hydrocarbons
(0.3% yield). A higher conversion rate of 80%, along with bio-
hydrocarbon selectivities of 6.1% for C;; and 2.7% for Cys, were
achieved at 350 ©°C, however, the increased operating

Table 2 Fatty acid composition of the oleo-feedstock®

temperature also resulted in cracking of bio-hydrocarbons to
shorter-chain products, C;,-Cs¢ (1.6%).

The impact of the catalyst load was investigated to determine
the optimum amount. Increasing the catalyst load provides
more active sites, potentially improving the performance while
reducing the number of available Ni active sites, which could
hinder the hydrogenation of the unsaturated feedstock, leading
to surface coking and catalyst deactivation.” Under the opti-
mized reaction conditions of 350 °C/5 h, adding 5 mg of catalyst
resulted in 68% conversion, with a 10.5% yield of C;; bio-
hydrocarbons and a 5.1% yield of shorter alkanes produced via

Feedstock Palmitic acid (%) Stearic acid (%) Oleic acid (%) Linoleic acid (%) Linolenic acid (%)
TOFA 0.1 2.5 47.2 32.8 2.7

DCOFA 1.7 1.0 — 88.8 —

PO 40.5 — 20.7 — —

WCO 15.1 0.3 33.9 22.4 28.2

Biodiesel 15.5 6.6 34.9 39.2 —

“ TOFA: tall oil fatty acid; DCOFA: dehydrated castor oil fatty acid; PO: palm oil; WCO: waste cooking oil.
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(a) Optimization of TOFA ketonic decarboxylation by adjusting the reaction time (h). Conditions: TOFA (0.87 mmol), 10 wt% NiZrO, (10

mag), hexane (3 mL), acetic acid (1.8 mmol), FA (2.5 mmol), 300 °C, 800 rpm. (b) Optimization of TOFA ketonic decarboxylation by adjusting the
temperature (°C). Reaction conditions: TOFA (0.87 mmol), 10 wt% NiZrO, (10 mg), hexane (3 mL), acetic acid (1.8 mmol), FA (2.5 mmol), 5 h, 800
rpm. (c) Optimization of TOFA ketonic decarboxylation by varying the catalyst loading. Reaction conditions: TOFA (0.87 mmol), 10 wt% NiZrO,,
hexane (3 mL), acetic acid (1.8 mmol), FA (2.5 mmol), 350 °C, 5 h, 800 rpm. (d) Optimization of TOFA ketonic decarboxylation by the active phase
content (wt%). Reaction conditions: TOFA (0.87 mmol), cat. (20 mg), hexane (3 mL), acetic acid (1.8 mmol), FA (2.5 mmol), 350 °C, 5 h, 800 rpm.

hydrocracking (Fig. 5c). The cross-ketonization of TOFA with
acetic acid remained low at 36%, highlighting the role of nickel
particles in the decarboxylative-dehydration of unsaturated fatty
acid. This limited activity may be a result of reduced active sites
that decrease hydrogenation capacity, as evidenced by minimal
yields of stearic acid. An increase in acidic sites on the catalyst
surface encourages the deoxygenation of fatty acids by facili-
tating the C-O bond cleavage.”* This is evidenced by the
increased TOFA conversion, exceeding 90% with catalyst load-
ings of 15 mg and 20 mg. The optimal catalyst load was deter-
mined to be 20 mg (Fig. 5¢), resulting in bio-hydrocarbon
selectivities of 9.1% for C;; and 6.2% for C,g, along with 63.6%
ketone formation and a reduction in stearic acid yield to
approximately 6%. This suggests that increasing the catalyst
loading introduces enhanced catalytic activity via the acid-base
sites of NiO and ZrO, that facilitate the sequential steps of
hydrogenation — ketonization — decarbonylation —
hydrogenation.””*

The highest TOF was observed with 5 mg NiO/ZrO, loading
(191 h™") (Fig. 5c). Notably, an increase in catalyst loading
resulted in a decline in TOF values, indicating that at lower
catalyst loading, all available active sites are effectively utilized

This journal is © The Royal Society of Chemistry 2025

in the reaction, whereas higher catalyst loadings may introduce
constraints such as mass transfer limitations.”>”*

To further highlight the influence of active site density on
the extent of ketonization, the Ni active phase was reduced to 2
wt%, 5 wt%, and 8 wt%. The 2 wt% Ni catalyst exhibited low
fatty acid conversion (39%), demonstrating the significance of
the acidic Ni sites in promoting formic acid dehydrogenation,
feedstock hydrogenation, and facilitating deoxygenation.
Increasing the Ni content to 5 wt% and 8 wt% led to improved
fatty acid conversions of 65% and 82%, respectively, demon-
strating enhanced deoxygenation and ketonization efficiency. A
decrease in active NiO sites on the ZrO, surface limits the
number of reactant molecules that can be converted into the
desired deoxygenation products, emphasizing the crucial role of
available active sites. This is evident from the observed increase
in TOF as the number of active NiO sites on the ZrO, surface
increases (Fig. 5d).

Under optimum conditions (350 °C/5 h), using 20 mg of 10
wt% Ni/ZrO,, the major product shifted from stearic acid to
nonadecanone (64%). Although the catalyst remained active, it
produced hydrocarbon yields of around 20%. This result is ex-
pected given TOFA's highly unsaturated nature, which leads to
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catalyst deactivation over time. As noted earlier, an initial
hydrogenation step could promote ketonization and decar-
bonylation. Pre-hydrogenation of the double bonds in raw fatty
acid feedstock to generate stearic acid may be required to
enhance catalyst performance.”

The self-ketonization of individual feedstocks, such as fatty
acids and acetic acid, can occur under similar reaction condi-
tions, leading to valuable products.”®”® Notably, the self-keto-
nization of C,g fatty acid and acetic acid is expected to yield key
compounds like 17-pentatriacontane and acetone. However, the
presence of these two compounds could not be distinctly
assigned on the GC spectra, likely due to overlapping with the
solvent, their presence in low concentrations, or, in the case of
17-pentatriacontanone, its high boiling point may prevent
volatilization in the GC injector. Nevertheless, "H NMR analysis
of product overlays at 250, 300, and 350 °C over 5 hours revealed
two distinct singlets corresponding to the methyl group of
acetone (2.18 ppm) and nonadecanone (2.14 ppm), attributed to
differences in the electronic environment around the carbonyl
groups (Fig. S471). Additionally, the a-C of the methylene peak in
nonadecanone appears as a multiplet at 2.42 ppm.”” The pres-
ence of 17-pentatriacontene was later confirmed in the study via
GC-MS, suggesting self-ketonization of TOFA. These findings
highlight the versatility and commercial potential of this cata-
lytic system, suggesting that with further optimization, it could
serve as an efficient platform for sustainable ketone production.
One of the carboxylic acids can be added in excess to promote
self-ketonization over cross-ketonization.

3.2.2. Promoter effect and substrate evaluation. A separate
catalyst is often utilized to further convert the ketone product
into bio-hydrocarbons, extending the deoxygenation reaction
into a multi-step process.”* However, the same catalyst can
streamline the reaction into a single step, making the refinery
system more economical. The presence of C=C bonds in the
feedstock can accelerate catalyst deactivation through side
reactions.”* This is demonstrated by the predominant forma-
tion of stearic acid due to formic acid-mediated hydrogenation
of the unsaturated oleic and linoleic acid in TOFA. To further
promote the deoxygenation of the generated ketone, 10 bar
gaseous hydrogen (H,) was added to aid in the pretreatment of
the unsaturated feed affording saturated stearic acid. This led to
an enhanced bio-hydrocarbon selectivity, with 20.2% for C;;

View Article Online
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(from 9.1%) and a marginal 7.7% selectivity to C;g (up from
6.2%).

The promotional effect of vanadia was also assessed under
identical reaction conditions, demonstrating enhanced activity
with 94% conversion and bio-hydrocarbon selectivity of 6.0%
for C;,—Ci6, 30.2% for C;;, and 9.4% for C;g. Notably, the
introduction of vanadia led to an increase in TOF despite
a reduction in the available NiO from 10 wt% to 8 wt%, high-
lighting its positive role as a promoter.” The incorporation of
V,0;5 into the catalyst improved Ni dispersion, partially reduced
NiO to metallic Ni (Ni° (indicating strong metal-support
interactions), and facilitated a synergistic effect between Ni and
V. This synergy contributed to well-balanced acid-base proper-
ties, as evidenced by NH;-TPD and XPS analyses, which are
recognized for enhancing the deoxygenation of carboxylic
acids.”®® Thus, the increased dispersion of Ni active sites and
the availability of metallic Ni (enhanced by V-promotion),
facilitate more efficient H, dissociation. Additionally, the oxo-
philic sites on ZrO, contribute to increased catalytic activity,
promoting the deoxygenation of fatty acids to produce bio-
hydrocarbons.?” This was validated by conducting the reaction
under the same conditions using unsupported NiO and ZrO,
support, which primarily yielded fatty alcohols and fatty
ketones, respectively (Fig. S5 and S67).

A single concentration of vanadium (1.5 wt%), selected
based on the literature,® was employed for the study at this time
to simplify the analysis and assess whether the V-Ni/ZrO,
catalyst system enhances ketonization of TOFA and related raw
fatty acid feedstock. However, optimizing the vanadia-to-nickel
loading ratio to achieve a vanadia surface density within the
monolayer coverage range could enhance catalyst performance
and efficiency by favouring the ketonization-decarbonylation
pathway over decarboxylation.®

Subsequently, various feedstocks were evaluated using the
modified V-Ni/ZrO, catalyst to investigate the influence of
carbon chain length and degree of saturation on product yield
and selectivity (Table 3). The substrate scope included dehy-
drated castor oil fatty acid (DCOFA), palm oil (PO), WCO, and
FAME (biodiesel). When replacing TOFA with DCOFA, which
predominantly consists of linoleic acid - Cg.,, bio-hydrocarbon
selectivity decreased to ~25%. This decline is likely due to the
higher degree of unsaturation in the feedstock, which can

Table 3 Conversion and selectivity for the deoxygenation of raw biomass feedstock”

% selectivity

Substrate % Conv. C15-Cys Cyy Cys C,9 nonadecanone C;,-Cy9 bio-hydrocarbons Stearic acid TOF (h™1)
TOFA? 92.6 5.1 9.1 6.2 63.6 84.0 5.8 69
TOFA® 89.9 3.0 20.2 7.7 2.3 33.2 7.9 63
TOFA 94.1 6.0 30.2 9.4 5.0 50.6 0.7 75
DCOFA 92.9 5.0 11.8 9.0 3.2 29.0 1.8 74
PO 62.7 23.3 14.8 12.1 23.8 74.0 — 50
WCO 88.5 31.3 5.8 1.2 12.6 50.9 — 71
FAME 71.5 5.0 4.0 1.9 11.3 22.2 3.1 57

¢ Reaction conditions: temperature - 350 °C, time - 5 h, substrate - 0.87 mmol, hydrogen source - FA (2.5 mmol) and H, (10 bar), and V-Ni/ZrO, (20
mg). » Without molecular hydrogen over the Ni/ZrO, catalyst. © Over the Ni/ZrO, catalyst. Conv. = conversion. Other products: Fatty alcohols,
nonadecane, and stearic acid self-ketonization products (18-pentatriacontanone).
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promote side reactions such as polymerization, leading to
coking and catalyst deactivation.*® Palm oil, comprising 40%
saturated C;¢ palmitic acid, achieved 50% bio-hydrocarbon
selectivity and 24% ketone formation, further proving that
saturated fatty acids favour cross-ketonization and further
deoxygenation. Finally, WCO and biodiesel produced 38% and
11% C;,—-C;g bio-hydrocarbons, respectively, with conversion
rates exceeding 70%.

Feedstock with varying carbon chain lengths and different
functional groups to fatty carboxylic acids, such as carbonyl
esters and triglycerides, may exhibit different reaction behav-
iours.®** In this study, the higher degrees of DCOFA unsatu-
ration resulted in lower bio-hydrocarbon yield, which can be
attributed to side reactions that are reported to take place, such
as radical formation or activation of the unsaturated molecules,
which could promote oligomerization and coking.”**® In
contrast, feedstocks with higher saturation levels, such as palm
oil, favoured the ketonization/decarbonylation-hydrogenation
pathway, yielding primarily C;5-C,5 bio-hydrocarbons as well as
octadecanol and C;o ketone.”*” Waste cooking oil predomi-
nantly promoted bio-hydrocarbon cracking, producing mainly
pentadecane and, in smaller amounts - heptadecane. Deoxy-
genation of ester groups, such as biodiesel, typically occurs via
the formation of carboxylic acid intermediates, which then
undergo further deoxygenation to yield alkanes.?®* However,
this additional reaction step likely requires higher energy input,
contributing to the lower bio-hydrocarbon yields observed with
biodiesel.

These findings highlight that the substrate composition

significantly influences the reaction rate and product
O
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distribution. Lower carbon balances observed during the reac-
tions suggest the occurrence of secondary reactions, such as
oligomerization and polymerization, which form heavier
molecules that may not be detected by gas chromatography
(Ge).*

3.3. Proposed reaction pathway

Scheme 2 illustrates the three reaction pathways observed in the
ketonic decarboxylation catalyzed by Ni/ZrO, and V-Ni/ZrO,. In
pathway A, the formation of heptadecane is achieved via the
elimination of CO, in the direct decarboxylation of stearic acid.
This reaction pathway is the major route following the addition
of molecular hydrogen. Alternatively, the C;g fatty acid feed-
stock cross-ketonizes with acetic acid to give nonadecanone
(C150C), which can be further decarbonylated and hydroge-
nated to octadecane. This reaction pathway (B) reduces the
oxygen content through the ejection of carbon dioxide and
water and is a strategic method for replacing the carbon loss in
catalytic decarboxylation. Finally, in pathway C, the fatty acid
and acetic acid reactants may undergo self-ketonization,
producing Css-chain ketones that can be converted into penta-
triacontane or acetone. Other products were observed in small
amounts, such as the cracked bio-hydrocarbons (Cg—-Cy4) and
decarbonylated alkenes (C,7).

In this work, the deoxygenation of TOFA over Ni/ZrO,
without gaseous hydrogen favoured the cross-ketonization
product (B) to yield ~64% nonadecanone. The introduction of
molecular hydrogen (H,, 10 bar), combined with formic acid as
a hydrogen donor, shifted the reaction pathway of the unsatu-
rated feed (TOFA and DCOFA) to generate C;, bio-hydrocarbons

C15H31/\)LOH
+
0
)LOH

-CO,, H0

%

(A) w&
(B) o

\ CisHaq CisHaq
CisHaq o
(D)
CigHas™ >

Scheme 2 Deoxygenation pathways of the hydrogenated crude fatty acids over Ni/ZrO, and V-NiZrO, catalysts. (A) Direct decarboxylation of
C,g fatty acids yielding C;7 bio-hydrocarbons, (B) cross-ketonization of acetic acid with C,g fatty acids yielding nonadecanone, (C) self-keto-
nization of acetic acid and Cig fatty acids, and (D) decarbonylation of nondecanone to Cg bio-hydrocarbon.
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(via decarboxylation) as well as octadecane in minor amounts
(via cross-ketonization). However, the observed lower carbon
balance indicates that insufficient hydrogen addition may
suppress the ketonization of unsaturated feedstock while
leading to undesired polymerization and oligomerization
reactions.”

To address this limitation, a two-step process involving the
prehydrogenation of the unsaturated fatty acid feedstock fol-
lowed by the ketonization-deoxygenation reaction could
improve the bio-hydrocarbon yield and increase the carbon
balance.”* Additionally, increasing the availability of molecular
hydrogen or enhancing the decomposition of the formic acid
hydrogen donor through modifications to the catalysts' hydro-
genation activity could minimize radical formation, promote
substrate saturation, and subsequently enhance the ketoniza-
tion pathway.*

3.4. Catalyst stability over time

Catalyst sintering and active phase agglomeration are common
challenges in Ni-based catalytic deoxygenation systems. Adding
a promoter can increase the uniformity of active phase disper-
sion by decreasing the particle size and enhancing the metal-to-
support interactions. A study on TOFA deoxygenation using Ni/

View Article Online

Paper

ZrO, and V-Ni/ZrO, over 5, 10, and 15 h time frames high-
lighted the effect of vanadia modification on the performance of
the Ni catalyst over time. The desired bio-hydrocarbons were
generated with a conversion rate above 89% over both catalysts.
Increasing the catalyst time beyond the 5 hours threshold
improved the efficacy of both catalysts; nevertheless, the
emergence of shorter-chain bio-hydrocarbons over the Ni/ZrO,
catalyst signals catalyst deactivation over time at high temper-
atures. At 15 h (100% conversion), higher degrees of cracking
bio-hydrocarbons and wide product distributions were exam-
ined with <C,, bio-hydrocarbons identified (Fig. 6). Interest-
ingly, the V-Ni/ZrO, catalyst displayed increased production of
Cig bio-hydrocarbon selectivity with time (~16%), indicating
that the catalyst is still active after 15 h (Fig. 7). Octadecanol and
nonadecanone were observed in significant quantities (~40%
selectivity), indicating that the reaction favours ketonization
over time. Other identified products (via GC-MS) include octa-
decene, nonadecene, and 17-pentatriacontene, indicating
alternative reaction pathways such as decarbonylation, hydro-
deoxygenation, and self-ketonization (Fig. S71). The addition of
V,Os to the catalyst structure resulted in greater nickel disper-
sion, improved structural stability (via strong metal-support
interactions), and an optimal combination of the acidic nature
of Ni and the redox properties of V, yielding well-balanced acid-

arene
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Fig.6 Ni/ZrO,-catalysed deoxygenation products at 15 h, showing green diesel (C1;—C1g), some green gasoline (Co) bio-hydrocarbons, and fatty

ketone product distribution.
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Fig. 7 V-Ni/ZrO,-catalysed deoxygenation products at 15 h, showing green diesel range bio-hydrocarbon, fatty alcohol and fatty ketone

product distribution.
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Fig. 8 C{*H} NMR spectra of the deoxygenation products over (a) NiZrO, and (b) V=Ni/ZrO, catalysts.

base characteristics that are favourable for the deoxygenation of influence TOFA conversion and product yield. Additional

carboxylic acids.”® These selectivity changes reveal active site characterization using ">C{"H} NMR confirmed the formation
modifications (such as surface poisoning and reconstruction) of ketone bio-hydrocarbons over the Ni/ZrO, and V-Ni/ZrO, at
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6 = 206.6 ppm and 209.1 ppm (C), respectively. The vanadia-
promoted deoxygenation reaction also signals the presence of
fatty alcohol with a signal at 65.8 ppm (which is not observed
over the unmodified nickel catalyst). Interestingly, the less
selective nature of the Ni/ZrO, catalyst is made clear by the
multiple olefin signals in the range 139-114 ppm, indicating
that side reactions like isomerization, decarbonylation, and
possible cyclization occur (Fig. 8).

4. Conclusion

In this paper, we demonstrate the effective ketonic decarbox-
ylation ability of the vanadia-modified Ni/ZrO, catalyst. The
cross-ketonization of fatty acid feedstock with acetic acid
exhibited 64% selectivity for 2-nonadecanone at optimum 350°
C/5 h using formic acid as a hydrogen carrier. Initially, low
hydrocarbon selectivity was observed due to the high degree of
unsaturation in the raw material.®* The addition of minimal
molecular hydrogen (10 bar) to aid formic acid in the hydro-
genation and subsequent ketonization of the substrate
improved selectivity towards C,; (20.2% mole yield) and C, bio-
hydrocarbons (7.7% mole yield). The addition of a V,Os-
promoter to the Ni/ZrO, catalyst resulted in a reduction in the
active phase particle size and an improvement in Ni dispersion,
ultimately leading to higher bio-hydrocarbon selectivity (C,; =
30.2%; Ci3 = 9.4%). This is attributed to the synergy between
the enhanced Ni acid sites and high oxygen vacancies on the
vanadia surface, generating a durable effective catalyst.

The influence of the fatty acid degree of saturation and chain
length on the catalyst performance was evaluated. Enhanced
bio-hydrocarbon selectivity was observed over the more satu-
rated palm oil substrate. In contrast, highly saturated fatty acid
feed (e.g., DCOFA and TOFA) led to decarboxylation and sug-
gested side reactions such as polymerization. Catalyst stability
testing was also carried out by increasing the reaction time and
observing the product distribution at different intervals; Ni/
ZrO, displayed high conversion, although the selectivity was
compromised, resulting in the appearance of cracking prod-
ucts. Inversely, the V-promoted catalyst increased C;g selectivity
and ketonization by-products.

These findings suggest that a pre-hydrogenation treatment
influences the deoxygenation of unsaturated crude fatty
carboxylic acids. The reaction typically favours the decarboxyl-
ation pathway, which affords lower energy-dense carbon chains
(Cp_1)- At low catalyst loads (<10 wt%), the cross-ketonization of
fatty acid feedstock with readily available and cost-effective
acetic acid is a promising method for generating C,g (via keto-
nization-decarbonylation) and C;4 bio-hydrocarbons (via keto-
nization-hydrodeoxygenation), as well as fatty ketones and fatty
alcohols that can be applied in jet fuel, biodiesel, and lubricant
production. Furthermore, vanadium incorporation into the
catalyst structure enhances Ni dispersion and increases the
density of oxygen vacancy sites, thereby improving deoxygen-
ation efficiency and catalyst stability. Other notable reaction
products include the self-ketonization of tall oil fatty acids
(TOFAs) to produce 17-pentatriacontene, a high-value compo-
nent in lubricant applications, and the self-ketonization of
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acetic acid to generate acetone, an essential solvent and
industrial chemical.

While the products are distributed between bio-hydrocar-
bons, fatty ketones, and fatty alcohols, optimizing the vanadia
loading to achieve monolayer coverage and increasing the Ni
loading could promote bio-hydrocarbon production. Varying
the Ni-to-V ratio could also improve ketone formation, as well as
subsequent decarbonylation (to give C;5) and hydrogenation (to
give Cy9). The synergy between the inexpensive vanadium and
nickel shows promise as an industrial deoxygenation catalyst.
Further optimization of the catalyzed ketonization process
promises economically viable products with valuable outputs.
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