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Artificial intelligence (Al) is increasingly shaping modern healthcare by improving the accuracy and
efficiency of disease diagnosis. This review summarises the modern advancements in Al-driven diagnostic
technologies, with a focus on machine learning (ML) and deep learning (DL) applications for the detection
and characterization of cancer, cardiovascular diseases, diabetes, neurodegenerative disorders, and bone
diseases. Al models, particularly those employing convolutional neural networks, have demonstrated
expert-level performances in interpreting medical images, genomic profiles, and electronic health records,
often surpassing traditional diagnostic methods in terms of sensitivity, specificity, and overall accuracy.
Using advanced methods like machine learning and deep learning, Al systems can analyze large and
complex medical datasets—including images, electronic health records, and laboratory results—to detect
patterns linked to various diseases. While integration of Al into clinical practice has shown significant
benefits, challenges remain in ensuring the reliability, interpretability, and broad adoption of these systems.
Thus, continued research and careful implementation are needed to maximize the potential of Al in
transforming diagnostic processes and improving patient outcomes.
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1. Introduction

Artificial intelligence (AI) has become a groundbreaking
technology in medical diagnostics, providing enhanced
analysis of multifaceted clinical data and assisting in
precise and effective decision-making for the diagnosis of
various  diseases.  Artificial  intelligence  (AI)  has
progressively become a more useful and reliable tool for
multiple applications, particularly in healthcare. By
facilitating improved efficiency and organization, it has
the potential to enhance clinical practice, thus improving
patient care and outcomes. John McCarthy defined the
term artificial intelligence (AI) as “the science and
engineering of making intelligent machines”. Al started as
a simple series of “if, then rules” and has expanded and
developed over the years to include more complex
algorithms that achieve a similar performance to the
human brain." In the field of healthcare, the diagnosis of
a disease plays an important part, where any source or
circumstance that leads to pain, dysfunction, illness or,
eventually, the death of a human being is called a
disease. Disease diagnosis could be easy or tricky and
complicated depending on the area of disease. For
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numerous diseases, conventional diagnostic methods are
often manual and susceptible to human error.
Incorporating AI enables automated diagnosis, potentially
improving accuracy and minimizing mistakes when
compared with traditional human-based assessments. It
has gained attention due to its low cost, minimal need
for manpower, and limited infrastructure and equipment
requirements. Although extensive datasets are available,
there is a lack of effective tools capable of accurately
identifying patterns and making reliable predictions.?
Advanced algorithms are used by AI in a number of
healthcare domains, such as diagnosis support, treatment
planning, patient profiling, and disease prediction.®
Artificial Intelligence (AI) is basically a computational
system designed to carry out tasks that require human
intelligence, such as reasoning, learning, and decision-
making, often autonomously, while machine learning (ML)
is a subfield of AI, where algorithms learn patterns from
data to make predictions without any explicit
programming for each task. Deep learning (DL) is a
branch of ML using neural networks with multiple layers
to model complex data patterns, which is particularly
effective for large-scale and high-dimensional datasets
such as medical images. ML requires preprocessing of the
input data to determine results and avoid false
predictions, whereas DL requires dealing with large data
sets and development of a deep data structure with
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multiple processing layers. Similar to the neural networks
and connections in the human brain, “deep learning” is
skilled to automatically mine and learn features from “big
data” of healthcare (ie., genetics, imaging, healthcare
records, and most “-omics” data) through the use of a
multi-layered architecture known as convolutional neural
networks (CNNs).® CNNs are a type of deep learning
algorithm used in image processing, which have been
designed to replicate the functioning of biological neural
connections in the brain. A CNN consists of several layers
that examine an input image to identify patterns and
create specific filters.'”> Deep convolutional neural
networks (CNNs) show potential for highly variable tasks
across many object categories.®’ AI analyzes huge
datasets and recognises patterns that would be tough for
humans to detect, which has led to advances in various
horizons of healthcare.”*™ In CNN for diagnosis, the
input data is wusually multiple images for the
characterization of specific diseases such as MRI,
endoscopy, and sonography. The final results are produced
by the combination of all features by the fully connected
layers. Fig. 1 illustrates the key advancements in field of
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Al and their roles. These advancements play a significant
role in the development of a model/system for the
diagnosis of specific diseases.

One of the pioneering Al-based detection systems was
created using patient data provided by physicians and built
on a knowledge base consisting of approximately 600 rules,
ie., the “backward chaining” AI system called MYCIN
designed in the early 1970s.">'® MYCIN generated a list of
potential pathogens and recommended antibiotic treatments
tailored to the patient's body weight. Its rule-based
framework later served as the foundation for developing
other systems, such as EMYCIN. INTERNIST-1, a larger
medical base to help primary care physicians in diagnosis,
was later developed using the same framework as
EMYCIN.""” Various Al techniques, which include machine
learning and deep learning, are widely used in healthcare for
tasks such as disease diagnosis, drug discovery, and
identifying patient risk. To achieve accurate disease diagnosis
using AlI, a variety of medical data sources are essential,
including ultrasound, magnetic resonance imaging (MRI),
mammography, genomics, and computed tomography (CT)
scans.

*A deep learning architecture designed for spatial data
using convolutional layers to detect
hierarchical features,
based diagnostics.
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Fig. 1 Overview of key Al advancements in healthcare, including models and techniques like CNNs, LLMs, NLP, and medical imaging using Al, with

their core applications and roles in diagnostics and clinical workflows.
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2. Framework for Al in disease
detection modelling
2.1 Building prediction model

Artificial intelligence (AI) refers to the ability of machines to
learn in ways like humans, such as recognizing images and
patterns in complex situations. In healthcare, AI is
transforming how patient data is collected, processed,
analysed, and used to improve care.'®

System design is the core conceptual structure of any
system. It includes how the system is organized, how it
operates, and how it responds under different conditions.
Understanding system design helps users recognize its
capabilities and limitations. Before applying any algorithm,
real-world data must go through a preparation process to
ensure its quality.'® This is necessary because real-world data
often contains errors that must be addressed. Data pre-
processing involves cleaning, correcting, and organizing raw
data for better analysis. The data pre-processing includes
several steps. In data cleaning, techniques are used to fill
missing values or remove unwanted symbols. In data
integration, information is combined from various sources
and corrected for errors before use.””*! Data transformation
involves adjusting the data format or scale based on the
algorithm requirements. Normalization is often used here to
make the data consistent.>” This step is crucial for many data
mining techniques. After cleaning and transforming, the data
is refined and optimized, along with the symptoms of the
patient. Data reduction aims to shrink the dataset to a

Medical Dataset
(Symptoms, imaging and
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manageable size without losing valuable information. Once
prepared, the dataset is divided into training and testing sets.
The training data is used to identify patterns, while the
testing data evaluates the performance of the model, as
shown in Fig. 2.>> These sets usually come from the same
dataset. After data preparation, the next step is to assess the
accuracy of the model. Analytical models are then applied to
evaluate the likelihood of specific outcomes based on input
factors. These models are useful for predicting diseases by
analysing symptoms and past medical history.>***

2.2 Neural network for detection

A neural network functions by processing complex data
patterns, such as medical images and patient records,
through interconnected layers of artificial neurons. In disease
diagnosis, this enables the network to automatically extract
meaningful features and learn associations between input
data (e.g., X-rays, MRIs, and lab results) and disease states,
often detecting subtle abnormalities that may be missed by
traditional methods (Fig. 3).

A neural network for disease diagnosis is structured in
layers. The initial input layers analyze basic features from
medical images or data, such as edges and simple shapes,
and the results are called feature maps, which represent
where and how strongly certain features appear in the image.
As the data moves through deeper layers, the network detects
more complex patterns and combinations of features. The
pooling layer decreases the size of these feature maps by
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Fig. 2 Framework to understand the development of diagnostic systems/models. Visual model for disease detection using machine learning and
deep learning methods, which shows the framework of the disease detection system. Before training the model, the data should be pre-processed
and filtered accordingly with symptoms. After that, model training begins to evaluate the test data. The test data also must be pre-processed and
filtered before the evaluation. Once the model starts prediction, the results are analyzed and compared with the validated data to determine the
sensitivity, specificity, and other evaluation parameters, which are discussed in the upcoming sections.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Sens. Diagn., 2025, 4,1047-1059 | 1049


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sd00146c

Open Access Article. Published on 08 October 2025. Downloaded on 2/16/2026 3:27:32 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Critical review

Feature maps

View Article Online

Sensors & Diagnostics

Fully - Connected layer

Output layer

R

Scanning
: ) Fl
' |
|
Images g oF aL
B0 e——— U 4]
Convolution Pooling Convolution

Fig. 3 Basic functioning of neural networks for disease diagnosis.

summarizing the information in small regions. The final
layer interprets these patterns to help determine if a disease
is present and, if so, which one. This layered approach
enables the network to process and interpret medical
information efficiently, supporting accurate and rapid
diagnosis.

2.3 Model evaluation parameters

For every diagnostic system, there are certain parameters
commonly used in the evaluation and interpretation of
artificial intelligence (AI) models for medical diagnosis,
enabling readers to better understand the performance and
reliability of the presented diagnostic system. Clarifying these
concepts is essential for transparently communicating the
strengths, limitations, and clinical relevance of Al-based

Table1 Common metrics in Al diagnostic results

Pooling

diagnostic tools. They are used to explain the results of their
scientific findings, along with their explanation and examples
(Table 1).

Apart from them, some other parameters that have been
used in neural network architectures for medical diagnosis
are convolutional layers, which extract features from imaging
data using filters, and activation functions such as ReLU
(rectified linear wunit) that introduce non-linearity by
outputting positive values unchanged and zeroing negatives.
Pooling layers, such as average pooling, help shrink the
spatial size of feature maps, while conserving significant
information. Dropout layers help prevent overfitting by
randomly disengaging neurons during training. Collectively,
these metrics and neural network components enable
systems such as GRAIDS and TumorDetNet to achieve expert-
level diagnostic accuracy, streamline clinical workflows, and

Term Explanation

Example

Sensitivity (true positive
rate)

Specificity (true negative
rate)

Accuracy

AUC-ROC (area under the
receiver operating
characteristic curve)
Positive predictive value
(PPV)

Negative predictive value
(NPV)

Cohen's kappa

1050 | Sens. Diagn., 2025, 4,1047-1059

Calculates the percentage of real positives that the
model correctly identified. High sensitivity reduces the
chance of missed diagnoses

Calculates the percentage of real negatives that were
correctly identified. High specificity reduces false
positives

Percentage of accurate predictions the model made,
including both true positives and true negatives

Checks model performance across all classification
thresholds; the higher the value, the better the
distinction between classes

The likelihood that individuals who test positive
actually have the disease

The likelihood that individuals who test negative
actually do not have the disease

A statistical measure of inter-rater agreement adjusted
for chance; values >0.6 indicate moderate to
substantial agreement

8428 endoscopic images achieved sensitivity of 98%,
which means 98% of people with the disease will be
correctly identified as positive®®

OsteoSight achieved specificity of 0.852 for detection,
which means it is 85.2% accurate at identifying healthy
individuals®’

Random forest achieves 93% accuracy in predicting stroke
recurrence risk, which means 93% of all test results (both
positive and negative) are correct*®

X-rays, achieved an AUROC of 0.834 (95% CI: 0.789-0.880)
compared to DXA*’

PPV of 0.814 for GRAIDS vs. 0.974 for competent
endoscopists, stating 81.4% chance that the person truly
has the disease”

GRAIDS achieved a high negative predictive value (0.978),
comparable to experts (0.980), meaning there is 97.8%
chance the person truly does not have the disease®
Cohen's kappa of 0.62, comparable to the range of 23
expert uropathologists of (0.60-0.73), where <0: poor,
0.01-0.20: slight, 0.21-0.40: fair, 0.41-0.60: moderate,
0.61-0.80: substantial, 0.81-1: almost perfect®®

© 2025 The Author(s). Published by the Royal Society of Chemistry
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enhance outcomes in oncology. Understanding these terms
will help in understanding the results and conclusions drawn
by researchers in their diagnostic studies.

3. Diseases diagnosis

This section presents recent and notable advancements in
the diagnosis of several major diseases through machine and
deep learning approaches. It explores the prediction methods
and their outcomes for conditions such as cancer, diabetes,
heart disease, neurodegenerative disease, and bone disease
detailing the diagnostic methods enabled by these
technologies.

3.1 Diagnosis of cancer

Cancer is one of the most complicated diseases humankind
has faced. Recent developments in ML and DL have taught Al
systems to analyse medical images, genomic data, clinical
reports and electronic health records with high sensitivity
and specificity. Early diagnosis can prevent the further
development of cancerous cells if proper treatment is
provided on time. Among researchers, the diagnosis of
cancer has been one of the biggest obstacles. There are
several AI models that help in the prediction or recurrence of
cancer. One of them is METACANS, a multimodal artificial
intelligence (AI) model that integrates whole screen images
with clinicopathological features to predict axillary lymph
node (ALN) metastasis. METACANS was developed using data
from 1991 cases and validated externally on five different
cohorts comprising 2166 cases. It recorded an area under the
curve (AUC) of 0.733 (95% CI, 0.711-0.755), negative
predictive value of 0.846, sensitivity of 0.820, specificity of
0.504, and balanced accuracy of 0.662. Even without extra
labelling or annotation, METACANS can detect features such
as micropapillary growth, infiltrative patterns, and tissue
necrosis through pathological imaging linked to metastatic
behaviour. This highlights its potential in supporting
preoperative axillary evaluation in breast cancer.* Apart from
breast cancer and its metastasis, another study leveraged
deep neural networks to automate the detection and grading
of prostate cancer in needle biopsy samples of a group of
people with the same characteristics. This was a population-
based STHLM3 diagnostic study of 6682 slides from 976
participants and external validation datasets. The AI system
demonstrated an exceptional distinguishing performance,
achieving an AUC-ROC of 0.997 (95% CI 0.994-0.999) for
identifying benign from malignant cores in internal testing
and 0.986 (0.972-0.996) on external validation. Tumor extent
predictions showed strong correlation with pathologist
measurements (r = 0.96 internal, r = 0.87 external) and or
Gleason grading, and AI achieved a mean pairwise Cohen's
kappa of 0.62, which is comparable to the range of 23 expert
uropathologists (0.60-0.73). These results suggest that the
system could reduce pathology workloads and provide expert-
level grading consistency.’"**

© 2025 The Author(s). Published by the Royal Society of Chemistry
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A wide range of images can be used to train a model for
diagnosis, for example, using 1036496 endoscopy images
from 84424 individuals across six Chinese hospitals, the
gastrointestinal artificial intelligence diagnostic system
(GRAIDS) was developed and validated for detecting upper
gastrointestinal cancers. GRAIDS showed high diagnostic
accuracy across validation sets, as follows: 0.955 (95% CI
0.952-0.957) in internal validation, 0.927 (0.925-0.929) in
prospective testing, and 0.915-0.977 in external validation.
Compared to experts and endoscopists, GRAIDS matched the
expert-level sensitivity (0.942 vs. 0.945; p = 0.692) and beat
competent (0.858; p < 0.0001) and trainee (0.722; p < 0.0001)
endoscopists. Although its positive predictive value (0.814)
lagged competent endoscopists (0.974), GRAIDS achieved a
high NPV (0.978), which is comparable to experts (0.980).>
To determine whether the tumour is malignant or benign, a
system was developed to detect upper gastrointestinal
subepithelial lesions (SELs) on endoscopic ultrasonography
(EUS) images, prioritizing the differentiation of
gastrointestinal stromal tumors (GISTs) from benign lesions.
They trained the model with 16110 EUS images from 631
pathologically confirmed cases. The system achieved an
accuracy of 86.1%, outperforming all endoscopists. In
distinguishing GISTs from non-GISTs, it demonstrated 98.8%
sensitivity, 67.6% specificity, and 89.3% accuracy, surpassing
everyone.*® These models can help physicians and healthcare
providers in treatment.

Apart from that, a system was trained to detect tumor-
infiltrating lymphocytes (TILs) in testicular germ cell tumors
for prognosis. Manual TIL annotations from 259 regions
across 28 hematoxylin-eosin-stained whole-slide images
(WSIs) were used to train the algorithm, and then it was
tested, which was subsequently applied to WSIs from 89
patients. This AI showed potential for better early
prognosis.®® The use of transfer learning and deep learning
in an IoT (internet of things) system has helped to assist
doctors in the diagnosis of melanoma or skin cancer. The
CNN models used included neural architecture search
network (NASNet), dense convolutional network (DenseNet),
visual geometry group (VGG), MobileNet, inception, residual
networks (ResNet), inception-ResNet, inception
(Xception), the Bayes, random forest (RF), support vector
machines (SVM), K-nearest neighbors (KNN) and perceptron
multilayer (MLP) for the classification of injuries. Among the
combinations, the DenseNet201 extraction model, combined
with the KNN classifier achieved an accuracy of 96.805% for
the ISBI-ISIC (examined lesions between nevi and
melanomas) dataset and 93.167% for the PH2 (based on
lesions of common nevus, atypical nevi, and melanomas).**
An AI model was developed using a Single Shot Multibox
Detector (SSD) and 523 OSCC images and tested on 66 OSCC,
49 leukoplakia, and 405 other oral disease images to detect
oral squamous cell carcinoma (OSCC) and dysplastic
leukoplakia from 1043 clinical images captured with a single-
lens reflex camera. For OSCC-only detection, it achieved
93.9% sensitivity, 81.2% specificity, and 98.8% negative

extreme
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predictive value (NPV). When simultaneously detecting both
OSCC and leukoplakia, its performance remained robust with
83.7% sensitivity, 94.5% NPV, and maintained 81.2%
specificity. The proposed method could diagnose oral cancer
and leukoplakia with higher accuracy and reliability and can
help in avoiding unnecessary biopsies (Fig. 4).%°

3.2 Diagnosis of diabetes

Diabetes is a chronic disease where the body cannot properly
regulate blood sugar levels either due to insufficient insulin
production or the inability of the body to use insulin
effectively. Currently, diabetes is most often diagnosed using
a blood test; however, the early diagnosis of diabetes is
crucial and it significantly reduces the risk of severe
complications such as heart disease, kidney failure, nerve
damage, and vision loss, and can even lower rates of
hospitalization and death. One study explored how nonlinear
heart rate variability (HRV) parameters can be used to predict
diabetes employing artificial neural networks (ANN) and
support vector machines (SVM). Electrocardiogram (ECG)
signals from two groups of male Wistar rats, i.e., healthy
controls and those made diabetic through streptozotocin
administration, were collected by researchers. Each group
had five rats, aged between 10 to 12 weeks and weighing
around 200 grams. According to the ECG recordings, a total
of 526 data samples was generated, and thirteen nonlinear

View Article Online
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HRYV features were extracted from them. Then, these features
were used to train and test an ANN model with a structure of
13 input neurons, 7 hidden neurons, and 1 output neuron.
They achieved a classification accuracy of 86.3% at a learning
rate of 0.01. When the same features were applied to an SVM
classifier, it improved with accuracy of 90.5%. The findings
indicate that diabetes causes noticeable changes in nonlinear
HRV patterns, and it can help us in early prognosis.®’
Another approach for classifying heart rate variability
(HRV) signals to distinguish between diabetic and healthy
individuals was done using a deep learning-based system.
Utilizing models such as long short-term memory (LSTM),
CNN with a hybrid CNN-LSTM architecture, this method was
developed to capture the complex temporal patterns present
in HRV data. After feature extraction, these representations
are provided into a support vector machine (SVM) for the
final classification task. The integration of SVM led to slight
performance improvements of 0.03% for CNN and 0.06% for
the CNN-LSTM combination compared to previous models
without SVM. The system achieved a high classification
accuracy of 95.7%, indicating its strong potential as a
diagnostic aid for detecting diabetes using ECG-derived HRV
signals.*® To predict the type 2 diabetes mellitus (T2DM) risk,
a system was developed by a machine learning framework
using six classification algorithms. Evaluated on two datasets,
a custom 18-question survey dataset and the standard PIMA
Indian Diabetes Database, the models were compared using

/ Base training stage

Input Dataset

(PASCAL VOC) Pre training

4

KFine tuning stage

Input Dataset
(Images of
Oral Cancer)

Single Shot Multibox Detector (SSD)

INPUT

Close examination
required

Region selection

DETECTION MODEL

OUTPUT

Close examination
required

Region of
interest

Unnecessary

Fig. 4 SSID detector for the diagnosis of oral cancer. It outlines the detection model construction. The deep neural network is pretrained using
the large-scale PASCAL-VOC 20128 dataset. Later, the model is fine-tuned with images of oral cancer, and the model is constructed using a deep
learning method. The model is trained to detect targets of regions of oral cancer and leukoplakia in each image (red frame) drawn by an oral
surgeon. The red boxes in the images represent the location of the lesions as annotated by an oncologist. This model can be used to identify the
presence and location of oral diseases that require close examination by inputting the oral image.
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accuracy, precision, recall, and sensitivity. Random forest, an
ensemble learning method that generates multiple decision
trees, and merging their outputs to improve the prediction
accuracy and reduce overfitting, making it especially effective
for complex classification problems such as diabetes risk
prediction outperformed others. It achieved 94.10% accuracy
on the custom dataset and the highest accuracy on the PIMA
dataset.*®

3.3 Diagnosis of heart-related diseases

Heart diseases are conditions that affect the heart and blood
vessels, including problems such as blockage in arteries,
irregular rhythm of heartbeats, and weakness in heart
muscle. These diseases are the leading cause of death
worldwide and can develop silently over time or present
suddenly with symptoms such as chest pain and shortness of
breath. Currently, heart-related diseases are mainly
diagnosed using tests such as electrocardiograms (ECG/EKG),
echocardiograms, and blood tests to check for markers of
heart damage or risk factors. With a sensitivity of 94.2%,
accuracy of 99.37% and specificity of 99.66%, a 1D-
convolutional neural network model (1D-CNN) was developed
for the detection of arrhythmia, a heart disease. This Al is
fast, accurate and simple to use.** To understand and
diagnose hypertension, a study analyzed health examination
data (2005-2016) from 18258 individuals, focusing on health
parameters recorded at hypertension diagnosis [Year (0)] and
during two preceding annual visits [Year (-1) and Year (-2)].
Machine learning models (XGBoost, ensemble) and
traditional logistic regression were applied to predict the
XGBoost is an advanced gradient boosting
algorithm designed for speed and performance, while
ensemble methods combine multiple models to improve the
predictive accuracy and robustness. The data were randomly
partitioned into a derivation cohort (75%, n = 13694) for
model training and a validation cohort (25%, n = 4564) for
performance evaluation. This ML-based approach achieved a
strong predictive performance, with AUC-ROC scores of 0.877
(XGBoost) and 0.881 (ensemble model) in validation. These
results surpassed traditional statistical methods such as
logistic regression, highlighting the advantage of advanced
algorithms in identifying subtle risk patterns.*'

Between 2008 and 2016, researchers compared 709
patients with idiopathic pulmonary arterial hypertension
(IPAH) to over 2.8 million similar patients without IPAH. They
built a prediction model using information such as how
often patients saw specialists, other diagnoses, and age.
When tested, this model was very specific (99.99%) but not
highly sensitive (14.10%), meaning it rarely detects people
incorrectly but missed many true cases.”> An Al system was
developed with the aim to reduce stroke recurrence risk
through a real-time patient monitoring framework. By
tracking critical biomarkers (e.g., blood pressure, heart rate
variability, and neurological indicators) via wearable sensors,
the system employs machine learning classification

outcomes.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Critical review

algorithms to detect deviations from baseline parameters and
provide automated alerts. Tree-based ensemble methods
such as random forest achieved 93% accuracy in predicting
risk thresholds.®® Nowadays, there are many wearable
technologies that monitor heart rate, pulse rate, and blood
oxygen level using AI. Many Al systems developed for heart-
related diagnosis can be very efficient given that these
diseases have silent symptoms.

3.4 Diagnosis of bone-related diseases

Bone diseases are conditions that weaken the structure or
function of bones, such as osteoporosis, osteoarthritis,
Paget's disease, and osteogenesis imperfecta, making them
more prone to pain, deformity, and fractures. These disorders
can result from genetic factors, injury, poor nutrition, aging,
or underlying medical conditions and often progress silently
until considerable damage occurs. Thus, the early diagnosis
of bone diseases is essential because it improve treatment
outcomes, maintain mobility and independence and can
prevent further damage. One recent study demonstrated that
OsteoSight™, an AI tool for detecting low bone mineral
density (BMD) from routine hip/pelvic X-rays, achieved an
AUROC of 0.834 (95% CI: 0.789-0.880) compared to DXA,
with the specificity of 0.852 (minimizing false positives) and
sensitivity of 0.628 (moderate true positive detection). These
results are significant given that OsteoSight™ can address
critical gaps in osteoporosis screening by enabling
opportunistic detection during routine imaging. Early
identification of at-risk patients may reduce fracture-related
morbidity and healthcare costs.”” One of the studies explored
the application of deep learning to orthopedic radiographs.
They used 256000 wrist, hand, and ankle images from a
hospital database. Later, they categorized images into four
classes of fractures, laterality (left/right), body part, and exam
view. Five publicly available deep learning models were
adapted and trained on this dataset, with the highest-
performing network evaluated against a gold standard for
fracture detection, and the performance of the model was
compared to assessments by two experienced orthopedic
surgeons, who analyzed the images at the same resolution as
the algorithm. The results showed that all the networks
achieved >90% accuracy in recognizing laterality, body part,
and exam view. The top model demonstrated 83% accuracy
in fracture detection, matching the diagnostic performance
of experienced surgeons under standardized conditions. The
interobserver agreement between surgeons, measured via
Cohen's kappa, was 0.76, indicating substantial consistency.
This system outperformed the specialist, proving to be an
efficient and reliable detection system.*’

A team of researchers developed a high-throughput bone-
on-a-chip system that replicates the natural bone
environment for evaluating osteoporosis treatments. This
platform integrates mouse osteocytes and osteoblasts co-
cultured within a 3D osteoblast-derived decellularized
extracellular matrix (OB-dECM), offering a more biologically
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accurate model than standard collagen-based systems. The
engineered microenvironment significantly improved the cell
survival, osteocyte development, and expression of osteogenic
markers. To validate its utility, the system was used to assess
the therapeutic effect of an anti-SOST antibody, a drug
relevant to osteoporosis treatment, by measuring f-catenin
nuclear translocation in osteoblasts. The results showed a
notable increase in both B-catenin intensity and nuclear
presence in the treated samples.**

3.5 Diagnosis of neurodegenerative diseases

Neurodegenerative diseases are conditions where nerve cells
in the brain or nervous system gradually lose function and
die, leading to problems with movement, memory, or
thinking. These diseases, such as Alzheimer's, Parkinson's,
Huntington's, and ALS, typically worsen over time and are
more common as people age. Currently, neurodegenerative
diseases are diagnosed using a combination of clinical
assessments, neuropsychological tests, and advanced tests
such as brain imaging (MRI and PET) or analysis of
biomarkers in blood or cerebrospinal fluid. Early diagnosis is
crucial because it enables timely interventions that can slow
disease progression, help maintain independence longer, and
improve the quality of life. In the case of Alzheimer's disease,
a study evaluated various automated classification techniques
for distinguishing Alzheimer's disease (AD) patients from
healthy individuals using FDG-PET imaging. The methods
assessed include the general linear model, scaled subprofile
modeling, and support vector machines (SVM). Among them,
the SVM combined with the Iterative Single Data Algorithm
achieved the highest performance, with a sensitivity of 0.84
and specificity of 0.95, validated through 10-fold cross-
validation.*”> One study explored the electroencephalography
(qEEG) as a biomarker for detecting functional brain changes
associated with Huntington's disease (HD), even before
noticeable motor or cognitive symptoms arise. Researchers
aimed to automatically differentiate between HD gene
carriers and healthy individuals using qEEG data and identify
EEG features that align with clinical indicators of disease
progression. The study involved 26 individuals carrying the
HD gene (average age 49.7 years) and 25 healthy controls
(average age 52.7 years), with EEG signals recorded for three
minutes while subjects were at rest. A statistical pattern
recognition approach was applied to a wide range of EEG
features to create an EEG-based classification index, which
was validated using 10-fold cross-validation. This index
ranged from 0 (normal) to 1 (indicative of HD), providing a
continuous measure of the disease state. The -classifier
achieved 83% sensitivity, 83% specificity, and 83% overall
accuracy, with an area under the ROC curve (AUC) of 0.9.
Employing AI and qEEG data, this can serve as a useful, non-
invasive biomarker for HD diagnosis and monitoring.*®
Diffusion tensor imaging (DTI) and diffusion kurtosis
imaging (DKI) are advanced MRI techniques used to identify
microstructural brain changes in conditions such as
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Alzheimer's disease. A group of researchers investigated
whether combining diffusivity and kurtosis parameters
enhances the ability of DKI to detect Alzheimer's-related
abnormalities more effectively than using either measure
alone. Using SVM, rigorous validation was performed to
ensure classifier reliability. Using the optimized classifiers,
brain abnormalities were identified in a sample of 53
individuals, including 27 diagnosed with Alzheimer's disease.
The combined approach achieved a high classification
accuracy of 96.23% and was more effective in identifying
abnormal brain regions than using diffusivity or kurtosis
alone despite the complementary nature of the two
measures.*’

In patients with amyotrophic lateral sclerosis (ALS), a
system was developed using clinical data with MRI-based
imaging through deep learning. A total of 135 ALS patients
was included, all of whom had MRI scans during their initial
outpatient visit. The patients were then closely followed over
time, and their survival durations were recorded. Based on
the survival time from the disease onset, participants were
categorized into short, medium, or long survival groups. For
the deep learning analysis, the dataset was divided into
training (83 patients), validation (20 patients), and testing (32
patients) sets. The models trained solely on clinical features
achieved a prediction accuracy of 68.8%, while models using
MRI-based structural connectivity or brain morphology each
reached 62.5%. Importantly, when all three data sources, i.e.,
clinical features, structural connectivity, and brain
morphology, were combined, the prediction accuracy
significantly improved to 84.4%. These results highlight that
the predictive value of MRI data in ALS prognosis can be
efficient.”® Although AI can detect based on smile and facial
features, a recent study demonstrated that combining facial
and speech features collected during natural conversations
with a chatbot, analyzed using machine learning, can
accurately distinguish individuals with Alzheimer's disease or
mild cognitive impairment from healthy controls; using 8
facial and 21 sound features, this system achieved a high
diagnostic accuracy (AUC = 0.94).*°

4. Comparative analysis

The comparative analysis illustrated in Table 2 shows
detailed information such as type of Al tool, disease type,
sample type, and the results of the work done by researchers
on different diseases.

5. Conclusions

Accuracy is vital in diagnosing diseases, given that it plays a
key role in treatment planning and ensuring patient health
and safety. Artificial intelligence (Al) is a broad and evolving
field made up of data, algorithms, deep learning, neural
networks, and analytical tools, which continues to adapt to
the growing needs of healthcare. A sew studies highlight the
importance of AI in identifying various illnesses and
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Sr. no. Al tool Disease Sample type Result References
1 DNNs Prostate cancer Slides from needle core biopsies AUC = 0.997 (95% CI 0.994-0.999) 50

on independent test dataset AUC =

0.986 (0.972-0.996) on external

validation
2 Deep convolutional Periodontal disease Panoramic dental radiographs 73.04% in detecting an alveolar 51

neural network (CNN)

bone loss total accuracy for the
multi-classification was 59.42%

3 PyCaret 2.3.10 Headache disorders Patients' questionnaire sheets Micro-average accuracy, sensitivity, 52
specificity, precision, and F-values
for the test dataset were 93.7%,
84.2%, 84.2%, 96.1%, and 84.2%,
respectively
4 EALAI-CFDNBD and Cognitive fatigue Neurophysiological bio signal data ~ Accuracy value of 97.59% 53
BOOA
5 LIDGAX Xanthogranulomatous Clinical, imaging, and laboratory AUC 0.95 and accuracy 0.92 54
cholecystitis (XGC) data
and gallbladder cancer
(GBC)
6 Deep neural network ~ Neurodegenerative Alpha-synuclein (aSyn) oligomers Overall accuracy score of 94.66% 55
disease and fibrils at various known ratios
using immunoassay-coupled
nanoplasmonic infrared metasurface
sensor
7 Ensemble technique Type-1I diabetes Questionnaire based data collection Accuracy of 97.34% 56
8 Single shot multibox  Oral cancer and Oral lesion images Sensitivity of 93.9% versus 83.7%, 36
detector (SSD)-deep dysplastic leukoplakia a negative predictive value of
learning 98.8% versus 94.5%, and a
specificity of 81.2% versus 81.2%
9 JustNN tool-C 4.5, Liver disease Indian liver patient dataset-583 99% accuracy 57

random forest, CART,
random tree, and REP
tree classification
method

10 Decision tree, random
forest, classification,
regression tree

11 Artificial neural
network (ANN)

Thyroid disease

Oral cancer (OC)

demonstrate how machine learning and deep learning are
applied in diagnosing different diseases, while others take a
closer look at how Al is being used to support the diagnosis
of wide range of health conditions, ranging from Alzheimer's
and cancer to diabetes, heart disease, stroke, and skin and
liver disorders. By reviewing different techniques and real-
world applications, we tried to understand not just how these
systems work, but where they show the most promise. Along
the way, we highlighted some of the common challenges in
diagnosing these diseases and how AI might help overcome
them. We also compared various approaches using
performance measures such as accuracy, sensitivity,
specificity, AUC, and F-score to get a clearer picture of what
is working best. In the end, this study points to a future
where AI can become a valuable partner in healthcare, not
replacing doctors, but helping them make faster, more
accurate decisions, especially in complex or early-stage cases.
Despite the progress made, accurate medical diagnosis still
faces challenges. These issues must be addressed to keep up
with the discovery of new diseases and to improve treatment.
Although AI holds great promise, many healthcare providers

© 2025 The Author(s). Published by the Royal Society of Chemistry

Thyroid disease dataset

SERS spectra of exhaled breath

instances based on ten different
biological parameters

Decision tree: 98%, random forest: 58
99%

Accuracy of 99% (AUC) of 0.996 59

remain cautious and do not fully rely on AI systems due to
doubts about their reliability in detecting diseases and
interpreting symptoms. Therefore, it is still necessary to
improve and train AI models to enhance their accuracy in
disease prediction. Al can never be a medical professional
but it can assist them in delivering accuracy and save their
efforts. To assure how Al models works against real-life cases,
many researchers have created an extensive dataset with
patient profiles, each containing details such as age, gender,
risk factors, and specific symptoms. Using this data, they
trained and tested several models including decision tree,
random forest, naive Bayes, logistic regression, and K-nearest
neighbors. Each model was fine-tuned and validated through
10-fold cross-validation, confusion matrices, ROC-AUC, and
precision-recall curves, ensuring that they could handle both
well-balanced and tricky, imbalanced data scenarios. To see
how the models work with real-world cases, the teams tested
them using clinical vignettes, which are realistic medical
scenarios designed to simulate everyday hospital challenges
and most of them provide outstanding accurate results.
These AI solutions with accurate efficiency assist
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professionals to deliver early diagnosis and are making a real
difference in the way everyday healthcare is delivered.
Looking ahead, AI research should focus on solving these
shortcomings to strengthen the collaboration between AI
tools and healthcare professionals. A major obstacle for Al in
healthcare is the limited interpretability of complex models,
which often function as “black boxes” and offer little
understanding of how decisions are made. This lack of clarity
reduces the confidence of clinicians and makes it difficult to
justify results and interpretation in real clinical settings. To
tackle both transparency and privacy concerns, federated
learning (FL) has gained attention given that it allows
multiple healthcare institutions to collaboratively train AI
models without sharing sensitive patient data. Kumar et al.
and team showed that combining explainable AI (XAI)
techniques such as SHAP with FL enable interpretable and
privacy-preserving prediction of Parkinson's disease.
Similarly, Li et al introduced federated neural additive
models (FedNAMs), which break down neural networks into
feature-specific components, helping clinicians visualize how
each input contributes to a diagnosis, while maintaining data
security. Together, these studies show that integrating
interpretability into FL frameworks can enhance the trust,
transparency, and responsible use of Al in clinical practice.
Moreover, using decentralized federated learning models can
allow different medical centres to build shared Al training
systems using local data, helping with early disease detection
even in remote areas. Some challenges such as the quality
and quantity of training data may affect the precision of Al-
based diagnostic tools. Applying AI in healthcare also raises
ethical questions due to potential biases in algorithms and
the possibility of losing jobs for healthcare professionals.®®
Al relies heavily on the quality and completeness of the data
it is trained on. Consequently, if the training data lacks
sufficient information or contains errors, the system may
produce inaccurate disease predictions. This can lead to
serious consequences for patients, given that AI cannot
always guarantee the reliability of its diagnostic output.
Despite growing interest and research in this field, the
integration of AI into routine clinical practice is still limited,
with many solutions remaining in the development or
prototype phase.®” "

Conflicts of interest

The authors declare no conflict of interest.

Data availability

No new data were created or generated for this manuscript. It
is a review article.

Acknowledgements

We sincerely thank all the members of the DB lab for
critically reading the manuscript and providing their

1056 | Sens. Diagn., 2025, 4,1047-1059

View Article Online

Sensors & Diagnostics

feedback. The work in the host lab is funded by IITGN,
ANRF-CRG, GSBTM, M0OES-STARS, and CCRH-MoA, Gol.

References

1 V. Kaul, S. Enslin and S. A. Gross, History of artificial
intelligence in medicine, Gastrointest. Endosc., 2020, 92(4),
807-812, Available from: https://www.sciencedirect.com/
science/article/pii/S0016510720344667.

2 S. Kaur, J. Singla, L. Nkenyereye, S. Jha, D. Prashar and G. P.
Joshi, et al.,, Medical Diagnostic Systems Using Artificial
Intelligence (AI) Algorithms: Principles and Perspectives,
IEEE Access, 2020, 8, 228049-228069.

3 N. Ghaffar Nia, E. Kaplanoglu and A. Nasab, Evaluation of
artificial intelligence techniques in disease diagnosis and
prediction, Discov. Artif. Intell., 2023, 3(1), 5, DOIL: 10.1007/
$44163-023-00049-5.

4 D. G. Vinsard, Y. Mori, M. Misawa, S. e. Kudo, A.
Rastogi and U. Bagci, et al, Quality assurance of
computer-aided detection and diagnosis in colonoscopy,
Gastrointest. Endosc., 2019, 90(1), 55-63, Available from:
https://www.sciencedirect.com/science/article/pii/
$001651071930210X.

5 S. A. Hoogenboom, U. Bagci and M. B. Wallace, Artificial
intelligence in gastroenterology. The current state of play
and the potential. How will it affect our practice and when?,
Tech. Innov. Gastrointest. Endosc., 2020, 22(2), 42-47,
Available from: https://www.sciencedirect.com/science/
article/pii/$1096288319300737.

6 S. Ioffe and C. Szegedy, Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift,
in Proceedings of the 32nd International Conference on
Machine Learning [Internet], ed. F. Bach and D. Blei,
Proceedings of Machine Learning Research, Lille, France,
2015, vol. 37, pp. 448-456, Available from: https://
proceedings.mlr.press/v37/ioffe15.html.

7 C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed and D.
Anguelov, et al., Going deeper with convolutions, in 2015
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1-9.

8 A. Krizhevsky, I. Sutskever and G. E. Hinton, ImageNet
Classification with Deep Convolutional Neural Networks, in
Advances in Neural Information Processing Systems [Internet],
ed. F. Pereira, C. J. Burges, L. Bottou and K. Q. Weinberger,
Curran Associates, Inc., 2012, Available from: https://
proceedings.neurips.cc/paper_files/paper/2012/file/
€399862d3b9d6b76c8436€924a68c45b-Paper.pdf.

9 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna,
Rethinking the Inception Architecture for Computer Vision,
arXiv, 2015, preprint, arXiv:1512.00567, DOI: 10.48550/
arXiv.1512.00567.

10 K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning
for  Image Recognition, arXiv, 2015, preprint,
arXiv:1512.03385, DOI: 10.48550/arXiv.1512.03385.

11 Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature,
2015, 521(7553), 436-444, DOI: 10.1038/nature14539.

© 2025 The Author(s). Published by the Royal Society of Chemistry


https://www.sciencedirect.com/science/article/pii/S0016510720344667
https://www.sciencedirect.com/science/article/pii/S0016510720344667
https://doi.org/10.1007/s44163-023-00049-5
https://doi.org/10.1007/s44163-023-00049-5
https://www.sciencedirect.com/science/article/pii/S001651071930210X
https://www.sciencedirect.com/science/article/pii/S001651071930210X
https://www.sciencedirect.com/science/article/pii/S1096288319300737
https://www.sciencedirect.com/science/article/pii/S1096288319300737
https://doi.org/10.48550/arXiv.1512.00567
https://doi.org/10.48550/arXiv.1512.00567
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1038/nature14539
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sd00146c

Open Access Article. Published on 08 October 2025. Downloaded on 2/16/2026 3:27:32 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Sensors & Diagnostics

12

13

14

15

16

17

18

19

20

21

22

23

M. I. Jordan and T. M. Mitchell, Machine learning: Trends,
perspectives, and prospects, Science, 2015, 349(6245),
255-260, DOI: 10.1126/science.aaa8415.

K. VanLEHN, The Relative Effectiveness of Human Tutoring,
Intelligent Tutoring Systems, and Other Tutoring Systems,
Educ. Psychol, 2011, 46(4), 197-221, DOIL 10.1080/
00461520.2011.611369.

A. Esteva, B. Kuprel, R. A. Novoa, ]J. Ko, S. M. Swetter and
H. M. Blau, et al., Dermatologist-level classification of skin
cancer with deep neural networks, Nature, 2017, 542(7639),
115-118, DOI: 10.1038/nature21056.

E. Shortliffe, Mycin: A Knowledge-Based Computer Program
Applied to Infectious Diseases*, Proceedings the Annual
Symposium on Computer Application [sic] in Medical Care
Symposium on Computer Applications in Medical Care, 1977
Jun.

E. Shortliffe, Mycin: A Knowledge-Based Computer Program
Applied to Infectious Diseases*, Proceedings the Annual
Symposium on Computer Application [sic] in Medical Care
Symposium on Computer Applications in Medical Care, 1977
Jun.

C. A. Kulikowski, Beginnings of Artificial Intelligence in
Medicine (AIM): Computational Artifice Assisting Scientific
Inquiry and Clinical Art - with Reflections on Present AIM
Challenges, Yearb. Med. Inform., 2019, 28(01), 249-256, DOI:
10.1055/s-0039-1677895.

M. A. J. Tengnah, R. Sooklall and S. D. Nagowah, in
Telemedicine Technologies [Internet], ed. D. H. Jude and V. E.
Balas, Academic Press, 2019, ch. 9 — A Predictive Model for
Hypertension  Diagnosis  Using  Machine  Learning
Techniques, p. 139-52, Available from: https://www.
sciencedirect.com/science/article/pii/
B978012816948300009X.

T. Jo, K. Nho and A. J. Saykin, Deep Learning in Alzheimer's
Disease: Diagnostic Classification and Prognostic Prediction
Using Neuroimaging Data, Front. Aging Neurosci., 2019, 11,
DOI: 10.3389/fnagi.2019.00220.

J. Chen, D. Remulla, J. H. Nguyen, A. Dua, Y. Liu and P.
Dasgupta, et al., Current status of artificial intelligence
applications in urology and their potential to influence
clinical practice, BJU Int., 2019, 124(4), 567-577, DOI:
10.1111/bju.14852.

P. H. C. Chen, K. Gadepalli, R. MacDonald, Y. Liu, S.
Kadowaki and K. Nagpal, et al, An augmented reality
microscope with real-time artificial intelligence integration
for cancer diagnosis, Nat. Med., 2019, 25(9), 1453-1457, DOI:
10.1038/s41591-019-0539-7.

I. M. Nasser and S. S. Abu-Naser, Predicting Tumor
Category Using Artificial Neural Networks, Int. J. Acad.
Health Med. Res., 2019, 3, 1-7, Available from: www.ijeais.
org/ijahmr.

V. Sarao, D. Veritti and P. Lanzetta, Automated diabetic
retinopathy detection with two different retinal imaging
devices using artificial intelligence: a comparison study,
Graefe's Arch. Clin. Exp. Ophthalmol.,, 2020, 258(12),
2647-2654, DOI: 10.1007/s00417-020-04853-y.

© 2025 The Author(s). Published by the Royal Society of Chemistry

24

25

26

27

28

29

30

31

32

33

34

View Article Online

Critical review

T. D. L. Keenan, T. E. Clemons, A. Domalpally, M. ]J. Elman,
M. Havilio and E. Agrén, et al, Retinal Specialist versus
Artificial Intelligence Detection of Retinal Fluid from OCT:
Age-Related Eye Disease Study 2: 10-Year Follow-On Study,
Ophthalmology, 2021, 128(1), 100-109, Available from:
https://www.sciencedirect.com/science/article/pii/
$0161642020305807.

R. Rajalakshmi, R. Subashini, R. M. Anjana and V.
Mohan, Automated diabetic retinopathy detection in
smartphone-based fundus photography using artificial
intelligence, Eye, 2018, 32(6), 1138-1144, DOIL: 10.1038/
$41433-018-0064-9.

Y. Horie, T. Yoshio, K. Aoyama, S. Yoshimizu, Y. Horiuchi
and A. Ishiyama, et al., Diagnostic outcomes of esophageal
cancer by artificial intelligence using convolutional neural
networks, Gastrointest. Endosc., 2019, 89(1), 25-32, Available
from: https://www.sciencedirect.com/science/article/pii/
$0016510718329262.

R. J. Pignolo, J. J. Connell, W. Briggs, C. J. Kelly, C. Tromans
and N. Sultana, et al, Opportunistic assessment of
osteoporosis using hip and pelvic X-rays with OsteoSight™:
validation of an Al-based tool in a US population,
Osteoporosis Int., 2025, 36(6), 1053-1060, DOI: 10.1007/
$00198-025-07487-0.

R. Ani, S. Krishna, N. Anju, M. S. Aslam and O. S. Deepa, Iot
based patient monitoring and diagnostic prediction tool
using ensemble classifier, in 2017 International Conference
on Advances in Computing, Communications and Informatics
(ICACCI), 2017, pp. 1588-1593.

H. Luo, G. Xu, C. Li, L. He, L. Luo and Z. Wang, et al., Real-
time artificial intelligence for detection of upper
gastrointestinal cancer by endoscopy: a multicentre, case-
control, diagnostic study, Lancet Oncol., 2019, 20(12),
1645-1654, DOI: 10.1016/S1470-2045(19)30637-0.

D. Park, Y. M. Lee, T. Eo, H. J. An, H. Kang and E. Park,
et al., Multimodal AI model for preoperative prediction of
axillary lymph node metastasis in breast cancer using whole
slide images, npj Precis. Oncol., 2025, 9(1), 131, DOI: 10.1038/
$41698-025-00914-9.

P. Strom, K. Kartasalo, H. Olsson, L. Solorzano, B. Delahunt
and D. M. Berney, et al, Artificial intelligence for diagnosis
and grading of prostate cancer in biopsies: a population-
based, diagnostic study, Lancet Oncol., 2020, 21(2), 222-232,
DOI: 10.1016/51470-2045(19)30738-7.

W. Bulten, K. Kartasalo, P. H. C. Chen, P. Strém, H.
Pinckaers and K. Nagpal, et al., Artificial intelligence for
diagnosis and Gleason grading of prostate cancer: the
PANDA challenge, Nat. Med., 2022, 28(1), 154-163, DO
10.1038/s41591-021-01620-2.

K. Hirai, T. Kuwahara, K. Furukawa, N. Kakushima, S.
Furune and H. Yamamoto, et al., Artificial intelligence-based
diagnosis of upper gastrointestinal subepithelial lesions on
endoscopic  ultrasonography images, Gastric Cancer,
2022, 25(2), 382-391, DOI: 10.1007/s10120-021-01261-x.

N. Linder, J. C. Taylor, R. Colling, R. Pell, E. Alveyn and J.
Joseph, et al., Deep learning for detecting tumour-infiltrating

Sens. Diagn., 2025, 4,1047-1059 | 1057


https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1080/00461520.2011.611369
https://doi.org/10.1080/00461520.2011.611369
https://doi.org/10.1038/nature21056
https://doi.org/10.1055/s-0039-1677895
https://www.sciencedirect.com/science/article/pii/B978012816948300009X
https://www.sciencedirect.com/science/article/pii/B978012816948300009X
https://www.sciencedirect.com/science/article/pii/B978012816948300009X
https://doi.org/10.3389/fnagi.2019.00220
https://doi.org/10.1111/bju.14852
https://doi.org/10.1038/s41591-019-0539-7
www.ijeais.org/ijahmr
www.ijeais.org/ijahmr
https://doi.org/10.1007/s00417-020-04853-y
https://www.sciencedirect.com/science/article/pii/S0161642020305807
https://www.sciencedirect.com/science/article/pii/S0161642020305807
https://doi.org/10.1038/s41433-018-0064-9
https://doi.org/10.1038/s41433-018-0064-9
https://www.sciencedirect.com/science/article/pii/S0016510718329262
https://www.sciencedirect.com/science/article/pii/S0016510718329262
https://doi.org/10.1007/s00198-025-07487-0
https://doi.org/10.1007/s00198-025-07487-0
https://doi.org/10.1016/S1470-2045(19)30637-0
https://doi.org/10.1038/s41698-025-00914-9
https://doi.org/10.1038/s41698-025-00914-9
https://doi.org/10.1016/S1470-2045(19)30738-7
https://doi.org/10.1038/s41591-021-01620-2
https://doi.org/10.1007/s10120-021-01261-x
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sd00146c

Open Access Article. Published on 08 October 2025. Downloaded on 2/16/2026 3:27:32 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Critical review

35

36

37

38

39

40

41

42

43

44

45

lymphocytes in testicular germ cell tumours, J. Clin. Pathol.,
2019, 72(2), 157-164, Available from: https://jep.bmj.com/
content/72/2/157.

D. d. A. Rodrigues, R. F. Ivo, S. C. Satapathy, S. Wang, J.
Hemanth and P. P. R. Filho, A new approach for
classification skin lesion based on transfer learning, deep
learning, and IoT system, Pattern Recognit. Lett., 2020, 136,
8-15, Available from: https://www.sciencedirect.com/science/
article/pii/S0167865520301987.

A. Kouketsu, C. Doi, H. Tanaka, T. Araki, R. Nakayama and
T. Toyooka, et al., Detection of oral cancer and oral
potentially malignant disorders using artificial intelligence-
based image analysis, Head Neck, 2024, 46(9), 2253-2260,
DOI: 10.1002/hed.27843.

Y. Aggarwal, J. Das, P. M. Mazumder, R. Kumar and R. K.
Sinha, Heart rate variability features from nonlinear cardiac
dynamics in identification of diabetes using artificial neural
network and support vector machine, Biocybern. Biomed.
Eng., 2020, 40(3), 1002-1009, Available from: https://www.
sciencedirect.com/science/article/pii/S0208521620300590.

G. Swapna, R. Vinayakumar and K. P. Soman, Diabetes
detection using deep learning algorithms, ICT Express,
2018, 4(4), 243-246, Available from: https://www.
sciencedirect.com/science/article/pii/S2405959518304624.

N. P. Tigga and S. Garg, Prediction of Type 2 Diabetes using
Machine Learning Classification Methods, Procedia Comput.
Sci.,, 2020, 167, 706-716, Available from: https://www.
sciencedirect.com/science/article/pii/S1877050920308024.

O. Yildinnm, P. Plawiak, R. S. Tan and U. R. Acharya,
Arrhythmia detection using deep convolutional neural
network with long duration ECG signals, Comput. Biol. Med.,
2018, 102, 411-420, Available from: https://www.
sciencedirect.com/science/article/pii/S0010482518302713.

H. Kanegae, K. Suzuki, K. Fukatani, T. Ito, N. Harada and K.
Kario, Highly precise risk prediction model for new-onset
hypertension using artificial intelligence techniques, J. Clin.
Hypertens., 2020, 22(3), 445-450, Available from: https://
onlinelibrary.wiley.com/doi/abs/10.1111/jch.13759.

D. G. Kiely, O. Doyle, E. Drage, H. Jenner, V. Salvatelli and
F. A. Daniels, et al, Utilising artificial intelligence to
determine patients at risk of a rare disease: idiopathic
pulmonary arterial hypertension, Pulm. Circ., 2019, 9(4),
2045894019890549, DOI: 10.1177/2045894019890549.

J. Olczak, N. Fahlberg, A. Maki, A. S. Razavian, A. Jilert and
A. Stark, et al., Artificial intelligence for analyzing orthopedic
trauma radiographs, Acta Orthop., 2017, 88(6), 581-586, DOI:
10.1080/17453674.2017.1344459.

K. Paek, S. Kim, S. Tak, M. K. Kim, J. Park and S. Chung,

et al, A high-throughput biomimetic bone-on-a-chip
platform with artificial intelligence-assisted image analysis
for osteoporosis drug testing, Bioeng. Transl. Med.,

2023, 8(1), €10313, DOI: 10.1002/btm2.10313.

A. Katako, P. Shelton, A. L. Goertzen, D. Levin, B. Bybel and
M. Aljuaid, et al, Machine learning identified an
Alzheimer's disease-related FDG-PET pattern which is also
expressed in Lewy body dementia and Parkinson's disease

1058 | Sens. Diagn., 2025, 4, 1047-1059

46

47

48

49

50

51

52

53

54

55

56

View Article Online

Sensors & Diagnostics

dementia, Sci. Rep., 2018, 8(1), 13236, DOI: 10.1038/s41598-
018-31653-6.

O. F. F. Odish, K. Johnsen, P. van Someren, R. A. C. Roos
and J. G. van Dijk, EEG may serve as a biomarker in
Huntington's disease using machine learning automatic
classification, Sci. Rep., 2018, 8(1), 16090, DOI: 10.1038/
$41598-018-34269-y.

Y. Chen, M. Sha, X. Zhao, J. Ma, H. Ni and W. Gao, et al.,
Automated detection of pathologic white matter alterations
in Alzheimer's disease using combined diffusivity and
kurtosis method, Psychiatry Res., Neuroimaging, 2017, 264,
35-45, Available from: https://www.sciencedirect.com/
science/article/pii/S092549271630186X.

H. K. van der Burgh, R. Schmidt, H. J. Westeneng, M. A. de
Reus, L. H. van den Berg and M. P. van den Heuvel, Deep
learning predictions of survival based on MRI in
amyotrophic lateral sclerosis, Neurolmage Clin., 2017, 13,
361-369Available  from: https://www.sciencedirect.com/
science/article/pii/S2213158216301899.

H. Takeshige-Amano, G. Oyama, M. Ogawa, K. Fusegi, T.
Kambe and K. Shiina, et al., Digital detection of Alzheimer's
disease using smiles and conversations with a chatbot, Sci.
Rep., 2024, 14(1), 26309, DOI: 10.1038/s41598-024-77220-0.

P. Strom, K. Kartasalo, H. Olsson, L. Solorzano, B. Delahunt
and D. M. Berney, et al., Artificial intelligence for diagnosis
and grading of prostate cancer in biopsies: a population-
based, diagnostic study, Lancet Oncol., 2020, 21(2), 222-232,
DOI: 10.1016/51470-2045(19)30738-7.

G. Alotaibi, M. Awawdeh, F. F. Farook, M. Aljohani, R. M.
Aldhafiri and M. Aldhoayan, Artificial intelligence (AI)
diagnostic tools: utilizing a convolutional neural network
(CNN) to assess periodontal bone level radiographically—a
retrospective study, BMC Oral Health, 2022, 22(1), 399, DOIL:
10.1186/s12903-022-02436-3.

M. Katsuki, Y. Matsumori, S. Kawamura, K. Kashiwagi, A.
Koh and S. Tachikawa, et al, Developing an artificial
intelligence-based diagnostic model of headaches from a
dataset of clinic patients’ records, Headache, 2023, 63(8),
1097-1108, DOI: 10.1111/head.14611.

S. Nooh, M. Ragab, R. Aboalela, A. A. M. AL-Ghamdi,
O. A. Abdulkader and G. Alghamdi, An exploratory
analysis of longitudinal artificial intelligence for cognitive
fatigue detection using neurophysiological based biosignal
data, Sci. Rep., 2025, 15(1), 15736, DOL 10.1038/s41598-
025-96816-8.

K. Zhang, J. He and W. Ji, et al., Machine learning model for
differentiating xanthogranulomatous cholecystitis and
gallbladder cancer in multicenter largescale study, NPJ Digit.
Med., 2025, 8, 590, DOI: 10.1038/s41746-025-01991-7.

D. Kavungal, P. Magalhdes, S. T. Kumar, R. Kolla, H. A.
Lashuel and H. Altug, Artificial intelligence-coupled
plasmonic infrared sensor for detection of structural protein
biomarkers in neurodegenerative diseases, Sci. Adv.,
2023, 9(28), eadg9644, DOIL: 10.1126/sciadv.adg9644.

A. Sarwar, M. Ali, J. Manhas and V. Sharma, Diagnosis of
diabetes type-II using hybrid machine learning based

© 2025 The Author(s). Published by the Royal Society of Chemistry


https://jcp.bmj.com/content/72/2/157
https://jcp.bmj.com/content/72/2/157
https://www.sciencedirect.com/science/article/pii/S0167865520301987
https://www.sciencedirect.com/science/article/pii/S0167865520301987
https://doi.org/10.1002/hed.27843
https://www.sciencedirect.com/science/article/pii/S0208521620300590
https://www.sciencedirect.com/science/article/pii/S0208521620300590
https://www.sciencedirect.com/science/article/pii/S2405959518304624
https://www.sciencedirect.com/science/article/pii/S2405959518304624
https://www.sciencedirect.com/science/article/pii/S1877050920308024
https://www.sciencedirect.com/science/article/pii/S1877050920308024
https://www.sciencedirect.com/science/article/pii/S0010482518302713
https://www.sciencedirect.com/science/article/pii/S0010482518302713
https://onlinelibrary.wiley.com/doi/abs/10.1111/jch.13759
https://onlinelibrary.wiley.com/doi/abs/10.1111/jch.13759
https://doi.org/10.1177/2045894019890549
https://doi.org/10.1080/17453674.2017.1344459
https://doi.org/10.1002/btm2.10313
https://doi.org/10.1038/s41598-018-31653-6
https://doi.org/10.1038/s41598-018-31653-6
https://doi.org/10.1038/s41598-018-34269-y
https://doi.org/10.1038/s41598-018-34269-y
https://www.sciencedirect.com/science/article/pii/S092549271630186X
https://www.sciencedirect.com/science/article/pii/S092549271630186X
https://www.sciencedirect.com/science/article/pii/S2213158216301899
https://www.sciencedirect.com/science/article/pii/S2213158216301899
https://doi.org/10.1038/s41598-024-77220-0
https://doi.org/10.1016/S1470-2045(19)30738-7
https://doi.org/10.1186/s12903-022-02436-3
https://doi.org/10.1111/head.14611
https://doi.org/10.1038/s41598-025-96816-8
https://doi.org/10.1038/s41598-025-96816-8
https://doi.org/10.1038/s41746-025-01991-7
https://doi.org/10.1126/sciadv.adg9644
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sd00146c

Open Access Article. Published on 08 October 2025. Downloaded on 2/16/2026 3:27:32 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Sensors & Diagnostics

57

58

59

60

61

62

63

64

ensemble model, Int. J. Inf Technol., 2020, 12(2), 419-428,
DOI: 10.1007/s41870-018-0270-5.

M. M. Musleh, E. Alajrami, A. J. Khalil, B. S. Abu-Nasser,
A. M. Barhoom and S. S. Abu-Naser, Predicting Liver Patients
using Artificial Neural Network, Int. J. Acad. Inf. Syst. Res.,
2019, 3, 1-11, Available from: www.ijeais.org/ijaisr.

D. C. Yadav and S. Pal, Prediction of thyroid disease using
decision tree ensemble method, Human-Intelligent Systems
Integration, 2020, 2(1), 89-95, DOL: 10.1007/s42454-020-00006-y.
X. Xie, W. Yu, Z. Chen, L. Wang, J. Yang and S. Liu, et al.,
Early-stage oral cancer diagnosis by artificial intelligence-
based SERS using Ag NWs@ZIF core-shell nanochains,
Nanoscale, 2023, 15(32), 13466-13472.

B. Khan, H. Fatima, A. Qureshi, S. Kumar, A. Hanan and ].
Hussain, et al, Drawbacks of Artificial Intelligence and
Their Potential Solutions in the Healthcare Sector, Biomed.
Mater. & Devices, 2023, 1(2), 731-738, DOI: 10.1007/s44174-
023-00063-2.

F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li and S. Ma, et al.,
Artificial intelligence in healthcare: past, present and future,
Stroke Vasc. Neurol., 2017, 2(4), DOL 10.1136/svn-2017-000101,
Available from: https://svnsite-bmj.vercel.app/content/2/4/230.
N. Naik, B. M. Z. Hameed, D. K. Shetty, D. Swain, M. Shah and
R. Paul, et al., Legal and Ethical Consideration in Artificial
Intelligence in Healthcare: Who Takes Responsibility?, Front.
Surg., 2022, 9, DOL: 10.3389/fsurg.2022.862322.

S. Jayakumar, V. Sounderajah, P. Normahani, L. Harling,
S. R. Markar and H. Ashrafian, et al, Quality assessment
standards in artificial intelligence diagnostic accuracy
systematic reviews: a meta-research study, NPJ Digit. Med.,
2022, 5(1), 11, DOL: 10.1038/541746-021-00544-y.

A. Vaid, S. Jaladanki, J. Xu, S. Teng, A. Kumar, S. Lee, S.
Somani, I. Paranjpe, J. De Freitas, T. Wanyan, K. Johnson,
M. Bicak, E. Klang, Y. Kwon, A. Costa, S. Zhao, R. Miotto, A.
Charney, E. Bottinger, Z. Fayad, G. Nadkarni, F. Wang and B.
Glicksberg, Federated Learning of Electronic Health Records
to Improve Mortality Prediction in Hospitalized Patients
With COVID-19: Machine Learning Approach, JMIR Med.
Inform., 2021, 9(1), e24207, DOIL 10.2196/24207, https://
medinform.jmir.org/2021/1/€24207.

© 2025 The Author(s). Published by the Royal Society of Chemistry

65

66

67

68

69

70

71

72

73

74

View Article Online

Critical review

L. Aissaoui Ferhi, et al., Enhancing diagnostic accuracy in
symptom-based health checkers: a comprehensive machine
learning approach with clinical vignettes and benchmarking,

Front. Artif Intell, 2024, 7, 1397388, DOIL 10.3389/
frai.2024.1397388.
A. Amato and D. Branco, SemFedXAl: A Semantic

Framework for Explainable Federated Learning in
Healthcare, Information, 2025, 16, 435, DOL 10.3390/
info16060435.

J. Bajwa, U. Munir, A. Nori and B. Williams, Artificial
intelligence in healthcare: transforming the practice of
medicine, Future Healthc. J., 2021, 8(2), e188-e194, Available
from: https://www.sciencedirect.com/science/article/pii/
$2514664524005277.

C. J. Kelly, A. Karthikesalingam, M. Suleyman, G. Corrado
and D. King, Key challenges for delivering clinical impact
with artificial intelligence, BMC Med., 2019, 17(1), 195, DOIL:
10.1186/s12916-019-1426-2.

J. Lawrence, et al., Topological Design and Synthesis of
High-Spin Aza-triangulenes without Jahn-Teller Distortions,
ACS Nano, 2023, 17(20), 20237-20245, DOI: 10.1021/
acsnano.3¢05974.

J. Chen, Y. Li, Y. Jiang, L. Mao, M. Lai, L. Jiang, H. Liu and
Z. Nie, TiO,/MXene-Assisted LDI-MS for Urine Metabolic
Profiling in Urinary Disease, Adv. Funct. Mater., 2021, 31,
2106743, DOIL: 10.1002/adfm.202106743.

H. Jin, et al., Robust Multifunctional Ultrathin 2 Nanometer
Organic Nanofibers, ACS Nano, 2024, 18(32), 2157621584,
DOI: 10.1021/acsnano.4¢08229.

M. Song, Y. Li, W. Ma, ]J. Chen and Z. Nie, Hand-Held
Nanoelectrospray Ionization with Frequency and Amplitude
Tunability for Metabolomics of Saline Biosamples, Anal
Chem., 2025, 97(33), 18327-18334, DOI: 10.1021/acs.
analchem.5c¢03797.

A. Curioni, Artificial intelligence: Why we must get it right,
Informatik-Spektrum, 2018, 41(1), 7-14, DOI: 10.1007/s00287-
018-1087-0.

E. J. Topol, High-performance medicine: the convergence of
human and artificial intelligence, Nat. Med., 2019, 25(1),
44-56, DOI: 10.1038/s41591-018-0300-7.

Sens. Diagn., 2025, 4,1047-1059 | 1059


https://doi.org/10.1007/s41870-018-0270-5
www.ijeais.org/ijaisr
https://doi.org/10.1007/s42454-020-00006-y
https://doi.org/10.1007/s44174-023-00063-2
https://doi.org/10.1007/s44174-023-00063-2
https://doi.org/10.1136/svn-2017-000101
https://svnsite-bmj.vercel.app/content/2/4/230
https://doi.org/10.3389/fsurg.2022.862322
https://doi.org/10.1038/s41746-021-00544-y
https://doi.org/10.2196/24207
https://medinform.jmir.org/2021/1/e24207
https://medinform.jmir.org/2021/1/e24207
https://doi.org/10.3389/frai.2024.1397388
https://doi.org/10.3389/frai.2024.1397388
https://doi.org/10.3390/info16060435
https://doi.org/10.3390/info16060435
https://www.sciencedirect.com/science/article/pii/S2514664524005277
https://www.sciencedirect.com/science/article/pii/S2514664524005277
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1021/acsnano.3c05974
https://doi.org/10.1021/acsnano.3c05974
https://doi.org/10.1002/adfm.202106743
https://doi.org/10.1021/acsnano.4c08229
https://doi.org/10.1021/acs.analchem.5c03797
https://doi.org/10.1021/acs.analchem.5c03797
https://doi.org/10.1007/s00287-018-1087-0
https://doi.org/10.1007/s00287-018-1087-0
https://doi.org/10.1038/s41591-018-0300-7
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sd00146c

	crossmark: 


